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An omnibus test for family-based association studies
with multiple SNPs and multiple phenotypes

Jessica Lasky-Su1,2,3, Amy Murphy1,2,3,, Matthew B McQueen4, Scott Weiss1,2,3 and Christoph Lange1,3,5

We propose an omnibus family-based association test (MFBAT) that can be applied to multiple markers and multiple phenotypes

and that has only one degree of freedom. The proposed test statistic extends current FBAT methodology to incorporate multiple

markers as well as multiple phenotypes. Using simulation studies, power estimates for the proposed methodology are compared

with the standard methodologies. On the basis of these simulations, we find that MFBAT substantially outperforms other

methods, including haplotypic approaches and doing multiple tests with single single-nucleotide polymorphisms (SNPs) and

single phenotypes. The practical relevance of the approach is illustrated by an application to asthma in which SNP/phenotype

combinations are identified and reach overall significance that would not have been identified using other approaches. This

methodology is directly applicable to cases in which there are multiple SNPs, such as candidate gene studies, cases in which

there are multiple phenotypes, such as expression data, and cases in which there are multiple phenotypes and genotypes, such

as genome-wide association studies that incorporate expression profiles as phenotypes. This program is available in the PBAT

analysis package.
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INTRODUCTION

To identify disease variants, genetic epidemiological methods perform
association tests between single-nucleotide polymorphisms (SNPs)
and phenotypes of interest. Most often, the number of SNPs range
between hundreds in candidate gene studies to millions in genome-
wide association studies. Not only can the genetic data be immense,
but most often investigators analyze these SNPs with multiple
phenotypes, which increases further the multiple testing problem.
The number of phenotypes that are used in genetic association studies
range from a few clinically relevant characteristics to tens of thousands
that may originate from cellular expression measurements. With the
use of multiple SNPs and phenotypes, the total number of statistical
tests explodes and results in more and more stringent significance
thresholds.
Typically when multiple SNPs and phenotypes are used in genetic

analyses, the overarching hypothesis that researchers are interested
in is whether a genetic variant has any relation to the specified
disease of interest. The success of identifying these genetic variants
with the marked increase in genetic data and the use of multiple
phenotypes will depend to a large extent on the efficient statistical
handling of these data. The immense amount of SNP and phenotype
data must translate into increased statistical power to detect disease
susceptibility loci.
A common approach to analyzing genetic data is to perform

individual statistical tests for each SNP/phenotype combination and
then adjust for the total number of tests using a multiple compa-
rison correction method, such as Bonferroni,1 or less conservative

corrections, such as the Holm2 or Hochberg3 correction. Such
approaches are limited because the number of statistical tests remains
unchanged. Therefore, only association findings that can withstand
multiple comparison corrections will achieve genome-wide signifi-
cance in scenarios even with a moderate number of SNPs and pheno-
types. The number of total association tests becomes large quickly and
make it unlikely that true genetic variants will be identified.
Other methods, including global haplotype tests,4 regression

methods,5,6 and multimarker tests,7 address multiple testing by
combining multiple SNPs into a single test. Global haplotype tests
enumerate the possible haplotypes and then evaluate the null hypo-
thesis that no haplotype is associated with the disease. Regression-
based approaches analyze associations between a trait and all linear
combination of SNPs. Multimarker methods7 test multiple SNPs
simultaneously by combining individual marker scores and pairwise
correlations while avoiding the use of haplotype structure. Although
all of these approaches dramatically reduce multiple testing over single
SNP analyses, none of these methods have addressed the issue that
multiple phenotypes are usually available and tested for association.
Statistical methods have also been developed to handle multiple

phenotypes on a single SNP level. FBAT-PC8 is an approach imple-
mented in the PBAT program9 that uses multiple phenotypes to
construct an overall phenotype that amplifies the trait heritability
at each SNP. The FBAT-PC methodology has been successful in
identifying SNPs associated with complex diseases in genome-wide
association studies, but has the distinct disadvantage that it requires all
phenotypes to have similar distributional characteristics.
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Although many tests have been developed to aggregate either the
genotype or the phenotype information, few methods have been
developed that can reduce the multiple testing problem by examining
marker and phenotype information simultaneously. In this manu-
script, we propose a new one degree of freedom test, omnibus family-
based association test (MFBAT), that incorporates both multiple
markers and multiple phenotypes into a single test statistic. By
reducing the number of tests across two dimensions, the total number
of statistical tests is reduced to one and the multiple testing problem
is addressed more efficiently than other methods. This methodology
is also flexible in nature and can incorporate phenotypes that
have varying distributional properties. Although this test has been
developed with candidate gene studies, cellular expression phenotypes,
and genome-wide association analyses in mind, the testing strategy is
applicable to any family-based association analysis that uses multiple
markers and multiple phenotypes. In addition, the MFBAT approach
can be used in the context of the PBAT screening algorithm10,11 to
further reduce multiple comparisons. Through simulation studies, we
show that the MFBAT testing strategy outperforms standard
methodology in terms of statistical power. We also provide a concrete
example of the methodology using five phenotypes and five SNPs
from an asthma clinical trial.

