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A pure likelihood approach to the analysis of genetic
association data: an alternative to Bayesian and
frequentist analysis

Lisa J Strug*,1,2, Susan E Hodge3,4, Theodore Chiang5, Deb K Pal6, Paul N Corey2 and Charles Rohde7

Investigators performing genetic association studies grapple with how to measure strength of association evidence, choose

sample size, and adjust for multiple testing. We apply the evidential paradigm (EP) to genetic association studies, highlighting

its strengths. The EP uses likelihood ratios (LRs), as opposed to P-values or Bayes’ factors, to measure strength of association

evidence. We derive EP methodology to estimate sample size, adjust for multiple testing, and provide informative graphics for

drawing inferences, as illustrated with a Rolandic Epilepsy (RE) fine-mapping study. We focus on controlling the probability of

observing weak evidence for or against association (W ) rather than type I errors (M). For example, for LRX32 representing

strong evidence, at one locus with n¼200 cases, n¼200 controls, W¼0.134, whereas M¼0.005. For n¼300 cases and

controls, W¼0.039 and M¼0.004. These calculations are based on detecting an OR¼1.5. Despite the common misconception,

one is not tied to this planning value for analysis; rather one calculates the likelihood at all possible values to assess evidence

for association. We provide methodology to adjust for multiple tests across m loci, which adjusts M and W for m. We do so for

(a) single-stage designs, (b) two-stage designs, and (c) simultaneously controlling family-wise error rate (FWER) and W. Method

(c) chooses larger sample sizes than (a) or (b), whereas (b) has smaller bounds on the FWER than (a). The EP, using our

innovative graphical display, identifies important SNPs in elongator protein complex 4 (ELP4) associated with RE that may not

have been identified using standard approaches.
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INTRODUCTION

Three general statistical paradigms are available to analyze genetic
association data: the Frequentist paradigm, the Bayesian paradigm1,2

(or quasi-Bayesian paradigm3), and the pure likelihood or evidential
paradigm (EP).4–9 In each paradigm, the likelihood ratio, LR¼f1(x)/
f0(x), has a central role, where f1(x) and f0(x) are the probability
functions for the random variable x under H1 and H0, respectively.
The Law of Likelihood5,10,11 informs us how to interpret the LR, stating
that the LR measures the strength of evidence favoring H1 over H0.

Under the Frequentist paradigm, the most powerful Frequentist test
of H0 rejects in favor of H1 for sufficiently large values of the LR, using
the Neyman–Pearson lemma; thus the LR dictates which test statistic
to use. Although this is not a direct use of the LR for interpreting
evidence strength, and the appropriateness of using a hypothesis test
or P-value to represent evidence strength has been questioned,2,5,12 the
LR remains integral to the hypothesis-testing framework of the
frequentist paradigm.

The Bayes Factor (BF) is the Bayesian paradigm’s alternative to the
P-value.1 The BF can be interpreted as the factor by which the prior
odds of association are changed in light of the data to produce the
posterior odds of association. The parameters are integrated out of the

likelihood function with a weighting given by the prior distribution on
the parameters. When y1 and y0, the parameters of the prior
distributions, reflect two simple hypotheses, the BF¼LR. The BF
provides an attractive alternative to the P-value for genetic association
studies,1–3 yet it too has limitations: ‘It is well understood that the
priors on the parameters of the model can have a non-negligible
impact on the value of the Bayes’ factor even as the amount of data
gets large.’1 (Supplementary Methods).

The EP takes the Law of Likelihood literally, and uses the LR itself
rather than P-values or BFs to plan/design, analyze, and interpret
genetic association studies. For the planning stage, the EP provides
error probabilities analogous to type I and type II error rates based on
LRs. These can be used to estimate sample size and to ensure that the
probability of obtaining weak association evidence is low. For the
analysis stage, likelihood functions take the central role, with LRs
measuring the strength of evidence vis-à-vis two simple hypotheses,
LR¼f1(x)/f0(x).

In this study, we will delineate the planning, analysis, and multiple-
testing approaches of the EP for use in genetic association studies, and
highlight the advantages of using this paradigm. This represents an
extension of our previous work, applying the EP to linkage analysis.7,8
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In the subsequent sections we provide definitions and the conceptual
framework; show how evidential studies are planned for single tests
of association; provide an application using a published fine-
mapping study of Rolandic Epilepsy (RE);13 and then address the
issue of multiple hypothesis testing. The methodology presented here
is also applicable to candidate gene and whole genome association
studies.

