
ARTICLE

Detection of susceptibility genes as modifiers due to
subgroup differences in complex disease

Sarah E Bergen1,2, Brion S Maher1,2,3, Ayman H Fanous2,3,4,5 and Kenneth S Kendler1,2,3

Complex diseases invariably involve multiple genes and often exhibit variable symptom profiles. The extent to which disease

symptoms, course, and severity differ between affected individuals may result from underlying genetic heterogeneity. Genes

with modifier effects may or may not also influence disease susceptibility. In this study, we have simulated data in which a

subset of cases differ by some effect size (ES) on a quantitative trait and are also enriched for a risk allele. Power to detect

this ‘pseudo-modifier’ gene in case-only and case–control designs was explored blind to case substructure. Simulations involved

1000 iterations and calculations for 80% power at Po0.01 while varying the risk allele frequency (RAF), sample size (SS),

ES, odds ratio (OR), and proportions of the case subgroups. With realistic values for the RAF (0.20), SS (3000) and ES (1),

an OR of 1.7 is necessary to detect a pseudo-modifier gene. Unequal numbers of subjects in the case groups result in little

decrement in power until the group enriched for the risk allele is o30% or 470% of the total case population. In practice,

greater numbers of subjects and selection of a quantitative trait with a large range will provide researchers with greater power

to detect a pseudo-modifier gene. However, even under ideal conditions, studies involving alleles with low frequencies or

low ORs are usually underpowered for detection of a modifier or susceptibility gene. This may explain some of the inconsistent

association results for many candidate gene studies of complex diseases.
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INTRODUCTION

As the risk genes for complex diseases are rapidly being identified,1–3

there has been increasing attention to the factors influencing varia-
bility within these disorders. For complex genetic disorders in which
multiple genes act in concert to produce the disease, variability in
phenotypic expression seems likely to result, at least in part, from
underlying genetic heterogeneity. Genes impacting age of onset,
severity, and differences in symptom clusters, but not susceptibility
to illness have been termed modifier genes.4 Several such genes have
now been identified for diseases such as sickle cell anemia,5 cystic
fibrosis,6 nonsyndromic cleft lip,7 and spinocerebellar ataxia type II.8,9

Although susceptibility genes – those which influence disease liability
– and modifier genes – those which impact on clinical variation within
the illness – can be distinct, it is also possible for one gene to predispose
individuals to a disease as well as specific symptom dimensions within
the illness.4 Such ‘susceptibility-modifier’ genes have been identified
for schizophrenia (dysbindin,10–12 COMT,13–15 and DISC116,17), cystic
fibrosis (CFTR),18 ataxia-telangiectasia (ATM),19 long-QT syndrome
(NOS1AP),20 and type 2 diabetes (IRS1).21

Difficulty in replicating findings for association studies of complex
diseases has led to the stratification of subjects based on variation in
disease characteristics as one plausible way to enhance the signal to
noise ratio by reducing heterogeneity. Consequently, there have been
attempts to identify biological features specific to particular forms of
illness. However, classifying clinical subtypes of complex diseases has
proven exceedingly difficult. Age of onset, severity, and familial or

sporadic inheritance patterns have sometimes been used to subdivide
case populations. Other strategies for grouping patients have focused
on symptomatology, either through use of a priori criteria or by the
more statistically rigorous methods of cluster or latent class analysis.
Subjects can then be categorized as high or low scorers for a given
factor. There are also methods that allow for the maximization of
evidence for association by covariate-based subdividing without
a priori cut points or data processing.22,23 Each of these categoriza-
tion approaches has some appeal, but the best approach for each
complex disease has yet to be determined.
As genes that confer susceptibility to a form of illness with a distinct

symptom profile would manifest as susceptibility-modifier genes, the
results of modifier gene association studies may yield information
regarding variation in the genetic architecture of complex disease
liability in addition to variability in symptom expression.
We suggest there are two particularly plausible mechanisms