METHODS

Multi-marker/multi-phenotype: global expansion of FBAT
The general methodology is that the FBAT approach compares the difference

between the observed marker score and the expected marker score that is

computed based on Mendelian transmissions, conditional on the parental

genotypes and the offspring’s phenotype.12 If the parental information is not

available, the expected marker score is calculated conditional on the sufficient

statistic for the pedigree that is then defined by the available genotypes on

siblings and other relatives. As the genotype is the only random variable in the

FBAT approach and its distribution is defined by Mendelian transmission, and

not by any parameter estimates for the allele frequency, the FBAT approach is

robust against confounding due to population admixture and stratification.

In this study we extend the FBAT methodology to generate an omnibus

association test, MFBAT, that uses information on multiple markers and

multiple phenotypes. For the sake of simplicity, we assume that there are trios,

that is, probands and their parents, and that SNP data are analyzed. The

proposed methodology extends easily to families with multiple siblings and

missing parental data. If the parental data are missing/unavailable, the parental

genotypes can be replaced below by the sufficient statistic5,12 and the con-

struction of the weights for the overall test that we will describe below is

directly extensible. For a more detailed discussion of this, we refer to the

original paper.12

We assume that there are n parent–offspring trios, and that each offspring

has m coded genotypes, k¼1,2,y,m, and p traits of interest l¼1,2,y,p. Let xik
be the coded genotype of the kth marker for the ith proband that can be coded

in an additive, dominant, or recessive manner. The variables pik1 and pik2
denote the parental genotypes for the parents of the ith proband at the kth

marker, yil denotes the lth trait of interest of the ith proband, and ml denotes the
offset for that trait. Therefore, the FBATstatistic, FBATkl, tests for an association

between the kth marker locus and lth trait and is given by the following:12

FBAT2
kl ¼

Xn
i¼1

ðyil � mlÞ½xik � Eðxikjpik1; pik2Þ�
( )2

=

Xn
i¼1

ðyil � mlÞ2Var ðxikjpik1; pik2Þ � X2
1

ð1Þ

If all offspring are affected and an additive coding function is used for the

genotype, the FBAT statistic and the original TDT statistic13 are equivalent.

Assuming that the FBAT statistic at each marker for each trait is

FBATkl,BN(0,1), then an omnibus FBAT statistic that tests all phenotypes

and genotypes of interest simultaneously can be constructed by the linear

combination of all FBAT statistics divided by the appropriate variance. The

numerator for the MFBAT statistic is therefore given by:X
kl¼1

wklFBATkl ð2Þ

Following the work of O’Brien et al14 and Wei and Johnson,15 the optimal

weights, wkl, can be constructed as follows. Denote V as the covariance matrix

of (FBAT11,y,FBATmp) that is calculated empirically and the vector v is defined

by the expected FBAT statistic under the alternative hypothesis, that is,

E(FBAT|Ha)¼[E(FBAT11|Ha),y, E(FBATmp|Ha)]. Then the weights for the

optimal linear combination of FBAT-statistics, that is, the linear combination

with the highest statistical power under Ha is given by

W ¼ V�1v ð3Þ

Specifically, W is a vector of weights [w11,y, wmp]
t that are calculated from V

and v. In the case in which the inverse variance matrix becomes unstable, we

use the generalized inverse matrix.

Although in general, it is difficult to estimate E(FBAT|Ha) before the

computation of the test statistic, family-based studies allow for this estimation

in a way that is statistically independent of the subsequent FBAT statistics that

are computed using the conditional mean model. This method is described in

detail elsewhere.16 We provide a brief summary in this study. The standard

quantitative genetic model for the phenotypic mean for the kth genetic marker

is given by

EðYiklÞ ¼ ml+alxik ð4Þ

In this equation, ml is the overall mean for the lth phenotype and al is the

additive genetic effect of the lth phenotype. In most cases, al can only be

calculated using the actual genotypic data that are used in the statistical analysis

itself. Family-based studies offer a unique situation in which we can generate an

estimate for al from the data without biasing the subsequent test statistic.