DEFINITIONS AND CONCEPTUAL FRAMEWORK

Using the LR as a measure of evidence
For the association studies discussed here we assume an underlying
logistic regression model:

log
pi

1 � pi
¼ b0+b1xi ð1Þ

We define pi¼E(yi), where yi is equal to 1 when subject i has the
disease and zero otherwise, and xi¼1 if the ith subject has
the genotype of interest, and zero otherwise. The null hypothesis of
no association implies that b1¼0, or, equivalently, that the OR is 1
(since b1¼log(OR)), whereas under the alternative we will take eb*1

equal to some value greater than 1, without loss of generality.
Let L(b*

1; x) represents the likelihood function for the data x, when
the OR¼eb*1, whereas L(b1¼0; x) is the likelihood under the null
hypothesis for the OR. Assume further that b0 is a nuisance parameter
that has been removed from the likelihood function using conven-
tional methods (see section ‘Calculating error probabilities for a case/
control association study: study planning’). Let

LR ¼ LRðb�1; b1 ¼ 0; xÞ ¼ Lðb�1; xÞ=Lðb1 ¼ 0; xÞ ð2Þ

The LR in (2) is then the ratio of the two likelihoods, free of
the nuisance parameter, and provides a measure of the relative
evidence for a specified OR value versus OR¼1. Common practice
is to plot the likelihood as a function of eb*1 (see section ‘Genetic
association study of RE’); this will then provide a graphical represen-
tation of all possible LRs. Association can be determined by investi-
gating the ratio of any two points on the curve, which correspond to
two simple hypotheses.

To plan a study, an investigator needs to specify several values
including an alternatively hypothesized OR value, eb*1, which repre-
sents the minimum important effect size to detect (eg, OR¼1.2 in a
genome-wide association study); and some value of k41 that is
chosen to represent strong, convincing evidence favoring one hypoth-
esis value over another. Possible choices for k may be 8, 32, 1000, and
so on, with k¼32 a commonly used benchmark in the evidential
literature4,5 and k¼1000 (or even higher), a commonly used critical
value in genome-wide linkage studies.14 A discussion on benchmarks
can be found in Royall5,6 and Edwards.15 The choice of k dictates the
observed LR value at which one would declare strong evidence
favoring one OR value over another. That is

LR � k and LR � 1

k
ð3Þ

represent strong evidence favoring H1 and H0, respectively. An LR
falling between k and 1/k represents weak evidence, indicating that
there is insufficient evidence in the data to strongly favor either
hypothesis.

Error probabilities and bounds
The failure of the conditions in Equation (3) to occur when H1 and H0

are true, respectively, are considered errors, and their probabilities are

defined in detail elsewhere.4,5,9 Briefly, two types of errors can occur
under each simple hypothesis: The first of these occurs when the data
yield strong evidence supporting the wrong hypothesis; for these we
define the probabilities of misleading evidence,6

M0ðn; kÞ ¼ P0ðLR � kÞ and M1ðn; kÞ ¼ P1 LR � 1

k

� �
ð4Þ

under H0 and H1, respectively, where n represents the total sample size
in the study (cases and controls). M0(n,k) is analogous to a type I
error, yet is not fixed by design at a. Mi(n,k) i¼0,1 are allowed to vary
but are bounded: there is an absolute but crude upper bound of 1/k
that holds for all sample sizes.4–6,10 Furthermore, under general
regularity conditions a large-sample bound of F(�

ffiffiffiffiffiffiffiffiffiffiffi
2ln k

p
) exists,6

where F is the cumulative normal probability distribution. This
asymptotic bound holds for fixed-dimensional vector parameters
(eg, the two degree of freedom association model) even when one
uses profile likelihoods to construct the LR. These bounds ensure
small error probabilities (well below 0.05 for reasonable k) in quite
general situations.

The second error type occurs when the data yield only weak
evidence. For this the probabilities of weak evidence are defined as

W0 n; kð Þ ¼ P0
1

k
oLRok

� �
and

W1 n; kð Þ ¼ P1
1

k
oLRok

� � ð5Þ

under H0 and H1, respectively. As n gets large, Mi(n,k) and Wi(n,k)
converge to 0. Although the convergence of Wi(n,k) with n is
monotonic for continuous response data, the convergence of
Mi(n,k) is not:6 Mi(n,k) generally reaches a maximum (although this
maximum is itself generally small) at sample sizes where Wi(n,k) is
very large, and then converges to 0. By the time Wi(n,k) is reasonably
small, Mi(n,k) is well below its maximum.6

Finally, the probabilities of strong evidence are

S1ðn; kÞ ¼ P1ðLR � kÞ and S0ðn; kÞ ¼ P0 LR � 1

k

� �
ð6Þ

Minimizing the probabilities of misleading and weak evidence will
necessarily maximize the probabilities of strong evidence, since

Miðn; kÞ+Wiðn; kÞ+Siðn; kÞ ¼ 1; i ¼ 0; 1: ð7Þ

S1(n,k) in Equation (6) is analogous to the frequentist concept of
power. There is no frequentist analogue to Wi(n,k), outside the context
of sequential testing.16

As Mi(n,k) has natural bounds that ensure it remain small, it is
Wi(n,k) that must be controlled to ensure Si(n,k) is high. The value of
Wi(n,k) varies as a function of three quantities: sample size; the
minimum important effect size for the parameter of interest (ie, in
our case the OR); and the criterion k.

