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A gene-based method for detecting gene–gene
co-association in a case–control association study

Qianqian Peng1, Jinghua Zhao2 and Fuzhong Xue*,1

Association study (especially the genome-wide association study) now has a key function in identification and characterization of

disease-predisposing genetic variant(s), which customarily involve multiple single nucleotide polymorphisms (SNPs) in a

candidate region or across the genome. Case–control association design remains the most popular and a challenging issue in the

statistical analysis is the optimal use of all information contained in these SNPs. Previous approaches often treated gene–gene

interaction as deviation from additive genetic effects or replaced it with SNP–SNP interaction. However, these approaches are

limited for their failure of consideration of gene–gene interaction or gene–gene co-association at gene level. Although the

co-association of the SNPs within a candidate gene can be detected by principal component analysis-based logistic regression

model, the detection of co-association between genes in genome remains uncertain. Here, we proposed a canonical correlation-

based U statistic (CCU) for detecting gene-based gene–gene co-association in the case–control design. We explored its type I

error rates and power through simulation and analyzed two real data sets. By treating gene as a functional unit in analysis,

we found that CCU was a strong alternative to previous approaches. We discussed the performance of CCU as a gene-based

gene–gene co-association statistic and the prospect of further improvement.
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INTRODUCTION

Association study (especially the genome-wide association study,
GWAS) now has a key function in identification and characterization
of disease-predisposing genetic variant(s), which customarily involves
multiple single nucleotide polymorphisms (SNPs) in a candidate
region or across the genome. Case–control association design, which
remains the most popular and a challenging issue in the statistical
analysis, makes optimal use of all information contained in these
SNPs. In human complex diseases, correlations exist not only between
the SNPs in the candidate genes but also between the genes in the
genome because of linkage disequilibrium (LD) (or SNP–SNP inter-
actions) and co-association (or interaction) between genes. Both
gene–gene co-association and interaction could imply that the two
genes share their role in causing diseases (or trait), or a de facto high
dependency or correlation between two genes in disease predisposi-
tion.1 The role in the etiology of complex diseases is the basis for
constructing gene networks. Co-association between genes can be seen
as joint effect of genes contributing to the disease or trait, and can be
measured based on the correlation between genes. This is in contrast
to the definition or measure of interaction (epistasis), which is
somewhat confusing. Moore delineated among genetic, biological
and statistical epistases; differences in genetic and biological epistases
among individuals in a population give rise to statistical epistasis.2

However, the practical difficulty in interpreting biological epistasis
through statistical epistasis can lead to controversy regarding the
relationship between them.

The classic statistical interaction as defined by Fisher3 and devel-
oped further by Cockerham4 and Kempthorne5 treats gene–gene
interaction as deviation from additive genetic effects.6 Modeling a
trait as an additive combination of its single-locus main effects and
interaction terms is likely to limit the power to detect interaction.7

Several methods for detection of gene–gene interaction are worthy
of note. In particular, multifactor dimensionality reduction (MDR)8 is
a data-mining method8–14 However, the heavy dependence on data
structure, complicated procedure and lack of clear biological inter-
pretation of the detected gene–gene interactions had limited applica-
tions of data-mining methods in complex disease association study.7

Parametric methods are more powerful than nonparametric methods
provided valid assumptions are made.7 In this regard, LD1,7 and
entropy-based15–16 methods have clearer biological interpretation and
are powerful. However, all these methods share a limitation in
common. Although developed for detecting gene–gene interactions,
they are practically testing for SNP–SNP interactions, which are
insufficient for interpretation of gene–gene interaction. Multiple
variants in a gene have made it difficult to be tagged by a single
SNP, whereas SNP–SNP interaction may not truly reflect many
potential factors such as LD between SNPs. Furthermore, all SNP-
based methods have to tackle the multiple-testing problem.
Recently, several groups have proposed to combine principal