Because we compute the FBAT statistic using the offspring marker scores in the

informative families, information from the noninformative families (ie, both

parents are homozygous) can be used in the calculation of the expected value of

the FBAT under the alternative hypothesis. Estimation on the sole basis of

noninformative families is problematic for several reasons discussed else-

where.16 To permit the use of both informative and noninformative families

for al without biasing the resulting test statistic, we replace the marker score xik
in Equation Eq. (4) by its expected value conditional on the parental genotypes

of the ith proband at the lth phenotype and the kth genetic marker,

E(Xik|pik1,pik2). This equation is also called the conditional mean model.

EðYikljpik1; pik2Þ ¼ ml+EðXikjpik1; pik2Þ ð5Þ

It is important to note that these two are identical when the family is

noninformative, because then the observed marker score xik and the expected

marker E(Xik|pik1, pik2) are identical, that is, xik¼E(Xik|pik1,pik2). As the test

statistic is based on the use of offspring genotypes conditional on parental

genotypes, the use of E(Xik|pik1,pik2) to estimate al does not bias subsequent

testing, even in the informative families. We can therefore use E(Xik|pik1,pik2) in

place of xik to generate an estimate of the FBAT statistic under the alternative

hypothesis without biasing the subsequent statistical test. The conditional mean

model has been specified similarly by Vansteen et al10 for continuous traits,

Jiang et al17 for time-to-onset, and Murphy et al18 for affection status.

Therefore, the most powerful combination of FBATs can be constructed as

follows:

MFBAT ¼
X
kl¼1

wklFBATkl=
ffiffiffiffiffiffiffiffiffiffiffi
w0Vw

p
� Nð0; 1Þ ð6Þ

Alternatively, an omnibus test statistic could be constructed based on the

multivariate score test, the FBAT-GEE,19 but the degrees of freedom for this test

increases rapidly with increasing markers and phenotypes, that is, df¼mp,

making this test less optimal than MFBAT with one df proposed in this study.

Similar to the approach proposed by Schaid et al,20 this approach also only uses

one degree of freedom, which makes the resulting test statistic more powerful

when multiple markers and/or phenotypes are added. There are three funda-

mental differences between the approach proposed by Schaid et al and the
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methodology described in this study: (1) we incorporate not only multiple

markers into the test statistic, but also multiple phenotypes that the Schaid et al

methodology does not do; (2) our approach is based on family data whereas the

Schaid et al approach is based on case–control data and therefore does not

incorporates quantitative phenotypes; and (3) the weightings used in our

analysis are calculated using the expected offspring genotypes conditional on

the parental genotypes, and such a calculation cannot be performed with case–

control data.

RESULTS

The simulation is designed around the asthma study discussed in the
data analysis section of this paper. The markers of interest comprise
a five-SNP haplotype modeled after five SNPs in the ARG1 gene.
We generated the parental haplotypes by drawing from a uniform
distribution, in which the probability that any parent has a given
haplotype is the haplotypic frequency as measured in the Childhood
Asthma Management Program (CAMP) population.21 The haplotypes
of the probands are obtained by simulating Mendelian transmissions
of the parental haplotypes, assuming complete linkage disequilibrium
in each haplotype. For the computation of the MFBAT statistics, the
genotypes of probands and their parents are assumed to be known.
We simulate 1000 trios with five phenotypes and five SNPs and then

evaluate the power of the proposed testing strategy to other existing
testing strategies. Using the haplotypes that were generated from these
five SNPs in the CAMP population, the haplotypes with frequencies of
0.1, 0.2, and 0.3 are each selected to be the disease susceptibility loci,
and the genotypic distribution under the alternative hypothesis is
generated using E(Xi|pi1,pi2) for the marker score as described by
Lange and Laird.16 The haplotypes for the remaining SNPs are
simulated under the null hypothesis, assuming Hardy–Weinberg
equilibrium and complete linkage disequilibrium. Five phenotypes
are generated, in which one phenotype is associated with one
haplotype and the four remaining phenotypes are only associated
with the haplotype by their correlation with the associated phenotype.
Three different phenotypic correlations were used in the simulations:
(1) a low phenotypic correlation, in which the phenotypic correlation
between all phenotypes is 0.2; (2) a moderate phenotypic correlation,
in which the correlation between each phenotype is 0.38, which
reflects the average phenotypic correlation matrix of the five asthma
phenotype measurements in the CAMP clinical trial; and (3) a high
phenotypic correlation, in which the phenotypic correlation between
all phenotypes is 0.8. The strength of the additive effect relative to the
phenotypic variance is measured by the heritability, h2. Specifically,
when the phenotypes are generated for the simulation, they are
generated using a regression equation that results in the specified
heritability measurement between the phenotype and genotype. The
phenotypic vector Yi for each offspring is a random sample from a
multivariate normal distribution, that is, YiBN([a1xi,y,a5xi],V), in
which al is the additive effect for the lth phenotype, xi is the individual
genotype, and V is the (5�5) variance matrix. We measure the
strength of the additive genetic effect on a phenotypic trait by the
heritability h2l,

22 which is the proportion of phenotypic variation
explained by the genetic variation – that is, h2l¼Var(alXi)/Var(Yil).