CALCULATING ERROR PROBABILITIES FOR A CASE/CONTROL

ASSOCIATION STUDY: STUDY PLANNING

Planning an evidential association study entails ensuring that Mi(n,k)
and Wi(n,k) are small, i¼0,1 and, as a consequence, Si(n,k), are high.
This is accomplished by determining the required sample size as a
function of minor allele frequency (MAF) and effect size, where effect
size (eg, OR¼1.5) and MAF are generally determined by study design.
Error probabilities (Equations (4–5)) can then be calculated using a
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likelihood free of nuisance parameters. (Note that one is not restricted
to these pre-specified parameter values for analysis, the specification is
merely for planning.)

The logistic regression model (Equation (1)) contains a nuisance
parameter, b0, whereas our interest is in the OR¼eb*1. Two options
to eliminate the nuisance parameter are to condition on an
appropriate statistic or to profile the nuisance parameter out. In
section ‘Conditional likelihood’ we will provide analytical formulas
for the error probabilities using the conditioning approach. For profile
likelihoods, in contrast, we will use simulation to calculate the
error probabilities (section ‘Profile likelihood’). Each option has its
advantages: Using a profile likelihood we can incorporate many
covariates into the model, and these covariates can be coded in any
way allowing for additive, dominant, or any other coding for the
genetic model; on the other hand, the conditional approach provides
analytical formulas that are easier to interpret, yet allow for only a
single dichotomous covariate. The error probabilities between the two
approaches may differ slightly for the logistic regression model, but
not substantially.

Conditional likelihood
We can use a conditional likelihood to eliminate the nuisance
parameter, b0, in Equation (1), and calculate the planning probabil-
ities. The derivation of the likelihood and the closed form solutions
for the error probabilities are in Appendix S.1 in Supplementary
Material. We illustrate some error probabilities and sample sizes
resulting for H1:exp(b*1)¼1.5 and 2 versus H1:exp(b*

1)¼1, and for
representative MAFs (or at-risk genotype frequencies, depending on
the assumed genetic disease model) and for k¼32. Figure 1 shows
Mi(n,k) and Wi(n,k) plotted against the sample size needed in each
group (n1¼n2) for k¼32 and for an at-risk genotype frequency, t0/n, of
0.2, assuming we are in complete linkage disequilibrium with the
disease allele. Under a recessive model this would correspond to an

MAF¼0.45. In Figure 1, the left column of plots gives M0(n,k) and
W0(n,k), that is, the probabilities when H0 is true, whereas the right
column shows Mi(n,k) and Wi(n,k), that is, the probabilities when the
true OR is 1.5 (or 2, for the dotted lines). Note how small the
probabilities of misleading evidence, Mi(n,k), are even for this
relatively low criterion of k¼32.
Mi(n,k) and Wi(n,k) are smaller for larger alternatively hypothesized

ORs (compare OR¼1.5 versus OR¼2 in Figure 1), indicating that
larger sample sizes are required to detect smaller alternatively hypothe-
sized ORs, as one would expect. As the genotype frequency increases,
the error rates decrease for a given sample size (data not shown).
These observations suggest that sample size estimation be based on the
smallest MAF to be analyzed and the smallest OR one wishes to detect.
Notice also that for sample sizes where Wi(n,k) is small, Mi(n,k) is very
small. This observation highlights that planning should be based on
ensuring small Wi(n,k)s. As k increases, the Mi(n,k) decrease slightly,
but the Wi(n,k) get disproportionately larger, indicating that it is
counterproductive to decrease Mi(n,k) by raising the criterion for
strong evidence, k (see Equation (A.1.3) and Supplementary Figure S.1
in Supplementary Methods).

Table 1 provides sample size estimates, through exact calculations,
for given weak evidence bounds (ie, the sample size choice to ensure
that both W1(n,k) and W0(n,k) are below the value in column 1) when
t0/n¼0.2, 0.3, k¼32, H0: OR¼1 versus H1: OR¼2. The maximum
probability of misleading evidence, over all n, (max(Mi) 8n), is also
presented; despite being quite small, these values occur at sample sizes
for which weak evidence would be too large to consider for a study.

In Table 1 misleading evidence is small when H0:OR¼1 and
H1:OR¼2 for any n. Not surprisingly, the smaller the bound on the
probabilities of weak evidence or the smaller the at-risk genotype
frequency (or alternatively hypothesized OR (Figure 1)), the larger
the sample size required. For comparison using frequentist methods,
the number of cases (equal to controls) required to achieve 80% power
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Figure 1 Probabilities of weak and misleading evidence using a conditional likelihood, to detect an ORZ1.5 with at-risk genotype frequency¼0.2, k¼32.

