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A flexible likelihood framework for detecting
associations with secondary phenotypes in genetic
studies using selected samples: application
to sequence data

Dajiang J Liu1,2 and Suzanne M Leal*,1,2

For most complex trait association studies using next-generation sequencing, in addition to the primary phenotype of interest,

many clinically important secondary traits are also available, which can be analyzed to map susceptibility genes. Owing to high

sequencing costs, most studies use selected samples, and the sampling mechanisms of these studies can be complicated.

When the primary and secondary traits are correlated, analyses of secondary phenotypes can cause spurious associations in

selected samples and existing methods are inadequate to adjust for them. To address this problem, a likelihood-based method,

MULTI-TRAIT-ASSOCIATION (MTA) was developed. MTA is flexible and can be applied to any study with known sampling

mechanisms. It also allows efficient inferences of genetic parameters. To investigate the power of MTA and different study

designs, extensive simulations were performed under rigorous population genetic and phenotypic models. It is demonstrated that

there are great benefits for analyzing secondary phenotypes in selected samples. In particular, using case–control samples and

samples with extreme primary phenotypes can be more powerful than analyzing random samples of equivalent size. One major

challenge for sequence-based association studies is that most data sets are not of sufficient size to be adequately powered.

By applying MTA, data sets ascertained under distinct mechanisms or targeted at different primary traits can be jointly analyzed

to map common phenotypes and greatly increase power. The combined analysis can be performed using freely available data

sets from public repositories, for example, dbGaP. In conclusion, MTA will have an important role in dissecting the etiology

of complex traits.
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INTRODUCTION

There is solid evidence that complex traits can be influenced by rare
variants.1–4 The development and large-scale application of next-
generation sequencing have already revolutionized genetic studies
and enabled detecting associations with complex traits owing to rare
variants. In order to design powerful studies, it is necessary to deeply
sequence samples from a large number of individuals.5 However,
many existing studies are small- to moderate-sized, owing to the high
cost of sequencing or limited availability of samples, and are therefore
inadequately powered. It would be advantageous if different studies,
which measure the same phenotypes, could be jointly analyzed to
increase power. In particular, many clinically important traits, such as
body mass index (BMI), systolic (SysBP) and diastolic blood pressure
(DiasBP) are often measured in different studies. When combined
analysis is performed, in addition to incorporating studies that are
targeted at the same primary traits, it is desirable to also analyze data
from studies for which the phenotype of interest is measured as an
additional outcome. Combined analyses require modeling multiple
phenotypes as different studies may sequence selected samples
targeted at different primary traits. Similar to the idea of analysis of
covariance (ANCOVA), jointly analyzing multiple phenotypes makes

it possible to distinguish the phenotype covariance component that is
due to gene pleiotropy and the component that is attributable to
residual correlations.
Currently, most studies sequence selected samples, for example,

case–control samples or individuals with extreme phenotypes.1,6

Sequencing selected samples reduces sequencing cost and improves
power. Owing to sample ascertainment, secondary traits can be
associated with the gene region in a selected sample even though
they are independent in the general population. For example, consider
a gene that is associated with the primary trait, but not with the
secondary trait, in the general population (Figure 1). In a sample that
consists of individuals with extreme primary trait values, the causative
variant frequency will be different between individuals from the upper
and lower extremes. The mean value for the secondary trait will also
be different owing to phenotypic correlations. Therefore, a spurious
association can occur between the gene region and the secondary trait
unless the sample ascertainment scheme is correctly modeled.
The selection criteria for a sequencing study can be complicated and
may involve multiple traits (multiple-trait study) or sub-phenotypes.
For instance, it is hypothesized that the etiologies of type-2 diabetes
(T2D) are different in obese and non-obese individuals.7,8 In order to
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reduce phenotype heterogeneity and potentially improve power, a
study of T2D might be performed using an obese population. There
have been methods developed for detecting associations with multiple
phenotypes in selected samples.9,10 However, these methods are
limited to case–control studies. They are not applicable to more
complicated study designs, for example, studies that sequence indivi-
duals with extreme primary traits (extreme-trait study), or studies
where secondary phenotypes are also involved in sample selection.
In particular, the extreme-trait study design is becoming increasingly
popular and widely applied.11–13 The results for detecting associations
with secondary traits can be seriously biased if the secondary traits are
not properly analyzed.9 It is desirable to have a unified approach for
analyzing secondary phenotypes from all available data sets.
A flexible likelihood approach, MULTI-TRAIT-ASSOCIATION