whereby a gene variant is associated with a symptom in a complex
disease. First, the disorder is etiologically homogeneous and this gene
‘truly’ impacts on that symptom – a true modifier. Second, the
disorder is etiologically heterogeneous. This ‘pseudo-modifier’ gene
is really a risk gene but only for one subtype AND the subtypes differ
on the levels of this particular symptom. We term this type of gene a
‘pseudo-modifier’ because its effects on the symptoms in question
actually arise from it conferring liability to a particular disease
subtype. In this paper, we study this second mechanism to see
under what circumstances it might be detected.
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To do so, we simulated two case groups, for one of which the gene
variant influencing symptom variability also confers disease suscept-
ibility. The other case group arrives at the disease state through
another, unspecified mechanism. A control group was simulated as
well, but as power for case–control (susceptibility) analyses has been
thoroughly investigated elsewhere, these results are included here for
comparison purposes only. Case-only designs (for modifier effects)
were considered, blind to case substructure, as risk allele frequency
(RAF), sample size (SS), odds ratio (OR), effect size (ES), and
proportion of cases with the pseudo-modifier allele were varied.

METHODS
Two case groups and a control group were simulated according to a range of

specified parameters, then tested for power to detect the pseudo-modifier gene

of interest. Simulations were carried out using the software program SAS 9.1 or

9.1.3.24 All sets of simulations involved 1000 iterations and calculations of

power given the RAF, OR, SS, and ES. We created two case subgroups

differentiated on mean group differences for an unspecified, normally dis-

tributed, quantitative trait. The type II cases were enriched for the pseudo-

modifier allele of interest, whereas the type I cases were not. Figure 1 illustrates

the two case population distributions and their combined distribution when

subgroup membership is unknown.

We did not directly simulate an effect of the variant on the quantitative trait.

Instead, we simulated a variant with population allele frequency in controls and

type I cases and RAF*OR in type II cases. Importantly, this results only in an

increased RAF among the type II cases. In case–control comparisons where the

number of cases and controls is equal, the effective OR is then 1+((OR�1)/2).

For example, a risk allele with a frequency of 0.1 at an OR of 1.4 would yield

frequencies of 0.1, 0.1, and 0.14 in controls, type I cases, and type II cases,

respectively, in a sufficiently large sample. In case–control comparisons, group-

ing the heterogeneous case sets, the allele frequencies would be 0.1 in controls

and 0.12 in cases.

For use in case-only analyses, a quantitative phenotype was simulated

sampling from a normal distribution with a mean of 0 and standard deviation

of 1 in type I cases and a mean equal to the ES, the standardized mean

difference of a trait between the two groups of cases, in type II cases, thus

indirectly creating an association between the SNP and the quantitative trait.

That is, the case group enriched for the risk allele also has a mean difference

from the other case group.

For each set of parameter specifications, power to detect the influence of the

impact of genotype on variation in the combined case groups (case-only) was

calculated as well as power to detect the allele as conferring disease suscept-

ibility (case–control). Although the case–control power calculations are not

novel, they provide a useful comparison for the case-only investigations. We

chose to use a one-stage design as studies exploring modifier gene influences

are not contingent on susceptibility gene association results.

Main analyses
All analyses were performed blind to case type. Unless otherwise specified,

simulations included 3000 total subjects in which 750 were type I cases, 750

were type II cases, and 1500 were controls. RAFs were varied from 0.10 to 0.50,

and ORs of 1.1–2.0 by increments of 0.10 were modeled, initially holding the

ES at 1. Regression tests using PROC REG in SAS were conducted for the case-

only modifier analyses, and a Cochran Armitage trend test was used for the

case–control susceptibility analyses.24 We defined sufficient power for detection

as 0.8 or greater with a P-value r0.01.

Additional analyses
The RAF was fixed at 0.20 and ES at 1 for analyses in which other parameters

varied. To explore the effects of SS, the total number of subjects was increased

incrementally by 1000 from 2000 to 6000 while maintaining the same proportion

of subjects in each group. Additionally, as it is implausible that two subpopula-

tions of affected individuals would naturally divide the subject pool neatly in half,

we also varied the percent of Type II subjects, possessing an enriched proportion

of the risk-conferring allele. Total case and control numbers were held even.