component analysis (PCA) with logistic regression17–19 to explore
contribution of set of SNPs within a candidate gene on the disease
(trait), namely the co-association of the SNPs to disease (trait).
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However, the detection of co-association between genes in genome
remains uncertain. Gene–gene co-association is not equivalent to
gene–gene interaction but could imply gene–gene interaction or
joint effect of two genes. In the study of etiological gene networks
of disease pathogenesis, gene–gene co-association is much more
meaningful as it could render a priori topological structure (or
model) for establishing biological pathways and gene networks of
the disease.
In this study, we develop a gene-based statistic for detecting gene–

gene co-association between cases and controls. We use canonical
correlation analysis (CCA)20 to obtain systematic correlations between
two genes through a linear transformation of all SNPs in each gene.
We also develop a statistic for detecting gene–gene co-association and
investigate its performance under different disease models and for a
range of sample sizes and various degrees of correlations between two
genes in cases and controls through simulation study. Finally, we
analyze two real data sets and make comparisons with the results of
MDR, LD-based statistic and logistic regression analysis.

MATERIALS AND METHODS

Data simulation
Computer program MS21 was used to generate haplotypes in two

associated genes, which were paired at random to generate individuals’

genotypes. Under the null hypothesis, a population with 20 000 individuals

was generated. Cases and controls were selected randomly from the population,

according to sample sizes 100(100)1000, 1000(1000)5000; 10 000 simulations

were repeated at each sample size to study the characteristics of distribution

and type I error rates of canonical correlation-based U statistic (CCU). Under

the alternative hypothesis, two populations were generated by specifying

different parameters, to call MS. One is taken as case population and the

other as control population. Cases and controls were randomly sampled

separately from each population, with sample size similar to those for the null

hypothesis and 10 000 simulations were repeated for each sample size to explore

power of CCU.

Quantification
Assume a case–control study (n individuals in each group), and gene A with p

SNPs and gene with B q SNPs. We code the genotypes according to specific

genetic model.22–23 For instance, under joint additive–additive model and cases,

SNP genotypes in gene A and gene B are quantified as xDik¼2, 1, 0 and yDik¼2, 1, 0,

i¼1, 2,y, p, j¼1, 2,y, q, k¼1, 2,y,n (2 for mutant homozygote, 1 for hetero-

zygote, and 0 wild-type homozygote), respectively, In controls, xCik¼2, 1, 0,

yCik¼2, 1, 0, i¼1, 2,y, p, j¼1, 2,y, q, k¼1, 2,y,n are similarly obtained. This

quantification of genotype data avoids complicated haplotype deduction.

Test statistic
As noted earlier, we focus on the difference of correlation between two genes in

cases and controls as a measure of co-association of the two genes contributing

to the disease. We use canonical correlation20 for this measure. Let the afore-

mentioned genotyped data of case–control study be coded as (X1
D, X2

D,y,Xp
D)

and (Y1
D, Y2

D,y,Yq
D) for gene A and gene B for cases, and (X1

C, X2
C,y,Xp

C) and

(Y1
C, Y2

C,y,Yq
C) for controls. The maximum canonical correlation coefficient

rD (1ZrDZ0) between (X1
D, X2

D,y,Xp
D) and (Y1

D, Y2
D,y,Yq

D) obtained by

CCA could be taken as a measure of gene-based gene–gene co-association in

cases, and rC (1ZrCZ0) from (X1
C, X2

C,y,Xp
C) and (Y1

C, Y2
C,y,Yq

C) be a

measure of gene–gene co-association in controls (Appendix A in Supplemen-

tary information). Our test of gene–gene co-association contributing to disease

is then turned to a test of the difference between rD and rC. The transformation

zðr2Þ ¼ 1
2 ðlogð1+rÞ � logð1� rÞÞ 24–25 in analogy to Fisher’s simple correlation

coefficient(s) transformation zðsÞ ¼ 1
2 ðlog ð1+sÞ � log ð1� sÞÞ26 are used to

canonical correlation coefficients to approximate normal distribution27–28

(Appendix B in supplementary information), that is, zD ¼ zðr2DÞ ¼
1
2 ðlog ð1+rDÞ � log ð1� rDÞÞ and zC ¼ zðr2CÞ ¼ 1