22

This expression for h2l can be solved for al,
16 which is a measure of the

genetic effect size.
We evaluate the power of the proposed testing strategy with other

analysis approaches, including testing five phenotypes at five SNPs
separately using the FBAT statistic (denoted as a single-SNP/single-
phenotype test or SSSP), testing five phenotypes separately with a five-
SNP haplotype using a family-based haplotype test (denoted as hap),
testing five phenotypes at each SNP separately using the FAT-PC

methodology (denoted as FBAT-PC), using MFBAT on each SNP but
combining all five phenotypes (denoted as MFBAT-1S), testing all five
SNPs with each phenotype individually using the MFBAT approach
(denoted as MFBAT-1P), and testing all five SNPs and five phenotypes
simultaneously using the MFBAT statistic (denoted as MFBAT). All
multiple comparison corrections were made using the Bonferroni
procedure with overall a¼0.05. The R2 measures the degree of linkage
disequilibrium between two SNPs, in which an R2 of 0 indicates that
there is no linkage disequilibrium between two SNPs and an R2 of 1
indicates perfect linkage disequilibrium between two SNPs. When
simulating the SNPs with an R2 of 0.7, we used the actual structure of
the SNPs in the ARG1 gene that is used in the data application. These
SNPs have the following haplotypic distributions:

Haplotype AATAT¼0.534
Haplotype TGATT¼0.303
Haplotype TATAT¼0.108
Haplotype TGATC¼0.028
Haplotype AGATT¼0.019
Haplotype TGAAT¼0.008

We assumed that the disease haplotype had frequencies of 0.10
(haplotype TATAT), 0.20 (we changed haplotype TGATT to have
this frequency), and 0.30 (haplotype TGATT). An additive mode of
inheritance was assumed in the simulations. The reported power
estimates are based on 1000 replicates. The results of the simulations
are shown in Table 1. Similarly, when simulating the haplotypes with
an R2 of 0.2, we used the following haplotypes:

Haplotype AACAA¼0.367
Haplotype TACAA¼0.129
Haplotype TGTAA¼0.100
Haplotype AGCGT¼0.012
Haplotype AGTAA¼0.066
Haplotype AGCAA¼0.039
Haplotype TGTAT¼0.038
Haplotype AATAA¼0.029
Haplotype AACGT¼0.026
Haplotype TGCGT¼0.092

Because we simulate the data using a five-SNP haplotype, presumably
the statistical tests using all five SNPs would have the most power. In
the simulations, we use all five SNPs together (MFBAT, MFBAT-1P,
haplotype) and scenarios in which we only use one SNP at a time
(MFBAT-1S, FBAT-PC). Because the simulations presented in the
paper analyze the power using all five SNPs individually and together,
we believe that we have captured the power that MFBAT approach
has to detect the DSL in the two extreme situations, one in which
what is being tested is exactly the DSL (ie, when all five markers
are used simultaneously) and one in which we are testing only a
part of the true DSL. The results of the simulations are shown
in Table 1.
In all simulation scenarios, MFBAT or MFBAT-1S had the highest

power estimates of the approaches that were used, and in many cases
these approaches substantially outperformed both the haplotype and
SSSP approaches. As MFBAT-1S and FBAT-PC are methodologically
very similar, it is not surprising that these two approaches have
comparable power estimate in all of the tested scenarios. When the
R2 between the SNPs is 0.20, MFBAT is consistently the highest
powered of the various testing strategies regardless of the haplotype
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frequency or the phenotypic correlation. In this scenario, MFBAT has
between two and three times the power of the haplotype approach and
over 10 times the power of SSSP. In fact, when the phenotypic
correlation is 0.8 and R2 is 0.20, MFBAT is nine times as powerful
as the haplotypic approach and over 60 times as powerful as SSSP.
When the R2 between the SNPs is 0.70 and the phenotypic correlation
is moderate (0.4) or low (0.20) with a minor allele frequency 40.2,
then the power of FBAT-PC, MFBAT-IS, and MFBAT do not deviate
notably from each other. The power of any of these three approaches is
between 2 and 10 times higher than the overall haplotype test and SSSP.
When R2 is high (0.7) and the phenotypic correlation is high (0.8), then
MFBAT-1S and FBAT-PC substantially outperform the other
approaches, with three times the power of MFBAT and approximately
30 times the power of the haplotypic approach or SSSP. In virtually all of
the simulations, SSSP has the lowest power, which is not surprising
because there are many comparisons that need to be adjusted for and the
correlation between tests is not accounted for in any way. When the
heritability is increased from 1 to 5%, the overall power increases, but
the relative relationships among the statistical tests remains constant. In
addition, simulations using an R2 of 0.5 show results in between 0.2 and
0.7 (data not shown).
We generated simulations under the null hypothesis of no genetic