(MTA), is presented for detecting associations with multiple pheno-
types in selected or randomly ascertained samples. This method can be
used to detect both common and rare variant/secondary phenotype
associations. MTA jointly models multiple phenotypes conditional on
the study subjects being ascertained. The sampling mechanisms
are incorporated by means of a prospective likelihood approach.
The MTA framework is comprehensive and can be used to model
multiple continuous or categorical traits. To model traits that are not
continuous, a generalized linear model is used. For example, either a
probit or logit link function can be applied to model binary traits.
In this article, the discussion is focused on using the probit link
function and the liability threshold model, which can be justified by
the polygenic model of complex traits. It has been suggested that the
liability of all complex traits can be considered as ‘quantitative’.14 For
complex traits that are not measured in a quantitative scale, there
should exist a continuous underlying liability trait, which is due to the
aggregated outcome from multiple causative variants with small
effects. In this case, a multivariate liability threshold model is naturally
used to jointly model multiple phenotypes.
The power of MTA for detecting gene/secondary trait associations is

examined in different selective study designs. Three study designs are
considered, that is, case–control, extreme-trait and multiple-trait. It is
assumed for each of the study designs that the same continuous
secondary phenotype T is measured. For comparison purposes, study
designs are also evaluated where the quantitative trait T is selected and
analyzed as the primary phenotype. Simulation details for each study
design can be found in Table 1.
It is very beneficial to be able to use and combine selected samples

from existing sequencing-based genetic studies. Through extensive

simulation studies, it is shown that the case–control and extreme-
trait designs can be more powerful for detecting associations with
secondary phenotypes than using a population-based design, where
individuals are randomly selected regardless of their phenotypes. The
power for detecting associations with secondary phenotypes strongly
depends on the aggregation of causative variants in the sample.
For study designs that facilitate enrichment of causative variants,
power will be increased. In the presence of gene pleiotropy, variants
that are associated with both the primary and secondary traits can be
enriched through selections on the primary phenotype. When the
gene region is only associated with the secondary phenotype, if the
primary and secondary traits are correlated, selections on the primary
phenotype can also induce selections on the secondary phenotype.
In this case, for a sample of equivalent size, the power of rejecting
the null hypothesis of no gene/secondary trait association in case–
control or extreme-trait studies is still superior or comparable to a
population-based study.
The power for detecting associations with secondary phenotypes

in selected samples is jointly affected by locus phenotypic effects for
both the primary and secondary phenotypes, as well as residual
correlations. Concordant with observations from previous studies of
multiple-trait linkage/association mapping,15–17 it is demonstrated
that power is maximized when the locus-induced trait correlations
are in the opposite direction of the residual correlations. To further
demonstrate the utility of MTA in combined analysis, an example is
given where samples from a case–control study and a multiple-trait
study are jointly analyzed. The power for detecting associations with
commonly measured phenotypes can be greatly increased when studies
are combined, compared with analyzing each individual study separately.
As an application of MTA, we analyzed the sequence data from the

ANGPTL3, ANGPTL4, ANGPTL5 and ANGPTL6 genes generated by
the Dallas Heart Study (DHS). The 3551 study participants of the
DHS were phenotyped for multiple metabolism-related traits, includ-
ing BMI, DiasBP, SysBP, total cholesterol level (TCL), low-density

Primary Trait Y1

Gene X cov(Y1, Y2) ≠ 0

Secondary Trait Y2

Figure 1 Graphical illustration of gene/multiple phenotypes associations.

The gene region is causal for the primary trait Y1 but not for the secondary

trait Y2. Owing to the correlation between the two traits, a spurious

association can be detected between the gene region and the secondary trait

if the ascertainment mechanism or phenotypic correlations are not properly

modeled.

Table 1 Definitions of selection mechanisms

Study designs Definition

Case–control Cases and controls are sampled based on the binary primary

phenotype A. The trait status is determined by A¼d(A*Za c),

where a c is the 90th percentile of the liability trait A*. A total

of 500 cases and 500 controls is sequenced

Extreme-trait One thousand individuals with quantitative trait B values in

the upper and lower 10% were sequenced from a cohort of

5000 individuals

Multiple-trait The affection status is defined by C¼d(C*Zc c), where c c is

the 90th percentile for the liability trait C*. Five hundred

affected individuals with trait T-values 465th percentile

are sequenced and 500 unaffected individuals are also

sequenced regardless of their T-values

Extreme-trait study

where T is

sampled and

analyzed as

primary trait

In an extreme-trait study, individuals with extreme T-values in

the upper and lower 2, 6 and 10% are sampled, and

sequenced from a cohort of 5000 individuals

Population-based

study design

A total of 1000, 2000 and 3000 individuals are randomly

sampled from the general population regardless of their

phenotypes
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lipoprotein (LDL), high-density lipoprotein (HDL), triglyceride (TG)
and glucose (Gluc). Two primary trait analyses were first performed:
(1) analysis of all samples and (2) analysis of selected samples whose
quantitative trait values fall within the lower and upper quartiles. Next a
secondary phenotype analysis was performed where within each selected
sample all other available phenotypes were analyzed as secondary traits.
The results from the secondary trait analyses confirmed the primary trait
analyses. These results established the importance of analyzing secondary
phenotypes and the effectiveness of MTA. They provided solid support
to our simulation experiment.