Furthermore, the ESs that might be observed could vary considerably and

depend entirely on the phenotypic trait assessed. We consequently modeled a

broad range of ESs from 0.5 to 3.0 with increments of 0.5 representing mean

differences of half a standard deviation to three full standard deviations.

RESULTS

To detect modifier associations that result from underlying genetic
heterogeneity, in which the allele impacts on disease risk in only one
subgroup, with our core set of parameter specifications (SS of 3000,
ES of 1, and RAF of 0.20) we had sufficient power to detect a
pseudo-modifier association with an OR of 1.7 or greater (Figure 2).
For comparison, a susceptibility allele with an OR of 1.2 is detectable
under the same conditions.

Allele frequency
RAFs of 0.10 or less are not sufficient to detect pseudo-
modifier genes with a one standard deviation mean trait difference.

Figure 1 Case population distributions in relation to a clinical trait scale. Type I cases are depicted as scoring lower on the scale. Type II cases, enriched for

the pseudo-modifier allele of interest, score higher by an effect size (ES) difference of one standard deviation in most simulations. The combined case

population is also shown because investigators (and our analyses) are blind to case substructure.
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However, susceptibility gene detection is possible with an OR of 1.3 or
greater. Power curves grow progressively steeper as the RAF increases,
culminating with detection of OR 1.15 and 1.3 for the susceptibility
and pseudo-modifier gene analyses, respectively.

Sample size
With 2000 total subjects, only ORs of 1.8 and greater are sufficient for
detection of pseudo-modifier effects. However, each additional 1000
subjects lowers the detectable OR by B0.10 until an SS of 6000 is
used. With this large SS, power to detect an OR of 1.4 is just under
0.80 but falls sharply to B0.50 for OR detection of 1.3. Case–control
simulations for susceptibility gene effects exhibit much steeper curves
with a smaller range, allowing for detection of an RAF of 0.20 or
greater and OR of 1.15–1.25 across all SSs examined.

Effect size
When the mean phenotypic differences between subgroups is less than
half a standard deviation, detecting pseudo-modifier effects is unlikely
with ORs under two. Standard deviation differences of 1 and 1.5 are
distinguishable at ORs of 1.7 and 1.5, respectively. From standard
deviations of 2–3, however, the increased phenotypic disparity does
not confer markedly enhanced detectability for pseudo-modifier
genes.

Unbalanced case groups
Little decrement in power for the detection of pseudo-modifier effects
was observed across a broad range of the percent of subjects with the
subtype containing an enriched proportion of the risk-conferring
allele. At any OR for which there is sufficient power for detection,
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Figure 2 Power by odds ratio (OR) curves. When fixed, the risk allele frequency (RAF)¼0.2, effect size (ES)¼1, and sample size (SS)¼3000. Lines with these

parameter specifications are represented on each plot and emphasized for frame of reference. (a) Power to detect pseudo-modifier genes for RAF of 0.1–0.5.

(b) Power to detect a susceptibility gene in case–control analyses varying the RAF from 0.1 to 0.5 and OR from 1.05 to 1.50. (c) Power for pseudo-modifier gene

detection for SS¼2000–6000. (d) Power for susceptibility gene detection with SS¼2000–6000. (e) ES 0.5–3.0 impact on power to detect pseudo-modifier effects.
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30–70% of the Type II cases are sufficient, and for high ORs, an even
broader range may suffice (Figure 3).

DISCUSSION

From these results, it is clear that the discovery of modifier gene effects
that arise from genetic heterogeneity in complex diseases is critically
dependent on most of the parameter estimates examined here.
However, it is interesting to note that the proportion of cases with
the risk-conferring allele can vary between 30 and 70% with little
observed deviation in power. As subtypes are unlikely to evenly divide
an affected population, this is a reassuring finding. On the other hand,
RAF is a vital factor in detecting pseudo-modifier genes. With 3000
subjects, an RAF of 0.10 (or less) is insufficient for detection of a
pseudo-modifier gene for any OR under 2.0, and even under ideal
circumstances with an RAF of 0.50, the OR must be 1.3 or greater.
ES is another important determinant of pseudo-modifier gene