2 ðlogð1+rCÞ � logð1� rCÞÞ.
A CCU for detecting statistical significance of the difference of gene-based

gene–gene co-association between cases and controls is then as follows,

U ¼ zD � zCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ðzDÞ+Var ðzCÞ

p

which is asymptotically normal distributed as N(0,1) (Appendix C in Supple-

mentary information).

Applications
We conducted two real data analyses. The first concerned heroin addiction of

self-reported positive response on first use of heroin among 91 individuals in

positive group and 245 individuals in negative group, who were all of Han

Chinese origin recruited in Shanghai Voluntary Drug Dependence Treatment

Center.29 Twenty SNPs in regions of the three genes, m-opioid receptor gene

(OPRM1), k-opioid receptor gene (OPRK1) and d-opioid receptor gene

(OPRD1), were genotyped. The second was a GWAS of North American

Rheumatoid Arthritis (RA) Consortium involving 868 cases and 1194 con-

trols.30 On the basis of the previous result from GAW16, four genes (C5,

VEGFA, PADI4, PTPN22) were selected to detect gene–gene co-association with

RA susceptibility. There were eight, four, six and nine SNPs genotyped in each

gene, respectively.

RESULTS

Type I error rates
Results for the joint additive–additive model are shown in Table 1,
noting that when sample size of case–control study is equal to or larger
than 200, the normal distribution of CCU under the null hypothesis
was confirmed by normal tests, but not so for sample size being less
than 200, and type I error rates of CCU are not appreciably different
from the nominal levels at 0.01, 0.05, 0.1 and 0.2. Results for joint
dominant–dominant model are shown in Table 2 and similar to that
from joint additive–additive model. For both joint additive–additive
model and joint dominant–dominant model, the type I error rates are
close to given nominal levels when sample size of case–control study is
larger than 300 (Tables 1 and 2). CCU is normally distributed and the
results showed that it is insensitive to model misspecification under
null hypothesis.

Power
Under joint additive–additive model, the power of CCU is not only a
monotonically increasing function of sample size (Figure 1a and b)

Table 1 Performance of CCU under the null hypothesis (joint

additive–additive model)

Normality test Type I error rates (%)

Sample size D W2 A2 1 5 10 20

100 o0.01 o0.005 o0.005 0.06 0.06 0.13 0.97

200 0.14 40.25 40.25 1.12 5.36 10.33 20.65

300 40.15 40.25 40.25 1.04 5.08 9.93 19.87

400 40.15 40.25 40.25 0.96 5.20 10.06 20.07

500 40.15 40.25 40.25 1.10 5.48 10.05 19.95

600 40.15 40.25 40.25 1.03 5.09 9.93 19.51

700 40.15 40.25 40.25 1.12 5.40 10.35 20.55

800 40.15 40.25 40.25 1.09 5.18 9.90 19.93

900 40.15 40.25 40.25 0.89 5.23 9.92 19.60

1000 40.15 40.25 40.25 0.85 4.80 9.63 19.10

2000 40.15 40.25 40.25 1.00 4.77 9.95 20.06

3000 40.15 0.25 40.25 1.02 4.95 10.29 20.23

4000 40.15 40.25 40.25 1.21 5.21 9.87 19.24

5000 40.15 0.15 0.14 0.86 4.83 9.91 20.17

D, Kolmogorov–Smirnov D test.
W2, Cramer-von Mises W2 test.
A2, Anderson–Darling A2 test.
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but also relates to correlations between two genes in cases and
controls. Power calculations are performed for control groups sampled
from the same population, whereas case groups from several popula-

tions, and the larger the deviation of canonical correlations between
genes in cases and controls, the larger the power (Figure 1a). More
interestingly, power varies when both cases and controls are from
several different populations, whereas the deviation of correlations
between cases and controls is similar, where the correlations in cases
and controls are both larger, and the power is much higher
(Figure 1b). Power performance of CCU under joint dominant–
dominant model shows similar to those under joint additive–additive
model (Figures 1c and d). The results imply that CCU proposed in
this study is insensitive to model misspecification.