These results are based on exact calculations.
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at a nominal type I error rate of 0.05 to detect an OR¼2 for genotype
frequency of 0.3 would be 310. (See Strug et al 9 for more general
comparisons of evidential and frequentist sample size estimates, and
section S.1 and Supplementary Table S.1 in Supplementary Methods
for a power comparison.)

Profile likelihood
A profile likelihood replaces the nuisance parameter of the likeli-
hood function by its maximum likelihood estimator (MLE) at
each fixed value of the parameter of interest. Thus, given the
joint likelihood, L(b0,b1), the profile likelihood for b1 is
Lpðb1Þ ¼ maxb0

Lðb0; b1Þ ¼ Lðb1; b̂0ðb1ÞÞ, where the maximization
is conducted at fixed values of b1. Then one can treat the profile
likelihood as a regular likelihood function17 under weak regularity
conditions. One can profile out a multidimensional nuisance
parameter vector to assess the relative support for different genotypic

effect sizes, after adjusting for the covariates (assuming minimal
collinearity). In this study, we will assume a disease is inherited in
an additive manner, and we can calculate Mi(n,k) and Wi(n,k) just as
we did in the ‘Conditional likelihood’ section, but using simulation
and the profile LR, LRp¼Lp(b*

1)/Lp(b1¼0).
Specifying the MAF (P¼0.3), the minimum important effect size to

detect (OR¼1.5), and the prevalence of disease in those with the
wild-type genotype (0.002), we simulated equal numbers of cases and
controls (n1¼n0¼1 ,y, 800), with the genotypes in controls in
Hardy–Weinberg equilibrium. For each combination of input
parameters we simulated 1000 data sets assuming there was associa-
tion with true OR¼1.5, and 1000 data sets assuming no association
(OR¼1). From each data set j¼1,y, 1000, of a given size
(n¼2 ,y, 1600) we calculated the LRpj for H0: OR¼1 versus H1:
OR¼1.5. In each case, we calculated Mi(n,k) and Wi(n,k) by counting
the number of times the LRpj fell in the appropriate range, then
dividing by 1000, for example,

M0ðn; kÞ ¼

P1000

j¼1

LRPj � k

1000
:

Figure 2 provides the values for these error probabilities as a function
of n.

Note the scale of the Mi(n,k) plots in Figure 2, where for any sample
size, even with k¼8, the Mi(n,k) remain very small, and are not of
concern. However, at sample sizes where the Mi(n,k) are small, the
Wi(n,k) may still be very large for all k considered. This again
highlights the need to control the Wi(n,k) during planning, rather
than the Mi(n,k). It should also be noted that for the scenario in
Figure 2, it is not until the study contains 300 cases, that W1(n,k)
drops as low as about 10%, even for k¼8.

Table 1 Sample size choices for given weak evidence bounds and

maximum probability of misleading evidence over all n¼n1+n2

(max(Mi) 8n) when genotype frequency is 0.2, 0.3, and H0: OR¼1,

H1: OR¼2, k¼32

Evidence t0/n¼0.2 t0/n¼0.3

W¼0.15 428 331

W¼0.10 514 390

W¼0.05 604 482

max(M0)8n 0.041 0.009

max(M1) 8n 0.008 0.009

Obtained from exact calculations from a conditional likelihood.
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Figure 2 Weak and misleading evidence probabilities calculated using profile likelihoods; to detect OR¼1.5, k¼8, 32, 100, MAF¼0.3, disease prevalence

is 3%. These results are based on simulations.
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GENETIC ASSOCIATION STUDY OF RE

In this section, we illustrate an evidential analysis as applied to an
earlier study of RE.13 In that work we conducted mapping studies of
RE to assist in unraveling its complex genetic inheritance. We con-
ducted genome-wide linkage analysis in 38 families, using a subclinical
phenotype present in all RE probands and some unaffected relatives;
then we fine-mapped the linkage region with 44 SNPs in 68 RE cases
and 187 controls; we replicated our association evidence in a sample
from Calgary, Canada with 40 cases and 120 controls. See Strug et al13

for clinical descriptions and details of those analyses. In this study, we
use the RE study to illustrate how to conduct an evidential association
study, both for single SNP (section ‘Single SNP association analysis:
using likelihood plots’) and regional SNP (section ‘Extending
likelihood plots to a region of typed SNPs’) analysis.

Single SNP association analysis: using likelihood plots
The likelihood function for the OR parameter at a given SNP
graphically represents all the evidence about association in the data
set. For a single SNP one can plot the likelihood, as a function of the
interest parameter (eg, odds ratio, relative risk, hazard ratio, regression
coefficient), under an assumed model (eg, dominant, recessive,
additive, etc).

Figure 3 provides a simple example of an evidential analysis of
genetic association at three SNPs, separately, and the presence of RE in
independent cases (n1¼68) and controls (n2¼187), assuming an
additive model for the genotype.