MATERIALS AND METHODS
It is assumed that there are S variant nucleotide sites for a gene locus. The

multi-site genotype for individual i is given by ~Xi ¼ x1i ; x
2
i ; � � � ; xSi

� �
, where the

genotype at the segregating nucleotide site s is coded by the number of minor

alleles, (eg, xsi ¼ 2 if the individual is homozygous for the minor allele).

To detect associations with rare variants, multiple rare variants in a gene locus

are usually jointly analyzed.18–22 The locus genotype coding for an individual

i is defined as Xi ¼ C ~Xi

� �
, where C(�) is the coding function.

Locus multi-site genotype coding schemes
Many statistical methods have been developed for association studies of

complex traits owing to rare variants. Existing methods include combined

multivariate and collapsing (CMC),23 test of an aggregated number of rare

variants (ANRV),22 weighted sum statistics (WSS),20 variable threshold

test (VT),21 kernel-based adaptive cluster (KBAC),19 the C-alpha test24 and

the RARECOVER (RC) method,25 and so on. Most of these methods are

essentially based on weighting or grouping variants. Among them, CMC and

ANRV are regression-based methods, which can be incorporated into MTA

through the coding function C(�):
(1) CMC: The coding function is defined as

Xi ¼ CCMC ~Xi

� �
¼ d

P
s2RV

xsi40

� �
, where d(�) is an indicator function andP

s2RV
is a summation over the set of rare variant nucleotide sites RV, which can

be determined by a pre-specified frequency cut-off.

(2) ANRV: The coding function belongs to a more general class of weighted

sum coding (WSC), which can be defined as Xi ¼ CWSC ~Xi

� �
¼
P
s2RV

wsxsi . In

the WSC scheme, the variant from nucleotide site s is assigned weight ws. The

ANRV coding assigns equal weight for all variants, that is,

Xi ¼ CANRV ~Xi

� �
¼
P
s2RV

xsi .

A general probability model for multiple phenotypes in
selected samples
In order to incorporate the sample ascertainment mechanism and correct for

the bias induced by phenotypic residual correlations, multiple phenotypes are

jointly modeled. The primary and secondary traits are assumed to follow a

multivariate generalized linear model:

FY1
~yY1
� �

¼ b01+b11Xi+
P
k

ak1Wki

FY2
~yY2
� �

¼ b02+b12Xi+bY1Y1i+
P
k

ak2Wki

8><
>: ð1Þ

FY1
~yY1
� �

and FY2
~yY2
� �

are link functions, and ~yY1 and ~yY2 are the model

parameters related to the primary and secondary traits. This multivariate

generalized linear model can be used with any type of link functions, such as

probit link function or logit link function.

For selected samples, a conditional likelihood is used, which is similar to

Pearson–Aitken correction for ascertainment:26

L b; y;X;Uð Þ ¼
YN

i¼1
Pr Y1i;Y2ijZi ¼ 1;Xi; Wkif gk
� �

ð2Þ

Zi is an indicator of individual i being sampled and N is the number of indivi-

duals in the sample. Each term Pr Y1i;Y2i;jZi ¼ 1;Xi; Wkif gk
� �

in (2) satisfies

Pr Y1i;Y2ijXi;Zi ¼ 1; Wkif gk
� �

¼
Pr Zi ¼ 1jY1i;Y2i;Xi; Wkif gk
� �

Pr Y1i;Y2ijXi; Wkif gk
� �R

Pr Zi ¼ 1jy1i; y2ið ÞPr y1i; y2ijXið Þdy1idy2i
ð3Þ

The sampling mechanism is characterized by Pr Zi ¼ 1jY1i;Y2i;Xi; Wkif gk
� �

,

which can be explicitly calculated for case–control, extreme-trait and multiple-

trait studies. The details are shown in Supplementary Material Section 1. When the

probit link function is used to model binary phenotypes, the multivariate

generalized linear model can be simplified. Computational details can be found

in Supplementary Material Section 2.