Applications
For the heroin addiction data, the result of MDR method (Appendix
D in Supplementary) showed that rs678849, rs797397 and rs12404612
in OPRD1, rs6985606 in OPRK1 and rs510769 in OPRM1 were likely
to interact with each other (Table 3). The results of CCU and LD-
based statistic under joint additive–additive genetic model are sum-
marized in Table 4. CCU suggested that gene–gene co-associations
between OPRD1 and OPRM1 and that between OPRD1 and OPRK1
were significant with heroin-induced positive response on first use
(Table 4), whereas LD-based statistic suggested SNP–SNP interaction
in OPRD1 and OPRM1 and that in OPRK1 and OPRM1 were
significant. For the RA data, the results of CCU, LD-based statistic
and logistic regression analysis (Appendix D in Supplementary) under
joint additive–additive genetic model are shown in Table 5. CCU
suggested that co-associations of C5-PADI4, C5-PTPN22 and

Table 2 Performance of CCU under the null hypothesis (joint

dominant–dominant model)

Normality test Type I error rates (%)

Sample size D W2 A2 1 5 10 20

100 0.01 o0.005 o0.005 0.13 0.13 0.14 0.20

200 0.06 0.07 0.08 1.13 4.96 9.89 19.85

300 40.15 40.25 0.25 1.08 5.23 9.85 19.30

400 40.15 40.25 40.25 0.99 4.85 9.64 19.77

500 0.08 0.16 0.19 0.99 5.02 9.85 19.24

600 40.15 0.17 0.12 1.14 5.27 9.86 19.92

700 40.15 40.25 40.25 0.95 4.99 10.13 20.27

800 40.15 40.25 40.25 0.93 4.97 9.97 19.85

900 40.15 40.25 40.25 1.04 5.02 10.00 20.04

1000 40.15 40.25 40.25 1.18 5.32 10.31 20.18

2000 40.15 40.25 40.25 0.92 4.86 10.04 20.52

3000 40.15 40.25 40.25 0.98 5.07 10.17 19.77

4000 40.15 40.25 40.25 1.17 5.13 10.05 20.14

5000 40.15 40.25 40.25 1.00 5.20 10.10 19.99

D, Kolmogorov–Smirnov D test.
W2, Cramer-von Mises W2 test.
A2, Anderson–Darling A2 test.

Figure 1 Power performance of CCU under joint additive–additive model and joint dominant–dominant model (a¼0.05). Under joint additive–additive model:

(a) the solid squares represent power evaluation of which cases and controls are from populations with gene–gene correlation of 0.324 and 0.434,

respectively, and solid triangles represent that of 0.670 and 0.434, whereas hollow diamonds represent that of 0.129 and 0.434. (b) The solid squares

represent power evaluation of which cases and controls are from populations with gene–gene correlation of 0.708 and 0.625, respectively, the solid triangles

represent that of 0.345 and 0.259, the hollow diamonds represent that of 0.896 and 0.806, and inverse triangles represent that of 0.434 and 0.324.
Under joint dominant–dominant model: (c) the solid squares represent power evaluation of which cases and controls are from populations with gene–gene

correlation of 0.127 and 0.192, respectively, and the solid triangles represent that of 0.394 and 0.192. (d) The solid squares represent power evaluation of

which cases and controls are from populations with gene–gene correlation of 0.534 and 0.394, respectively, the solid triangles represent that of 0.830 and

0.699, and hollow diamonds represent that of 0.699 and 0.534.
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VEGFA-PADI4 were significant with RA susceptibility, whereas LD-
based statistic suggested SNP–SNP interactions in C5-PADI4, C5-
PTPN22 and VEGFA-PADI4; logistic regression analysis could only
detect SNP–SNP interaction in VEGFA-PADI4.