Figure 3 shows a profile likelihood for the odds ratio, profiling out
the baseline odds. The likelihoods are standardized to have maximum
value of 1 at the MLE. Each plot in Figure 3 provides objective
evidence of what the data tell us about the interest parameter at that
SNP. The two likelihood intervals (LIs) on each of the three plots
represent values of the ORs that are consistent with the data, at a
k¼8 (1/8 LI) or k¼32 (1/32 LI) level. LIs are analogous to

confidence intervals. However, LIs do not have a long-run frequency
interpretation; rather, they reflect the evidence about the OR in the
given data set.

Figure 3(c) shows an association between SNP SG11S39 and RE at
the k¼8 level, where there are many alternative values of the OR
around 1.79 that are better supported than an OR¼1 by a factor of
greater than 8 (see the vertical line at OR¼1 to the left of the
likelihood function), and with plausible OR values of 1.07–3.04
from the LI at the k¼8 level. For k¼32, the LI includes an OR¼1 as
a plausible value, and hence there is not strong evidence favoring any
OR value over an OR¼1 by a factor of 32 or more. The corresponding
95% confidence interval for the OR at this SNP is 1.07–2.94. The LI is
relatively narrow, indicating substantial information available
in the data.

Figure 3(a) and (b) show likelihood functions for two additional
SNPs. The likelihoods provide a useful tool to assess which SNP has
the most association evidence, in some sense. Although the LIs are a
little wider for SNP SG11S 39, the relative support for different ORs
versus OR¼1 is greater than the others at and around the maximum,
and the OR¼1 vertical line is further to the left of the LIs in SG11S 39
than for the others. (Supplementary Methods’ section S.2 and
Supplementary Table S.2 provide frequentist and Bayesian association
measures at these SNPs).

Extending likelihood plots to a region of typed SNPs
Looking at hundreds or thousands of likelihood functions for indivi-
dual SNPs, side by side as in Figure 3, is not efficient or helpful when it
comes to getting an idea of what is happening across the RE linkage
region. Thus, we developed a plot that provides much of the
information that is in an individual likelihood function plot, while
also providing association evidence for multiple SNPs by base pair
position. It does this by plotting the LIs for each SNP, graying out
those where an OR¼1 is considered a plausible value at some
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Figure 3 Profile likelihood function for the OR, under an additive model, for three SNPs, SG11S21 (a), SG11S30 (b), and SG11S39 (c). Vertical line

represents OR¼1; 1/8, and 1/32 likelihood intervals provided.
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prespecified k, while identifying those that ‘light up’ in a given gene by
plotting them in color. For illustrative purposes we reproduce one
such figure from the original analysis13 (see Figure 4), to illustrate how
the general methodology works.

Figure 4 shows the evidential association plot across the region of 44
SNPs using the original sample of 68 RE cases and 187 controls. In this
study, we used an additive disease model, a profile likelihood to
eliminate the nuisance parameter from the likelihood function, and
evidence strength of k¼32 as a criterion to demarcate SNPs of interest
(SoIs). To create these evidential figures we plot the SNPs by bp
position on the x axis, and provide the OR on the y axis. The OR¼1
line is plotted as a solid black horizontal line. Then, for each SNP the
LIs for the ORs are plotted. These LIs are exactly the LIs provided in,
for example, Figure 3. If association evidence exists at a given SNP
(that is, if a SNP is flagged as a SoI because the 1/k LI excludes OR¼1),
the LI is presented in color, whereas, if no association evidence exists
at the k-level specified, the LI is grayed out of the figure. The
interpretation of an SoI is that there are alternative OR values that
are favored by a factor of k or more over the likelihood at OR¼1.
Notice that the SoIs have LIs with three separate colors, navy blue,
yellow, and turquoise. If the evidence strength is greater than 32 but
less than 100 (ie, OR¼1 is not in the 1/32 LI but is in the 1/100 LI)
then just the navy blue portion of the LI is above the OR¼1 horizontal
line; if the evidence is greater than 100 but less than 1000, then the
blue and yellow portions of the LI are above the OR¼1 line; and if the
evidence is greater than 1000, then the entire LI is above the OR¼1
line, indicating that even at the k¼1000 level, an OR¼1 is not a
plausible value. The small horizontal tick on each LI is the MLE, which
provides information about the shape of the likelihood curve, and we
can see from Figure 4 that the MLEs for the ORs at these three SoIs are
approximately 2. The max LR for each SNP in color is also provided as
text in the plot for calibration.

If the vertical LI colored line moves further above the horizontal
OR¼1 line with additional data rather than lower, then the additional
dataset provides corroborating evidence that this SNP, with the
same allele, is associated with increased risk of RE. Supplementary
Figure S.2 in Supplementary Data provides the results from a
joint analysis of the data in Figure 4 and a replication sample from
Calgary, Canada of 40 cases and 120 controls, illustrating this
principle. Table 2 lists the ORs, the 1/32 LIs, the max LRs, and the
unadjusted P-values (for comparison) from the original (discovery
sample) and the combined sample with Calgary. As can be seen in
Table 2 (and Supplementary Figure S.2 in Supplementary Data), the
LIs at all three SNPs of interest have become narrower, and moved
further away from including an OR¼1 as a plausible value.
Interestingly, none of these three SNPs in the replication sample
alone would show up as an SoI, highlighting the importance of
analyzing samples jointly.