Association testing
The likelihood-based score statistic can be applied to detect associations with

rare variants. Using collapsing coding, P-values for the score statistics can be

analytically evaluated. For the WSC, if the weights are only dependent on the

multi-site genotypes, the score statistic will asymptotically follow a normal

distribution and the P-values can also be analytically evaluated. Permutation

procedures cannot be used to analyze secondary phenotypes in selected

samples. This is because if the gene region is associated with the primary

phenotype, study subjects are not interchangeable under the null hypothesis of

no gene/secondary phenotype associations. The analyses in the article were

performed using the CMC coding, that is, Xi ¼ CCMC ~Xi

� �
. The results remain

the same when other coding schemes are used.

Combining different cohorts for analyses of secondary phenotypes
Statistical theories for combining multiple studies are well developed.27 As

heterogeneity may exist between different cohorts, meta-analysis methods that

combine test statistics should be used.11,12 For rare variant analysis, multiple

rare variants are jointly analyzed and their phenotypic effects are not usually

estimated and reported. Therefore, all the joint analyses in this study were

performed by combining score statistics from different studies. In the joint

analysis, score statistics from different studies are weighted and summed.

The weight assigned for each score statistic is proportional to the square root

of the sample size according to Skol et al.28

Generation of genetic and phenotypic data
Following Boyko et al,18 a rigorous population genetic model incorporating

demographic change and purifying selections was used to simulate the African

variant data. Details of generation of genetic data are given in Supplementary

Material Section 3. To generate phenotypes, we assume that the phenotypic

effects for causative variants are independent of their fitness. In a case–control

study, the augmented phenotype A�
i ;Ti

� �
for an individual i with multi-site

genotype ~Xi ¼ x1i ; x
2
i ; � � � ; xSi

� �
follows a bivariate normal distribution

MVN ~mCCi ;SCC
� �

, with

~mCCi ¼ ~bA�
X

s2CVA�

xsi ;
~bT
X
s2CVT

xsi

 !
;

and

SCC ¼ s2A� rA� ;TsA�sT
rA� ;TsA�sT s2T

� �
ð4Þ

The rare variants sites CVA*and CVT are randomly chosen to be causative for

the traits A* and T. Either set can be empty if the gene is not associated with

the corresponding trait. Variants at sites CVA� \ CVT are pleiotropic and

affect both phenotypes. The binary disorder status Ai is determined by

Ai ¼ d A�
i 4aC

� �
. For each scenario, 1000 individuals were simulated. Details

for simulating the extreme-trait and multiple-trait study samples can be found

in Supplementary Material Section 4.

In order to evaluate type-I errors, phenotype data were generated under the

null hypothesis of no gene/secondary trait Tassociations, that is, bT¼0. Scenarios

were considered where (1) the gene region is neither associated with the primary

nor the secondary phenotypes and (2) the gene is associated with the primary

phenotype but not with the secondary phenotype. Scenarios with a combination

of two causative variant primary trait effects ~bA� ¼ 0:5sA� ;0 or~bB; ~bC�

� �
and

four residual correlations rA� ;T ¼ �0:3; � 0:6 orrB;T ;rC� ;T

� �
were evaluated.
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To compare the power of rejecting the null hypothesis of no gene/secondary

trait associations, two causal variant secondary phenotype effects bT ¼±0.5sT
were used. The power for the three study designs was compared under

scenarios with different combinations of genetic parameter values.

Software availability
An R-package implementing MTA is available at http://www.bcm.edu/

genetics/leal/software, which is compatible with commonly used operating

systems, including Linux, Windows and OS X.

RESULTS

Evaluation of type-I errors
Type-I errors for each study design using MTA were evaluated
empirically. Under the null hypothesis of no genetic/secondary
phenotype associations, the quantile–quantile (Q–Q) plots of the
empirical and theoretical distributions of P-values are shown in Figures
2 and 3 for the case–control study design. When the ascertainment

mechanism is correctly specified, the type-I errors are controlled.
Results are shown in Figure 2 for the scenario where the gene region is
not associated with either the primary or the secondary phenotypes,
and the scenario where the gene region is only associated with the
primary trait. Type-I errors for the extreme-trait and multiple-trait
designs were also well controlled (data not shown). The impact of mis-
specified sampling mechanisms was investigated. The results are
shown in Figure 3 when the prevalence parameter is 10%, but is
incorrectly set to be 7% (Figure 3a) or 13% (Figure 3b) in the analyses.
The results indicate that mis-specifying prevalence has only a very
minimal impact on type-I error rates as can be observed in the
Q-Q plot.
In order to illustrate the bias that could be induced by ascertain-

ment, we also analyzed the simulated data using likelihood models
without proper ascertainment corrections and the biases in most
scenarios can be substantial. The details for the analyses are shown
in Supplementary Material Section 5 and Supplementary Figure 1.