DISCUSSION

Gene-based association study
Currently, the level of association most commonly seen in the
literature is SNP. These SNP-based methods, such as logistic regression
analysis, MDR,8 LD-based1,7 and entropy15–16 statistics, have practical
limitations. First, as there are multiple variants in a gene, one single
SNP (or tagging SNP) is inadequate to represent the effect of the gene
in the whole genome as a functional unit. Second, replication at SNP
level runs a high risk of false negative results because of different
functional variants within the replication sample or subpopulation.
Third, the problem of multiple testing can greatly reduce the power of
SNP-based methods. Neale and Sham31 suggested a move toward
gene-based approach, for the reasons that genes are the functional unit
of the human genome and the positions, sequence and function of
genes are highly consistent across diverse human populations. This
scope is considerably greater than that of either an SNP or a haplotype.
Gene-based association study explicitly accounts for biological func-
tion of a gene, so it takes the problem of nonreplication up to the gene
level. Effectively, gene-based association study alleviates the burden of
multiple testing in into two stages: handling of multiple variants
within a gene and multiple genes across the genome.31

In an earlier attempt to detect association at gene level, several
groups have proposed to combine PCA with logistic regression tests
(LRT).17–19 Such a PCA–LRT approach involved two basic steps. First,
PCA was used to compute combination of correlated SNPs that
capture the underlying correlation structure of a candidate region.
Then, logistic regression model test was used to assess the association

between principal components scores and disease. This approach
captures the co-association between SNPs within a candidate gene
and is less computationally demanding compared to haplotype-based
analysis. It takes advantages of principal components to avoid multi-
colinearity between SNPs. Studies showed that PCA–LRTwas typically
as or more powerful than both genotype- and haplotype-based
methods. For a candidate gene, however, PCA–LRT could only detect
co-association between SNPs. The CCU statistic in this paper detects
gene–gene co-association, which could suggest true joint effect
between two genes. Furthermore, gene–gene co-associations can
render a priori topological structure (or model) for establishing
etiological gene network of the disease pathogenesis.

Relationship between gene–gene interaction and co-association
The definition of gene–gene interaction or epistasis is somewhat
inconsistent. Gene–gene interaction is typically defined as statistical
deviation from additive genetic effects,6 whereas Zhao et al7 defined
interaction between two unlinked loci (or genes) for a qualitative trait
as the deviation of the penetrance for a haplotype at two loci from the
product of the marginal penetrance of the individual alleles that span
the haplotype. In epidemiology,32–33 gene–gene interaction refers to
the extent to which the joint effect of two genes on disease (or trait)
differs from the independent effect of each gene. In terms of their
causal effects on disease incidence, two genes may act independently
or interact to augment (in case of synergism) or deduct (in case of
antagonism) the effect of one another. To determine the presence of
interaction between two genes in a case–control association study, a
product term is customarily added to the logistic regression model:
Logit(P/1�P))¼b0+b1Agene+b2Bgene+gAgene�Bgene, where g is the
measurement of the interaction. This model implies that the interac-
tion (g) between gene A and gene B assumes independence between
them. However, two genes in the genome are often correlated with
each other in specific pathways or networks to cause a disease. Co-
association could be more appropriate to measure the joint effect of
two genes contributing to a disease such that it is based on the
correlation between genes (such as CCU statistic in this paper),
implying that the genes share their role for causing a disease, and
the shared feature is the de facto dependency or correlation between
two genes. Gene–gene co-association thus extends the concept of
gene–gene interaction and/or gene–gene correlation. Gene–gene co-
association is much more meaningful as it could render a priori
topological structure (or model) for establishing pathways or networks
between genes to the disease.