Figure 4 (and Supplementary Figure S.2 in Supplementary
Methods) indicate that only SNPs in the elongator protein complex
4 (ELP4) ‘light up,’ pointing to the role that ELP4 might be having in
RE susceptibility. Furthermore, the same SNPs are providing corro-
borating evidence, although the strength of the evidence differs
between SNPs and across the two datasets.

ACCOUNTING FOR MULTIPLE HYPOTHESIS TESTING IN

THE EP

Methods to account for multiple hypothesis testing differ between the
Bayesian, frequentist, and EPs. Frequentists must adjust their evidence
measure, the P-value; Bayesians account for multiple tests by incor-
porating information into their prior probability;18 and in the EP we
adjust our planning probabilities – but not the evidence measure
itself – to account for the number of tests to be conducted. We discuss
this evidential approach in detail.
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Figure 4 Evidential analysis for association between SNPs in chromosome 11p and RE in 68 cases and 187 controls. LIs in color represent SNPs that pass

the k¼32 threshold for representing a SNP of interest. (Reprinted from Strug et al.13)

Table 2 The OR, the 1/32 LIs, max LR, and unadjusted P-values for the discovery analysis and joint analysis from the RE association study at

SNPs in ELP4

Discovery analysis Joint analysis

SNP Risk allele OR 1/32 LI max LR P-value OR 1/32LI max LR P-value

rs964112 G 2.04 1.15, 3.80 156.95 0.0008 1.88 1.18, 3.06 589.75 0.0002

rs11031434 G 1.80 1.05, 3.16 57.94 0.0035 1.71 1.10, 2.70 150.57 0.0013

rs986527 C 1.98 1.12, 3.66 108.97 0.0013 1.88 1.18, 3.06 628.85 0.0002
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The family-wise error rate and the generalized family-wise
error rate
The most common error rate chosen to control for multiple hypoth-
esis tests is the family-wise error rate (FWER). As presented in Table 3,
the FWER is defined as P(VZ1).19 It reflects the probability of
rejecting at least one true null hypothesis (or observing misleading
evidence under the null for at least one SNP), assuming none of m loci
is associated.

The EP, unlike the standard frequentist paradigm, decouples error
rates from evidence measures.8 This is important for multiple test
implications, as delineated in7. Briefly, when one conducts multiple
SNP tests, the FWER increases with the number of tests conducted. In
the frequentist paradigm, the FWER is always fixed at a (eg, a¼0.05);
therefore the significance criteria for any given test in a family of tests
must be smaller (eg, a/m, m¼number of tests). However, in the EP,
M0(n,k) is not fixed but rather is allowed to vary and is not tied to the
value of the LR at which one declares strong association evidence. The
FWER based on M0(n,k) still increases with additional tests, so one
must ensure in one’s planning that over all tests, the FWER will
remain at acceptable levels. However, the increase in the number of
tests does not affect how we interpret the strength of the evidence
itself, that is, the LR. We provide an upper bound on the FWER for
the probability of misleading evidence:7

FWER � m�M0ðn; kÞ ð8Þ

where M0(n,k) is the probability of misleading evidence for one SNP
test, as in Equation (4). This M0(n,k) corresponds to the probability
calculations before data collection as outlined in section ‘Calculating
error probabilities for a case/control association study: study plan-
ning.’ Thus, for a fixed number of SNP tests (m), this upper bound
can be made smaller by decreasing M0(n,k) through sample size, k,
MAF, or the pre-specified effect size. Increasing k is counterproduc-
tive, only minimally reducing Mi(n,k) whereas dramatically increasing
Wi(n,k) (Equation (A.1.3) in Supplementary Methods); and the OR
was chosen as the minimum important effect size to detect. If Wi(n,k)
based on the minimum important effect size and specified k remain
large, then these error calculations suggest we simply do not have a
sufficiently large data set; here, increasing the sample size is the most
desirable and appropriate course of action, when feasible.

Adding samples to ensure that the bound on the FWER remains
small can be accomplished through Scheme (1) single-stage designs
and Scheme (2) two-stage designs. In Scheme (1) one would plan a
larger total sample size n at the beginning of the study through the
simple calculation in Equation (8), varying n such that m�M0(n,k) is
sufficiently small. In Scheme (2) one adds the additional samples
necessary from the calculation in Scheme (1) in a replication phase,
which types only those SNPs or regions with strong evidence for
association in the first stage. Scheme (2) results in a smaller bound on
the FWER than Scheme (1) and may be more cost-effective, but
S1(n,k) may be smaller (see section ‘Probability of detecting true

positives’, and Appendix S.3 in Supplementary Methods for a
(conservative) lower bound on the two-stage probability of strong
evidence). Note here that the increase in sample size (or the replica-
tion component) is the ‘adjustment’ for multiple hypothesis testing.