effect and calculated the empirical type I error rates for the MFBAT
under three scenarios: (1) single phenotype and five SNPs, (2) five
phenotypes and single SNP, and (3) five phenotypes and five SNPs.
Simulations of 10 000 replicates were performed at minor allele

frequencies of 10 and 30% and the a was set at 5.0%. These results
were compared with FBAT-PC, in which accurate type I error rates
has been established many times. In all cases, the type I error rate does
not vary by more then 0.2% above or below 5.0%. This small
deviation suggests that the different MFBAT scenarios do not vary
from the selected alpha level in any meaningful or systematic way.
Therefore, we conclude that the type I error is being maintained
appropriately.

Data analysis: an asthma study (CAMP)
We applied MFBAT to a collection of parent/child trios in the CAMP
Genetics Ancillary Study. The CAMP study randomized asthmatic
children to three different asthma treatments.21 Blood samples for
DNA were collected from 696 complete parent/child trios from 640
nuclear families in the CAMP Ancillary Genetics Study. Genotyping
was performed on five polymorphic loci located in the ARG1 gene.23

Previously, an association with the ARG1 gene and bronchodilator
response was identified and replicated in three independent popula-
tions.23 Therefore, we used this gene along with five phenotypes,
including bronchodilator response and four measures of pulmonary
function. The related phenotypes were pre- and post-bronchodilator
measures of forced expiratory volume in one second (FEV1) and
forced vital capacity (FVC). FEV1 is the amount of air that can be
forcibly blown out of the lung in 1 s. FVC is the total amount of air
that can forcibly be blown out of the lung after full inspiration.
Therefore, the following phenotypes were used in the analysis:

Table 1 Power simulations of the MFBAT methodology compared with the standard approaches using 1000 trios

Heritability Average R2 Phenotypic correlation Haplotype frequency FBAT-PC MFBAT-1P MFBAT-1S MFBAT Haplotype SSSP

0.02 0.70 0.2 0.1 0.02 0.02 0.02 0.07 0.03 0.003

0.2 0.11 0.06 0.11 0.11 0.02 0.02

0.3 0.11 0.06 0.11 0.14 0.02 0.02

0.4 0.1 0.02 0.02 0.02 0.09 0.03 0.003

0.2 0.14 0.06 0.15 0.14 0.02 0.02

0.3 0.15 0.06 0.16 0.14 0.02 0.02

0.8 0.1 0.03 0.02 0.03 0.10 0.03 0.003

0.2 0.59 0.06 0.59 0.16 0.02 0.02

0.3 0.59 0.06 0.59 0.17 0.02 0.02

0.2 0.2 0.1 0.02 0.03 0.02 0.10 0.03 0.004

0.2 0.05 0.04 0.05 0.14 0.06 0.01

0.3 0.05 0.04 0.05 0.14 0.05 0.01

0.4 0.1 0.03 0.03 0.04 0.14 0.03 0.006

0.2 0.05 0.03 0.05 0.17 0.06 0.007

0.3 0.08 0.04 0.08 0.18 0.05 0.01

0.8 0.1 0.13 0.02 0.12 0.44 0.03 0.005

0.2 0.24 0.03 0.24 0.64 0.07 0.008

0.3 0.31 0.04 0.31 0.64 0.05 0.01

0.05 0.70 0.2 0.1 0.06 0.08 0.06 0.25 0.18 0.009

0.2 0.50 0.15 0.51 0.29 0.17 0.09

0.3 0.50 0.15 0.51 0.30 0.17 0.09

0.4 0.1 0.08 0.09 0.08 0.22 0.18 0.01

0.2 0.60 0.16 0.60 0.30 0.17 0.09

0.3 0.78 0.20 0.78 0.36 0.17 0.14

0.8 0.1 0.29 0.08 0.29 0.33 0.18 0.01

0.2 0.81 0.15 0.82 0.34 0.17 0.09

0.3 0.80 0.20 0.80 0.38 0.17 0.14

Estimated power levels to detect the causal haplotype using 1000 trios and five phenotypes and five SNPs, assuming complete linkage disequilibrium among markers and an additive mode of
inheritance. The significance level is set to 5%. These simulations incorporate the Bonferroni correction when multiple testing has occurred.
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measurements of (1) bronchodilator response, (2) pre-bronchodilator
response to FEV1, (3) post-bronchodilator response to FEV1, (4)
pre-bronchodilator response to FVC, and (4) post-bronchodilator
response to FVC.
FEV1 is known to be an important asthma phenotype that also