Power of detecting secondary phenotype rare variant associations
The efficiency of the three selective sampling designs for detecting
secondary trait associations was compared when both the primary and
the secondary traits are associated with the same gene (Tables 2).
Scenarios were examined where 1000 individuals are sequenced for
each study design. There is considerable power for detecting secondary
phenotype associations in selected samples. Analyzing secondary
phenotypes in a case–control or an extreme-trait study data set can
be consistently more powerful than a randomly ascertained popula-
tion data set of equal size.
When a population-based sample is used where 1000 individuals

are randomly selected regardless of their phenotypic values, the power
for rejecting the null hypothesis is only 51.7% (Supplementary
Table 1). For a case–control sample where the secondary trait T is
analyzed, the power can be higher (Table 2). For example, when
the primary and secondary trait phenotypic effects, and residual
correlation satisfy bA*¼0.5sA*, bT¼0.5sT and rA�;T ¼ �0:6, the
power is 56.5%. It is also comparable to the power (56.6%) when
200 individuals with the most extreme trait T values from a cohort of
5000 are sequenced (Supplementary Table 2).
Compatible with observations from bivariate phenotype association

studies,16 the power for detecting associations with secondary pheno-
types is jointly determined by the sizes and directions of the locus
phenotypic effects and residual correlations. The power is the highest
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when the correlation between the locus phenotypic effects is in the
opposite direction of the trait residual correlations. For example, when
the locus-induced correlation is positive (ie, ~bA� ¼ 0:5sA� and
~bT ¼ 0:5sT) and the trait residual correlation is negative (ie,
rA� ;T ¼ �0:3), the power is 55.7%. However, if the trait residual
correlation is also positive (ie, rA� ;T ¼ 0:3), the power is 53.5%
(Table 2).
Similar patterns of power comparisons are observed for detecting

associations with secondary phenotypes T in extreme-trait studies.
The power for an extreme-trait study can be substantially higher than
that for a population-based study of equivalent size. For example, if
the primary and secondary trait effects, and residual correlations are
given by ~bC� ¼ 0:5sC� ~bT ¼ 0:5sT and rC�;T ¼ �0:6, the power of
rejecting the null hypothesis is 66.7% (Table 2). It is comparable to the
power (70.6%) when 600 individuals with the most extreme trait
T values from a cohort of 5000 are sequenced (Supplementary
Table 2), or the power (66.6%) when 2000 randomly selected samples
are sequenced (Supplementary Table 1).
When the gene region is only associated with the secondary trait T,

using samples ascertained on the primary phenotype will induce
selections on the secondary phenotype. For a data set of equivalent
size, the power for rejecting the null hypothesis of no gene/secondary
trait associations in case–control or extreme-trait samples is still greater
than (or comparable to) analyzing the same trait using a randomly
ascertained population sample. For example, in an extreme-trait study,
which sequences 1000 individuals, when causal variants in the gene
affect the secondary trait with effect ~bT ¼ 0:5sT and the two traits
are positively correlated with correlation coefficient r¼0.6, the power is
60.2%. If the two traits are negatively correlated with r¼�0.6, the

power is 60.6% (Table 2). The power in these two scenarios is both
superior to that of a population-based study (51.6%), which sequences
an equivalent number of samples (Supplementary Table 1).
The MTA method can be applied to analyze samples ascertained on

multiple phenotypes. In this example of a multiple-trait study, 500
affected individuals with trait T-value above the 65th percentile are
sequenced and 500 unaffected individuals are also selected regardless
of their trait T-values (Table 2). Compared with the extreme-trait or
case–control study design, the multiple-trait study example that is
given is not as powerful. This is because there is not enough
phenotypic variability in the sample, as affected individuals are only
sampled from the sub-population with trait T above the 65th
percentile. However, in some scenarios, there can be considerable
power in a multiple-trait study, in particular when sampling on the
secondary trait T increases phenotypic variability, for example,
affected or unaffected individuals are selected to have secondary
T trait values from opposite extreme tails.
MTA allows joint analysis of commonly measured phenotypes in

different genetic studies. These studies may be targeted at different
primary traits. An example is given where a multiple-trait study is
implemented, and the association analysis of the secondary trait T is
performed by combining a case–control study data set (Table 3). A
wide variety of scenarios were extensively evaluated, and a sizable
power increase for the combined analysis is consistently observed.