Characteristics of CCU statistic
In this article, we have developed a statistic for detecting gene-based
gene–gene co-association using cases and controls. The proposed
statistic (CCU) has advantages for the following reasons. First and

Table 3 Results of detected interaction among OPRD1, OPRK1 and OPRM1 by MDR

Model Train Bal. Acc. Test Bal. Acc. CV consist

rs482387(OPRD1), rs696522(OPRM1) 0.6223 0.4690 10(3)

rs482387(OPRD1), rs1799971(OPRM1), rs696522(OPRM1) 0.6705 0.4806 10(3)

rs797397(OPRD1), rs12404612(OPRD1), rs6985606(OPRK1),

rs510769(OPRM1)

0.7332 0.4786 10(5)

rs678849(OPRD1), rs797397(OPRD1), rs12404612(OPRD1),

rs6985606(OPRK1), rs510769(OPRM1)

0.8111 0.4929 10(6)

Train Bal. Acc., training balanced accuracy.
Test Bal. Acc., testing balanced accuracy.
CV consist, cross-validation consistency.

Table 4 Results of detected gene–gene co-association among

OPRD1, OPRK1 and OPRM1 by CCU and their SNP–SNP interaction

by LD-based statistic

CCU LD-based statistic

Interaction Measure U-value P-value SNP–SNP P-value

OPRD1-OPRK1 0.52 3.7071 0.0002 NULL NULL

0.25

OPRD1-OPRM1 0.63 2.6100 0.0091 rs482387–rs3778151 0.0001a

0.32

OPRK1-OPRM1 0.44 1.4376 0.1505 rs16918941–rs3778151 0.0003a

0.29

aSignificant after multiple testing.
NULL none pair of SNP–SNP interaction was significant after multiple testing.
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foremost, it is gene based and integrates the effect between two
functional units (two genes) in the human genome. By considering
co-association between two genes, the result of CCU is expected to be
closer to a biological interpretation. Second, it reduces the problem of
nonreplication from SNP to a gene level.,31 Last but not the least, the
dimensions of the genotyped data are substantially reduced, as is the
problem of multiple testing.
Our simulation showed that CCU has good performance under null

hypothesis. Under alternative, power is shown to be a monotonically
increasing function of sample size and gene–gene co-association
between cases and controls. In the analysis of the heroin addiction

data, CCU suggested that gene–gene co-association between OPRD1
and OPRM1 and that between OPRD1 and OPRK1 were significant
(Table 4), as with LD-based statistic suggesting that SNP–SNP inter-
action in OPRD1 and OPRM1 was significant but not in OPRD1 and
OPRK1. Gene–gene interaction between OPRD1 and OPRM1 had
been detected in many studies34–39 and for that between OPRD1 and
OPRK1, Jordan and Devi40 had provided biochemical and pharma-
cological evidence for the heterodimerization of the two fully func-
tional opioid receptors, which suggests the result of CCU is credible.
Analysis of the RA data showed that CCU is much more efficient than
traditional logistic regression analysis (Table 5). Most interestingly, an
association study between single SNP and RA susceptibility (Table 6)
showed that none of the SNPs in the four genes’ regions was
significant, implying that a single SNP was unable to represent the
gene, so SNP–SNP interactions detected by LD-based statistic or
logistic regression analysis were doubtful.

Limitation and future development
The CCU statistic could only catch linear correlation between two
genes, which may be insufficient to represent gene–gene co-associa-
tion. For example, in the heroin addiction data, the co-associations
measured between C5 and PADI4 in cases and controls were 0.16 and
0.125, the power could not be very high as shown in power calculation
(Figure 1). To improve power, further work should focus on searching
for approaches that could catch nonlinear co-association between
genes. CCU could only deal with pairwise gene–gene co-association.
Future investigation on multigene co-association is needed. In general,
adoption of gene-based approach to association analysis and replica-
tion is becoming feasible with many advantages.17 CCU is likely to be
a preferred option for the genetic dissection of complex diseases.
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