Controlling the FWER may be inappropriate for genome-wide
association studies or large-scale fine-mapping endeavors. If one
uses Scheme (1) or (2) above, one could relax the requirement that
even one type I error is unacceptable. When m is large, we might
choose to tolerate up to g�1 false positives. Specifically, consider the
generalized FWER,20 which can be expressed as gFWER¼P(VZg).
The gFWER ensures a small probability of observing at least g
misleading results in m tests if all are null. The value for g would be
chosen depending on resources for follow-up. In this case,

gFWER � 1 �
Xg�1

i¼0

m
i

� �
½M0ðn; kÞ�i½1 �M0ðn; kÞ�m�i ð9Þ

when g¼1, this quantity is approximately equal to m�M0(n,k),
M0(n,k) small. Equation (9) shows that, for a given M0(n,k), as g
gets larger, the bound on the gFWER gets smaller. Thus, the larger the
g, the smaller the sample size required. Moreover, the method derived
to control the FWER in7 may also be used on the gFWER; that is,
Equation (9) provides an upper bound on the gFWER, which can be
used to plan larger studies or to implement the two-stage replication
design to adjust for multiple hypothesis tests.

Probability of detecting true positives
Thus far, we have completely ignored the probability of detecting true
positives, which should arguably be as important as, if not more
important than, controlling false positives. It is straightforward to
incorporate S1(n,k) into the planning for multiple tests, ensuring that
the probability of getting at least one true positive out of m loci is
high. Following the notation of Table 3, suppose that of m marker loci,
m1 are truly associated with disease and the remaining m0¼m�m1 are
not associated. For each of the m1 true markers the probability of
being detected is P1(LRiZk)¼S1(n,k), equal to the probability of
strong evidence under the alternative hypothesis for one SNP test as
in section ‘Calculating error probabilities for a case/control association
study: study planning.’ Define PTP(m1) as the probability of detecting
at least one of the m1 true positive loci. Several properties of PTP(m1)
can be noted regardless of whether the markers are independent
(see Appendix S.2 in Supplementary Methods for derivation and
calculations): (1) PTP(m1) increases as the number of true positives
increase; (2) the value of PTP(m1) is independent of the number of
false markers, m0; and (3) PTP(m1) is bounded below by S1(n,k),
the probability of strong evidence under the alternative in one SNP
test. Thus, for any m1, if S1(n,k) is reasonably high for a single
SNP analysis, then there is a good chance of identifying at least one
true positive along with the false positives. For a single-stage
design, S1(n,k) is calculated as in section ‘Calculating error
probabilities for a case/control association study: study planning’
with the expanded data set as the new sample size. For the two-
stage design some additional calculation is required. The details are
given in Appendix S.3 in Supplementary Methods. There, we see that
in the two-stage design,

S1ð j2; 1Þ S1ð j1; kÞ ð10Þ

provides a lower bound on the probability of strong evidence under
the alternative, where j1 and j2 represent the numbers of observations

Table 3 Error rates defined under multiple testing

Number of Number not rejected Number rejected

True null hypotheses U V M0

Non-true null hypotheses T S M1

m-R R m

Reprinted from Benjamini and Hochberg19.
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in the first and second stages, respectively, and n¼j1+j2. Equation (10)
implies that a larger total sample size is required for the two-stage
design to achieve equally large strong evidence probabilities.

In summary, in an association study, one can adjust for multiple
hypothesis testing by controlling the FWER or gFWER through a
single- or two-stage design, while simultaneously ensuring a high
probability of detecting at least one true positive by ensuring W1(n,k)
is small (or equivalently S1(n,k) is large (Equation(7)).

Multiple testing applied to the RE example
We use the RE discovery sample and the Calgary replication sample to
illustrate the evidential multiple-testing approach. We use a two-stage
design to adjust for multiple hypothesis tests controlling the
FWER. With 68 RE cases and 187 controls M0(k¼32) equals 0.002
to detect an OR¼1.5 with MAF¼0.30; thus for 44 SNP tests the
FWERr0.088 (by Equation (8)). Combining the data in a joint
analysis with the Calgary sample, the FWERr0.044 (with the
two-stage design bound even smaller, depending on the number of
markers chosen for follow-up).

Consequently, adding the Calgary data serves as our adjustment for
conducting multiple SNP tests because it ensures that the FWER is
controlled at acceptable levels – exactly the point of a multiple test
adjustment.