Applications to the ANGPTL family of genes
When each of the eight phenotypes from the DHS was analyzed as
primary phenotype using selected samples and the entire sample, four
nominally significant associations were found for both types of
analyses, that is, ANGPTL4 with TG (P¼0.005), ANGPTL5 with
BMI (P¼0.003), ANGPTL5 with HDL (P¼0.024) and ANGPTL6
with BMI (P¼0.022). All of the above significant associations were
also successfully detected when TG, BMI and HDL were analyzed as
secondary phenotypes. An additional association between ANGPTL4
and HDL (P¼0.018) was identified only when the entire sample was
analyzed (Supplementary Table 3).

Table 2 Power to detect secondary trait T associations using

case–control, extreme-trait and multiple-trait study design

Genetic parameters Powerd

b~A*(b~B, b~C*) a b~T b rA*,T (rB,T, rC*,T) c CCe/ET f/MTg

0.5 �0.5 �0.3 0.536/0.562/0.316

0.5 �0.5 0.3 0.548/0.605/0.418

0.5 0.5 �0.3 0.557/0.582/0.448

0.5 0.5 0.3 0.535/0.557/0.506

0.5 �0.5 �0.6 0.533/0.582/0.292

0.5 �0.5 0.6 0.556/0.654/0.471

0.5 0.5 �0.6 0.565/0.667/0.391

0.5 0.5 0.6 0.545/0.589/0.562

0 �0.5 �0.3 0.510/0.555/0.325

0 �0.5 0.3 0.499/0.557/0.412

0 0.5 �0.3 0.508/0.544/0.414

0 0.5 0.3 0.517/0.555/0.497

0 �0.5 �0.6 0.527/0.598/0.315

0 �0.5 0.6 0.513/0.609/0.447

0 0.5 �0.6 0.521/0.606/0.373

0 0.5 0.6 0.531/0.602/0.549

aCausal variant phenotypic effect for liability trait A*, trait B and liability trait C*.
bCausal variant effect for secondary trait T.
cResidual correlation between the primary (liability) trait and secondary trait T.
dPower was empirically estimated using 5000 replicates under a significance level a¼0.05.
ePower for case–control study. A case–control study sample consists of 500 cases and
500 controls.
fPower for extreme-trait study. An extreme-trait study sample consists of 1000 individuals with
extreme trait B-values selected from a cohort of 5000.
gPower for multiple-trait study. A multiple-trait study sample is obtained based on both trait
C and trait T. The affection status is determined by C. Five hundred affected individuals with
T-values 465th percentile are sequenced, as well as 500 unaffected individuals.

Table 3 Power to detect secondary trait T associations for individual

studies (case–control and multiple-trait) and the combined analysis

Parameters Power g

b~A*
a b~TCCb rA*,T

c b~C*d b~T MTe rC*,T
f

Case–

control h

Multiple

-trait i

Combined-

analysis

0 �0.5 �0.3 0.5 �0.5 0.3 0.510 0.418 0.690

0 �0.5 0.3 0.5 �0.5 0.3 0.499 0.418 0.680

0 0.5 �0.3 0.5 0.5 0.3 0.508 0.526 0.726

0 0.5 0.3 0.5 0.5 0.3 0.517 0.526 0.732

0 �0.5 �0.6 0.5 �0.5 0.3 0.527 0.418 0.703

0 �0.5 0.6 0.5 �0.5 0.3 0.513 0.418 0.685

0 0.5 �0.6 0.5 0.5 0.3 0.521 0.526 0.731

0 0.5 0.6 0.5 0.5 0.3 0.531 0.526 0.741

aCausal variant phenotypic effect for liability trait A* in the case–control study sample.
bCausal variant phenotypic effect for trait T in the case–control study sample.
cResidual correlations between liability trait A* and trait T in the case–control study sample.
dCausal variant phenotypic effect for liability trait C* in the multiple-trait study sample.
eCausal variant phenotypic effect for trait T in the multiple-trait study sample.
fResidual correlations between liability trait C* and trait T in the multiple-trait study sample.
gPower was empirically estimated using 5000 replicates under a significance level a¼0.05.
hThe case–control sample consists of 500 cases and 500 controls.
iThe multiple-trait data set is obtained based on both trait C and trait T. The affection status is
determined by C. Five hundred affected individuals with trait T-values 465th percentile are
sequenced, as well as 500 unaffected individuals.
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The association between TG and rare variants in the ANGPTL4
gene was identified using selected samples where the primary traits are
BMI (P¼0.025), SysBP (P¼0.012) or LDL (P¼0.010) (Table 4). These
traits are only weakly positively correlated with TG, that is, rBMI,