depends on the age, height, weight, and sex of the individual. It is
standard practice to adjust the FEV1 measurements for these covari-
ates before analyzing them. Therefore, using the conditional mean

model approach,16 we regressed the FEV1 and FVC measurements on
the recorded values for age, height, weight, and sex and used the
residuals in MFBAT.
Table 2 lists the results from the various analyses that were used

in the power simulations sections. We list the statistical test, the
SNPs analyzed, the phenotypes used, the observed P-values, and the
significance level. The column labeled significance level refers to
the significance level (ie, alpha) that is necessary when accounting
for the multiple testing. When there is one statistical test, then the
P-value must be o0.05 to be significant whereas when there are five
statistical tests, then the P-value must be o0.01 to be significant.
All five SNPs in the ARG1 gene were also included in the analysis.

The data were analyzed in six ways: (1) using MFBAT with all
phenotypes and SNPs, (2) using MFBAT with all phenotypes and
each SNP individually, (3) using MFBAT with all SNPs and each
phenotype individually, (4) using the FBAT-PC association test for
each SNP individually, (5) using a haplotype test for each phenotype
individually, and finally (6) analyzing each SNP/phenotype combina-
tion individually. The results of these findings are summarized in
Table 2. The minor allele frequency of the SNPs in this analysis ranged
between 0.46 and 0.03, whereas the average phenotypic correlation was
0.38 and the average R2 was in between 0.2 and 0.7. In this example,
significant associations are identified with FBAT-PC, MFBAT-1S, and
MFBAT; however, the association findings for FBAT-PC and MFBAT-
1S are not nearly as striking at low P-value observed using MFBAT
(P-value¼9.53�10�6).
From the data analysis we see that the MFBAT analysis, using all

phenotypes and all SNPs simultaneously, has the strongest genetic
association with a P-value of 9.5�10�6. When we analyzed the
association P-values for individual SNPs and phenotypes, there is no
specific phenotype/SNP combination that seems to be driving the
effect. When analyzing the FBAT-PC and MFBAT-IS, it seems that
rs2781659 and rs2781663 are driving the association. It also seems as if
the pre- and post-FVC measures have the strongest association. When
examined individually, however, the association is not as strong as
when all SNPs and phenotypes are examined together. This is likely
because the combinations of phenotypes are more informative than
any single phenotype that is evaluated individually.
From the simulations described in Table 1, MFBAT would have the

greatest power to detect an association, followed by MFBAT-1S and
FBAT-PC. The haplotype and SSSP analyses would have the lowest
power to detect an effect. In this analysis, MFBATresulted in an overall
P-value on the order of 10�6, which clearly shows a very strong
association with the asthma-related phenotypes. Two SNPs were
significantly associated with the phenotypes for both MFBAT-1S
and FBAT-PC. As was observed in the simulations, these two test
statistics have similar results and their association P-values track
together closely. Both the haplotype analysis and SSSP had no
significant associations after adjusting for multiple comparisons.
This analysis illustrates that the MFBAT approach, which uses all of
the information simultaneously, stands out as a possible association
P-value that one would carry forward for further analysis.

DISCUSSION

In this manuscript we propose a new testing methodology in which
a test statistic, MFBAT, is generated by using information across
multiple SNPs and phenotypes. This approach was developed to
help reduce the overall number of statistical tests, a problem that
has prohibited researchers from establishing genome-wide significance
in many studies, most notably in genome-wide association analyses.
The simulation studies suggest that MFBAT or MFBAT-1S have the