detection, although the phenotypic differences between case groups
have no impact on susceptibility gene detection. This is an important
consideration when selecting a trait on which to explore modifier
effects as the groups should minimally differ by one standard devia-
tion and preferably two or more on the trait of interest. As group
membership is generally unknown, high trait variance is the best
selection criterion usually available.
In practice, SS is the most manipulable of the parameters explored

here. It is intuitively obvious that greater numbers of subjects confer
greater power, but beyond 5000, the additional effort of subject
recruitment and assessment may not yield sufficiently enhanced
power to be worthwhile. Even with very high numbers of subjects,
detection of genes with low RAFs or low ORs is extremely difficult. For
many complex diseases this may explain conflicting results from
association studies.
For the parameters tested, attempts were made to examine

realistic values. For example, the Affymetrix Mapping 500K Array
and GenomeWide Human Mapping 5.0 Array both report average
minor allele frequencies of 0.22.25 and the Illumina HumanHap550
and 650Y detect SNPs with average minor allele frequencies of
0.20–0.23 depending on the population sampled.26 Consequently,
simulations in which risk allele frequencies were held constant were
given values of 0.20. Moreover, the OR range we used is comparable
to ORs commonly reported for complex genetic diseases1,2,27,28

(eg B1.1–2.0).
The added power conferred by greater subject numbers has led to

recent increases in multi-center collaborations generating cohorts
consisting of thousands of individuals. Accordingly, the number of
subjects used for most simulations in this study approximated that of

some of these cooperative efforts. These include several of the Genetic
Association Information Network (GAIN) studies such as that for
ADHD (involving 2877 participants), major depression (3720), bipo-
lar disorder (3316), schizophrenia (5189), and psoriasis (2902).29 The
Wellcome Trust Consortium is another large collaborative effort,
which examined 2000 cases for each of 7 major complex diseases
and a shared set of 3000 controls.1

Despite our attempts at modeling realistic values, some limitations
were imposed out of necessity. The simulations presented here only
assess the impact of a single gene on the predisposition to a certain
form of a complex disease. In fact, a more likely scenario involves
overlapping constellations of susceptibility genes as well as environ-
mental insults that are also not included in these models. In addition,
we have presumed that the minor allele is the risk-conferring allele.
However, common alleles with small main effects may act in concert
with alleles in other genes to additively or epistatically influence
liability to complex diseases, and we have not modeled these possi-
bilities. Furthermore, the simulations presented here were restricted to
two subtypes, when in reality, many more subtypes may exist for some
diseases.
We have additionally presumed that the modifier effects of the allele

in question are restricted to (or only assessed in) the case population.
Detection of more subtle expression in unaffected individuals, when
possible, might allow for greater power to detect the allele.4 Gene
detection then hinges not only on disease expression but degrees of
symptom expression as well, drawing on increased information to
yield enhanced power.
The results presented here are applicable to nearly every complex

genetic disease for which subtypes may exist. Several diseases may
manifest with convergent symptom profiles but arise through different
etiological mechanisms. The extent to which subpopulations differ in
their symptoms can yield clues to underlying biological differences.
For example, diabetes has two main subtypes (I and II) both of which
present with high blood glucose levels and similar symptoms such as
extreme thirst, fatigue, and blurred vision. However, in type I diabetes,
the symptoms are due to the destruction of insulin-producing cells,
whereas type II diabetes occurs when the tissues become resistant to
insulin or produce too little. Later age of onset and higher body weight
are linked to, but not diagnostic of, type II diabetes.30 These subtle
phenotypic differences indicative of very distinct pathophysiological
origins are precisely the type of clues sought to unlock the etiology of
complex diseases.
Association studies examining modifier effects may actually uncover

subtype-specific susceptibility genes. Whether variable symptom pro-
files for numerous diseases are due to modifier genes and environmental
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influences, differing underlying genetic architecture, or some combi-
nation of these possibilities will likely remain under investigation for
many years to come. The simulation results presented here indicate
there is reasonable power to detect pseudo-modifier genes under
favorable conditions such as a high ES, OR, and RAF, but they may
well be missed under less ideal circumstances. These results can be
used to inform researchers as to the relative power for studies of
complex disease under a range of conditions when symptom variation
is due to different genetic subtypes.
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