TG¼0.227, rLDL, TG¼0.197 and rSysBP, TG¼0.102 (Supplementary Table
4) The association between ANGPTL4 and TG is not significant using
samples with extreme DiasBP (P¼0.137), TCL (P¼0.065), Gluc
(P¼0.117) and HDL (P¼0.107) levels.
Although the ANGPTL4 gene is significantly associated with HDL

and the size of the correlation between HDL and TG is larger (rHDL,

TG¼�0.374; Supplementary Table 4), the association of TG with
ANGPTL4 gene is not significant when TG is analyzed as a secondary

trait using samples with extreme HDL levels. This could have occurred
because the locus phenotypic effects for HDL and TG are negatively
correlated, and the locus-induced correlation lies in the same direction
as the residual correlation, which is shown in our simulations to have
reduced power compared with when the locus-induced correlation
and trait residual correlations are in opposite directions.
There is one nominally significant association that was only

detected in secondary phenotype analyses, that is, the association
between Gluc and rare variants in the ANGPTL3 gene (P¼0.024). It
was identified when samples with extreme LDL levels were used.
But when Gluc was analyzed as primary trait, the association is not
significant (P¼0.64). This could either be a novel association or a
false-positive finding.

DISCUSSION

In this article, a flexible likelihood framework MTA is proposed for
jointly modeling multiple phenotypes in non-randomly ascertained
samples, for example, case–control samples or extreme-trait samples.
By coupling multivariate generalized linear models with prospective
likelihood, complicated ascertainment mechanisms can be incorpo-
rated. The approach is flexible and particularly suitable for analyzing
complex traits. It can be applied to any study with known sampling
mechanisms. MTA allows efficient statistical inference for the genetic
parameters of interest. Although the discussion in this article
is focused on analyzing sequence data, MTA can also be applied to
analyze genotype data.
The results presented in this article have important implications for

the design and analysis of complex traits. Most current studies, owing
to their limited sample size, are not adequately powered to detect
associations with rare variants. It has been suggested that for an exome
study B10 000 individuals with extreme traits from a cohort of
100 000 need to be sequenced in order to have adequate power.5

However, the sample size well exceeds the capacity of many existing
studies.5 It is therefore particularly important that combined analysis
can be performed using data from multiple studies in order to have
sufficient power. Applying MTA, sequencing studies that are targeted
at different primary traits can be jointly analyzed for detecting
associations with a variety of commonly measured secondary traits.
The power of different selective study designs was investigated.

It was shown through extensive simulations that there is considerable
power for detecting secondary phenotype associations in selected
samples. In particular, when the secondary trait of interest is analyzed
in a case–control or an extreme-trait study data set, the power can be
greater than analyzing an equivalent sized randomly ascertained
sample. Using data-sharing platforms and protocols such as
dbGaP,29 samples from existing studies can be freely obtained and
analyzed. The power can be greatly increased when data from multiple
studies are jointly analyzed.
Secondary phenotypes not only have their own clinical importance,

but they can also be relevant for understanding the primary trait
etiologies. For example, among studies of T2D, many are targeted at
related quantitative traits, including fasting glucose levels30 and
C-reactive protein.31 Given that these traits are often available for
individuals who participate in T2D case–control studies,32 MTA can
be applied to detect associations with these additional phenotypes.
MTA was also applied to the analysis of sequence data from the

DHS. Multiple associations were identified, which confirmed previous
data analyses. When the traits were analyzed as secondary phenotypes,
although these same set of associations was observed, they were not
detected in every selected sample, for example, the association between
TG levels and ANGTPL4 was only detected in secondary trait analyses