Table 2 Analysis of ARG1 and five asthmatic phenotypes

Test statistic SNP Phenotype P-value Significance

level

MFBAT All SNPs All phenotypes 9.53�10�6 0.05

MFBAT-1P All SNPs Bronchodilator response 0.95 0.01

All SNPs Post-FVC 0.244

All SNPs Post-FEV1 0.718

All SNPs Pre-FVC 0.54

All SNPs Pre-FEV1 0.623

MFBAT-1S RS2749935 All phenotypes 0.03 0.01

RS2781659 All phenotypes 0.0059

RS2781663 All phenotypes 0.0036

RS2781665 All phenotypes 0.022

RS3756780 All phenotypes 0.284

FBAT-PC RS2749935 All phenotypes 0.036 0.01

RS2781659 All phenotypes 0.007

RS2781663 All phenotypes 0.005

RS2781665 All phenotypes 0.017

RS3756780 All phenotypes 0.444

Haplotype All SNPs Bronchodilator response 0.404 0.01

All SNPs Post-FVC 0.021

All SNPs Post-FEV1 0.117

All SNPs Pre-FVC 0.02

All SNPs Pre-FEV1 0.391

SSSP RS2749935 Bronchodilator response 0.714 0.002

RS2781659 Bronchodilator response 0.895

RS2781663 Bronchodilator response 0.599

RS2781665 Bronchodilator response 0.905

RS3756780 Bronchodilator response 0.541

RS2749935 Post-FEV1 0.76

RS2781659 Post-FEV1 0.695

RS2781663 Post-FEV1 0.868

RS2781665 Post-FEV1 0.765

RS3756780 Post-FEV1 0.932

RS2749935 Post-FVC 0.639

RS2781659 Post-FVC 0.296

RS2781663 Post-FVC 0.547

RS2781665 Post-FVC 0.405

RS3756780 Post-FVC 0.588

RS2749935 Pre-FEV1 0.76

RS2781659 Pre-FEV1 0.588

RS2781663 Pre-FEV1 0.64

RS2781665 Pre-FEV1 0.709

RS3756780 Pre-FEV1 0.738

RS2749935 Pre-FVC 0.813

RS2781659 Pre-FVC 0.04

RS2781663 Pre-FVC 0.089

RS2781665 Pre-FVC 0.072

RS3756780 Pre-FVC 0.458

This table provides the association results for the five SNPs in ARG1 and five pulmonary
function phenotypes. This example is used for comparison.
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most power when compared with standard methods, particularly
when the correlation among SNPs is low and the phenotypic correla-
tion is high. One advantage of the MFBAT approach is that it can
easily incorporate multiple phenotypes with varying characteristics.
With a group of affected parent–offspring trios, the clinical traits of
interest are often both quantitative and qualitative in nature. There-
fore, having a statistical test that can incorporate any combination of
qualitative and quantitative traits offers a distinct advantage over other
statistical tests that can only incorporate either quantitative or
qualitative measures. This is a great advantage over FBAT-PC, which
has similar power estimates to MFBAT-1S, but is restricted in using
quantitative phenotypes with distributions similar to each other. To
date, we know of no other statistical test for family data that can
incorporate this type of phenotypic data in such an efficient manner.
It is important to point out that when using the MFBAT test, we

will be identifying a genetic association among a group of genetic
markers and phenotypes. That is, we are not testing any single
phenotype or single SNP directly. Once a significant association is
found with multiple SNPs and phenotypes, the approach by which to
proceed may be divided between two differing philosophies. The first
philosophy would seek to identify the single-SNP/phenotype combi-
nation that is largely responsible for the effect. In this case, one may
deem it imperative to determine what specific SNP/phenotype com-
bination is driving the effect. There are several ways to determine this.
First, one can analyze the weightings that are applied for each
phenotype/genotype combination in generating the overall test stati-
stic. Second, once a significant association is determined, individual
tests can be performed to determine what phenotypes and genotypes
are driving the effect, similar to what is performed for analysis of
variance tests in classical statistics. The second philosophy regarding a
significant association while using multiple SNPs and phenotypes
argues something completely different. This perspective would suggest
that the optimal phenotype is not any single one of the phenotypes
that were used, but that a combination of the selected phenotypes best
describes the clinical condition that is being analyzed. Similarly, this
philosophy would suggest that it is not likely to be any single SNP that
is driving the association, but that several of SNPs are in linkage
disequilibrium with an unknown function genetic variant responsible
for the observed effect. Therefore, if one’s beliefs fall into this
philosophy, then the next step would be to perform subsequent
statistical and genetic testing on the entire region in which the
association effect was identified.
In conclusion, we propose a new statistical test, MFBAT, that can be

used to test multiple phenotypes and genetic markers simultaneously,
thereby reducing the multiple testing problem. This test has good
statistical power, is easy to use, flexible in nature, and is incorporated
into the PBAT program.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS
We thank all subjects for their ongoing participation in this study. We

acknowledge the CAMP investigators and research team, supported by NHLBI,

for collection of CAMP Genetic Ancillary Study data. All work on data collected

from the CAMP Genetic Ancillary Study was conducted at the Channing

Laboratory of the Brigham and Women’s Hospital under appropriate CAMP

policies and human subject’s protections. The CAMP Genetics Ancillary Study

is supported by U01 HL075419, U01 HL65899, P01 HL083069, R01 HL

086601, and T32 HL07427 from the National Heart, Lung and Blood Institute

and the National Institute of Health. We would also like to acknowledge

the support from the following grants: R01MH081862, P01 HL083069, U01

HL065899.