The lower bound on the PTP(m1) using the combined sample is
S1(415, 32)¼0.04, and under the two-stage approach it equals S1(255,
32)*S1(160, 1)¼0.003, for OR¼1.5 and MAF¼0.30. Although this is
only a lower bound, sample size should be much larger to ensure a
reasonable bound on the probability of strong evidence. Section
‘Genetic association study of RE’ and Figure 4 illustrate that there
was, however, strong evidence of association in one of the genes under
the linkage peak, but at a larger OR value than the error probability
calculations pre-specified. The a priori small strong evidence prob-
ability bound associated with the study does not detract from the
strong conclusions of association we can make between RE and ELP4,
we are just unable to unequivocally rule out the other genes in the
region. From a planning perspective, it is best to have one’s study
characterized by a low probability of observing weak evidence and not
to rely on good fortune.

DISCUSSION

We have provided an alternative approach to analyzing genetic
association studies, which does not require use of P-values, Bayes’
factors, or standard multiple test adjustments. These genetic associa-
tion studies could involve either genome-wide analysis, fine-mapping
linkage regions or candidate genes. In summary, we have shown that
case–control genotype data can be analyzed for association using LRs;
that when conducting association analyses across multiple SNPs one
can adjust for multiple testing by using a replication sample (increas-
ing sample size) and conducting a joint analysis; and that the
evidential error probabilities are straightforward to compute and are
useful and necessary when planning a study.

A replication study (or the use of additional samples) provides
multiple test adjustments in the evidential framework. Replication
studies are already a requirement by many journal editors for pub-
lication, by funding agencies, and policy makers. In addition, by
planning a genetic association study evidentially through sample size
choice and multiple test correction approaches, one can control the
probability of obtaining weak association signals.

Evidential analysis evaluates evidence vis-à-vis all possible two simple
hypotheses, and chooses SNPs of interest through LI criteria. LIs are
more appropriate than confidence intervals for genetic association

studies as they reflect what the collected dataset has to say about
association rather than requiring a long-run frequency interpretation.

There is a common misconception concerning the role the simple
alternative plays in evaluating the evidence in the EP: to be clear, the
values one chooses for the simple hypotheses during planning are
irrelevant for analysis; you are not tied to any particular pre-specified
values when assessing evidence strength. For more on this topic, as
well as a concrete example, see Strug and Hodge.8 Briefly, the specified
alternative value of the OR should represent ‘the smallest meaningful
difference’ from the null hypothesized value of OR¼1. However, an
alternative hypothesis is specified for planning purposes only; once the
data have been observed, the value of b*

1 has no role in interpreting
the evidence, and the investigator can and should report the whole
likelihood function (or LIs). The MLE never has the role of alternative
hypothesis at the planning phase, for many reasons, one of which
being that the MLE does not represent a simple hypothesis, and thus
the universal and other bounds do not apply to the maximized LR.21

A limitation of the pure likelihood or evidential approach to
analysis is its dependence on the correct choice of model. However,
recent advances have provided methodology to ‘robustify’ likelihoods
to guard against model misspecification22,23 and this methodology is
also available for use in genetic studies. Another perceived limitation is
that evidential analysis requires larger sample sizes and a more
stringent significance criteria than standard frequentist methodology,9

for a given SNP test. On the other hand, standard benchmarks for
evidence strength are known to be anticonservative.24

Our RE example highlights the ‘power’ one gains from a joint
analysis, similar to results from other paradigms.25 Yet even in a joint
analysis using a P-value approach, a different, more stringent sig-
nificance criterion must be applied because of multiple-testing penal-
ties imposed by the frequentist paradigm. In the EP, we manage to
avoid all evidence adjustments regardless of the design; rather, we
adjust the error probabilities at the planning phase of the study
through the sample size or by replication.

The RE example illustrates several other important differences
between the two approaches as well: (1) rs986527 would not have
been significant after Bonferroni correction in the original RE discovery
sample, and so, depending on the scheme for follow-up, this SNP
might not have been typed in a replication scheme; (2) if the Calgary
samples had been analyzed separately using a P-value approach, only
rs210426 would have been flagged as significant and this SNP did not
appear important in the original sample; (3) depending on how one
defines replication, many might conclude from a separate analysis that
the Calgary sample did not replicate the original findings. In fact, this is
not the case. We can see that the LIs at rs986527 and rs964112 favor
ORs greater than 1.5 over an OR¼1 in both samples, with the
difference in strength easily attributed to factors such as differential
LD patterns, varying MAFs, different sample sizes, and stochastic
factors. Moreover, the fact that only SNPs in ELP4 ‘light up’ in the
two analyses strongly suggests replication of ELP4.
Evian, an R package to conduct an EVIdential ANalysis and

produce the illustrated evidential genetic association plots, is available
at http://strug.ccb.sickkids.ca/evian. In this study, we advocate the use
of evidential analysis for genetic association studies, highlight the
multiple hypothesis-testing adjustment approaches, and illustrate how
to plan evidentially. The multiple test adjustment approaches, that is, the
addition of replication samples, are more consistent with the practice of
science, and the field’s move toward large-scale meta-analyses.
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