Table 4 Results for the secondary phenotype analyses using

sequence data from the ANGPTL3, ANGPTL4, ANGPTL5 and

ANGPTL6 genes

P-values for analyzing secondary phenotypesa
Primary

phenotype BMI DiasBP SysBP TCL LDL HDL TG Gluc

ANGPTL3

BMI — 0.649 0.766 0.429 0.681 0.717 0.121 0.114

DiasBP 0.941 — 0.889 0.580 0.745 0.309 0.441 0.398

SysBP 0.550 0.509 — 0.371 0.223 0.689 0.073 0.222

TCL 0.988 0.955 0.327 — 0.971 0.289 0.163 0.151

LDL 0.871 0.372 0.349 0.114 — 0.116 0.183 0.024*

HDL 0.945 0.616 0.312 0.825 0.668 — 0.561 0.639

TG 0.910 0.883 0.437 0.945 0.418 0.863 — 0.148

Gluc 0.652 0.208 0.351 0.982 0.475 0.692 0.335 —

ANGPTL4

BMI — 0.292 0.268 0.733 0.440 0.497 0.025* 0.972

DiasBP 0.965 — 0.380 0.361 0.363 0.121 0.137 0.389

SysBP 0.993 0.551 — 0.728 0.754 0.099 0.012* 0.405

TCL 0.861 0.532 0.571 — 0.052 0.759 0.065 0.933

LDL 0.281 0.894 0.269 0.135 — 0.053 0.010* 0.999

HDL 0.708 0.904 0.286 0.318 0.262 — 0.107 0.874

TG 0.310 0.364 0.584 0.629 0.326 0.784 — 0.845

Gluc 0.824 0.524 0.084 0.848 0.561 0.479 0.118 —

ANGPTL5

BMI — 0.920 0.114 0.521 0.233 0.056 0.377 0.797

DiasBP 0.118 — 0.096 0.451 0.803 0.092 0.616 0.367

SysBP 0.203 0.887 — 0.117 0.160 0.304 0.791 0.294

TCL 0.107 0.536 0.923 — 0.399 0.014* 0.221 0.488

LDL 0.084 0.735 0.587 0.202 — 0.002* 0.147 0.458

HDL 0.387 0.866 0.917 0.463 0.991 — 0.569 0.900

TG 0.044* 0.871 0.074 0.296 0.597 0.185 — 0.448

Gluc 0.030* 0.779 0.957 0.546 0.717 0.002* 0.451 —

ANGPTL6

BMI — 0.300 1.000 0.606 0.457 0.324 0.401 0.419

DiasBP 0.008* — 0.385 0.459 0.690 0.478 0.721 0.197

SysBP 0.773 0.816 — 0.622 0.853 0.668 0.338 0.490

TCL 0.024* 0.530 0.992 — 0.823 0.324 0.702 0.940

LDL 0.089 0.383 0.850 0.485 — 0.429 0.801 0.314

HDL 0.034* 0.101 0.873 0.800 0.870 — 0.393 0.215

TG 0.210 0.735 0.974 0.357 0.695 0.561 — 0.811

Gluc 0.153 0.402 0.897 0.340 0.531 0.267 0.905 —

aFor each phenotype, individuals were selected with trait values in the upper and lower quartiles,
and the remaining seven phenotypes were analyzed as secondary traits using MTA.
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using samples with extreme BMI, SysBP and LDL, but not in samples
with extreme DiasBP, HDL, TCL and Gluc. This could be affected by
the small sample sizes that were analyzed; the moderate effect sizes for
variants involved in complex trait etiologies; or the directions and
magnitudes of the correlations between the primary and secondary
phenotypes. Although these identified associations are only nominally
significant, they all have biological support. In fact, the effects of
mutant ANGPTL-family genes on lipoprotein lipase (LPL) have been
investigated through in vitro functional studies and in vivo mice
studies. LPL has been known to affect glucose metabolism,33 choles-
terol level34 and blood pressure.35 Additionally, the association
between variants in the ANGPTL4 gene and triglyceride levels has
been successfully replicated.3,36

Sensitivity of MTA to mis-specified sampling mechanisms was
extensively evaluated. When the disease prevalence is reported as an
interval of possible values, inferences from MTA can be conducted
under different prevalence values from the interval. The results can be
integrated using a model averaging procedure. It has been shown that
it is an effective approach to further reduce the impact of mis-specified
prevalence.37

There can be heterogeneities of sequence coverage depth within and
between different studies. Coverage depth differences within a single
study may cause inflated type-I errors. Possible strategies to reduce the
bias include incorporating the mean coverage depth of each individual
in the analysis as a covariate.38 The method can be used with the MTA
model. In order to be robust against between-study heterogeneities, a
meta-analyses procedure should be implemented for the joint
analysis, instead of performing mega-analysis that combines indivi-
dual participant data.11,12

When multiple phenotypes are analyzed, to avoid inflated type-I
error owing to testing multiple hypotheses, a stringent significance
level must be specified. Owing to phenotypic correlations, Bonferroni
corrections for testing multiple genes and phenotypes can be overly
conservative. Instead, the spectral decomposition-based method of
Nyholt et al39 can be used. In addition to correctly controlling
for family-wise error rates, it is important that the findings can be
replicated using independent samples.40

With large-scale implementation of sequence-based genetic associa-
tion studies, the capability for mapping complex traits will be further
elevated. Detecting associations with rare variants and jointly inves-
tigating multiple phenotypes together can be an ambitious and
difficult task given the moderate sample sizes of existing studies.
Taking advantage of multiple studies and mapping commonly
measured phenotypes using MTA is therefore highly beneficial and
will greatly accelerate the process of dissecting complex trait genetic
etiologies.
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