1 Bonferroni C: Teoria statistica delle classi e calcolo delle probability Volime in Onore di

Ricardo dlla Volta. Universita di Firenza, 1937.
2 Holm S: A simple sequentially rejective multiple test procedure. Scand J Statist

1979; 6: 65–70.
3 Hochberg Y: A sharper Bonferroni procedure for multiple tests of significance.

Biometrika 1988; 75: 800–802.
4 Horvath S, Xu X, Lake SL, Silverman EK, Weiss ST, Laird NM: Family-based tests for

associating haplotypes with general phenotype data: application to asthma genetics.

Genet Epidemiol 2004; 26: 61–69.
5 Clayton D, Chapman J, Cooper J: Use of unphased multilocus genotype data in

indirect association studies. Genet Epidemiol 2004; 27: 415–428.
6 Chapman JM, Cooper JD, Todd JA, Clayton DG: Detecting disease associations due to

linkage disequilibrium using haplotype tags: a class of tests and the determinants of

statistical power. Hum Hered 2003; 56: 18–31.
7 Rakovski CS, Xu X, Lazarus R, Blacker D, Laird NM: A new multimarker test for family-

based association studies. Genet Epidemiol 2007; 31: 9–17.
8 Lange C, van Steen K, Andrew T et al: A family-based association test for repeatedly

measured quantitative traits adjusting for unknown environmental and/or polygenic

effects. Stat Appl Genet Mol Biol 2004; 3: 1–27.
9 Lange C, DeMeo D, Silverman EK, Weiss ST, Laird NM: PBAT: tools for family-based

association studies. Am J Hum Genet 2004; 74: 367–369.
10 Van Steen K, McQueen MB, Herbert A et al: Genomic screening and replication using

the same data set in family-based association testing. Nat Genet 2005; 37:

683–691.
11 Van Steen K, Lange C: PBAT: a comprehensive software package for genome-wide

association analysis of complex family-based studies. Hum Genomics 2005; 2:

67–69.
12 Rabinowitz D, Laird N: A unified approach to adjusting association tests for population

admixture with arbitrary pedigree structure and arbitrary missing marker information.

Hum Hered 2000; 50: 211–223.
13 Spielman RS, McGinnis RE, Ewens WJ: Transmission test for linkage disequilibrium:

the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum

Genet 1993; 52: 506–516.
14 O’Brien PC: Procedures for comparing samples with multiple endpoints. Biometrics

1984; 40: 1079–1087.
15 Wei L, Johnson W: Combining dependent tests with incomplete measurements.

Biometrika 1985; 72: 359–364.
16 Lange C, Laird NM: On a general class of conditional tests for family-based associa-

tion studies in genetics: the asymptotic distribution, the conditional power, and

optimality considerations. Genet Epidemiol 2002; 23: 165–180.
17 Jiang H, Harrington D, Raby BA et al: Family-based association test for time-to-onset

data with time-dependent differences between the hazard functions. Genet Epidemiol

2006; 30: 124–132.
18 Murphy A, Weiss ST, Lange C: Screening and replication using the same data set:

testing strategies for family-based studies in which all probands are affected. PLoS

Genet 2008; 4: e1000197.
19 Lange C, Silverman EK, Xu X, Weiss ST, Laird NM: A multivariate family-based

association test using generalized estimating equations: FBAT-GEE. Biostatistics

2003; 4: 195–206.
20 Schaid DJ, Sinnwell JP, Thibodeau SN: Robust multipoint identical-by-descent

mapping for affected relative pairs. Am J Hum Genet 2005; 76: 128–138.
21 Long-term effects of budesonide or nedocromil in children with asthma: The Child-

hood Asthma Management Program Research Group. N Engl J Med 2000; 343:

1054–1063.
22 Falconer DS, Mackay TFC: Introduction to Quantitative Genetics. New York: Longman,

1997.
23 Litonjua AA, Lasky-Su J, Schneiter K et al: ARG1 is a novel bronchodilator response

gene: screening and replication in four asthma cohorts. Am J Respir Crit Care Med

2008; 178: 688–694.

MFBAT with multiple SNPs and phenotypes
J Lasky-Su et al

725

European Journal of Human Genetics


	An omnibus test for family-based association studies with multiple SNPs and multiple phenotypes
	Introduction
	Methods
	Multi-marker/multi-phenotype: global expansion of FBAT

	Results
	Data analysis: an asthma study (CAMP)

	Discussion
	Acknowledgements
	References




