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Evaluation of the discriminative accuracy of genomic
profiling in the prediction of common complex diseases

Ramal Moonesinghe*,1, Tiebin Liu2 and Muin J Khoury2

Genetic testing for susceptibility to common diseases based on a combination of genetic markers may be needed because the

effect size associated with each genetic marker is small. Whether or not a genome profile based on a combination of markers

could yield a useful test can be evaluated by assessing the discriminative accuracy. The authors present a simple method

to calculate the clinical discriminative accuracy of a genomic profile when the relative risk and genotype frequency of each

genotype are known. In addition, the clinical discriminative accuracy of a genetic test is presented for given values of the

heritability and prevalence of the disease and for the population-attributable fraction of the combined genetic markers.

For given values of relative risk and genotype frequency, the discriminative accuracy increases with increasing heritability

but declines with increasing prevalence of the disease. For a given value of population-attributable fraction, the discriminative

accuracy increases with increasing relative risks, but declines with increasing genotype frequency. On the basis of population-

attributable fraction and estimates of heritability of disease, the number of risk genotypes required to have a reasonable

clinical discriminative accuracy is much higher than the genome profiles available at present.
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INTRODUCTION

Testing for susceptibility to common diseases may provide a unique
opportunity for disease prevention. Nevertheless, because of the
complex nature of common diseases with multiple genetic and
environmental risk factors, genetic testing for these diseases may
require bundling multiple genetic markers because the risk associated
with each genetic marker is very small. Many authors have discussed
the discriminative accuracy of combining several risk factors as a
screening test.1–3 For complex diseases, most of the genetic asso-
ciations have odds ratios ranging from 1.1 to 1.5, and any single
polymorphism accounts for only 1–8% of the overall disease risk
in the population.4 The concept of using genetic variants at multiple
loci simultaneously is known as genomic profiling.5

A first evaluation on whether a combination of genetic risk factors
can potentially yield a useful predictive test is indicated by the
discriminative accuracy. The discriminative accuracy is generally
indicated by the area under the receiver-operating characteristic
(ROC) curve, which originally developed to evaluate the performance
of a single test is a method of describing the intrinsic accuracy of a
test apart from the decision thresholds. An ROC curve is a plot of
a test’s sensitivity vs its false-positive rate or (1-specificity) for every
possible cutoff value of the continuous test result. ROC curves and
their characteristics have been described in many papers.6–8

Janssens et al.9 investigated the impact of the frequencies of
individual risk genotypes on the clinical validity of genomic profiling.
They evaluated the clinical discriminative accuracy (area under the
ROC curve, AUC) and disease risks for the simultaneous testing of
40 independent susceptibility genetic variants. Their results are based

on varying the genotype frequency and odds ratio and evaluating the
corresponding AUC using separate simulation scenarios. In this paper,
we provide a theoretical framework for genomic profiling and derive
equations for ROC curves and AUC, so that any given scenario can
be studied without conducting simulation studies. We start with
formulas for identical genetic markers and extend our method to
evaluate clinical discriminative accuracy for testing for multiple
genetic variants with different relative risks and genotype frequency.
We compare our results with the results obtained by simulation and
show that almost identical. We calculate the discriminative accuracy of
predictive testing for multiple genetic variants using an example
of five SNPs associated with prostate cancer. We chose this example
because a test had been made available based on these five SNPs.
In addition, we also present formulas to calculate the AUC based on
the heritability of diseases and the population-attributable fractions
(PAFs) of the genetic variants in the genomic profile.

METHODS
Suppose that the population at risk is exposed to a level Xi of the ith genetic

variant (Xi can assume only 1 or 0 depending on the presence or absence of the

ith genetic variant).

Let G1, G2,y,Gk and R1, R2,y, Rk be the prevalence and the relative risks

for the k-genetic variants and are assumed to be known. Assuming that the

exposure variables, Xi, corresponding to the k-genetic variants are independent,

the joint distribution of the k exposure variables is given by

f ðX1; X2; . . . ; XkÞ ¼GX1
1 ð1 � G1Þð1�X1Þ . . .GXk

k ð1 � G
Xk
k Þ

¼
Yk

i¼1
GXi
i ð1 � GiÞð1�XiÞ
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If U1, U2,y,Uk, denote the exposure variables (Ui can assume only 0 or 1)

among cases for the k-genetic variants, the joint distribution of U1, U2,y,Uk,

under the assumption of a multiplicative risk model is given by10

gðU1; U2; . . . ; UkÞ ¼
Yk
i¼1

ðG�
i Þ

Ui ð1 � G�
i Þ

ð1�UiÞ;

where G�
i ¼

RiGi
RiGi+ð1�GiÞ :

Calculation of AUC for k identical risk genotypes
To study the effect of genotype frequencies and relative risks, we first assumed

that all genetic markers had the same effect size (Ri¼R, I¼1, 2,y , k) and the

same genotype frequency (Gi¼G, i¼1, 2,y , k). We also assumed that Xi’s are

exposure variables for controls.10

Let X¼
Pk

i¼1Xi and U¼
Pk

i¼1Ui. X and U represent the number of risk genotypes

for controls and cases, respectively. The distribution of X for controls has a

binomial distribution with parameter G and the distribution of U for cases has

a binomial distribution with parameter G*. For large k values, the distributions

of X and U can be approximated by normal distributions. Suppose the

cumulative distributions of X and U are given by F and H, respectively. F is

a normal distribution with mean kG and variance kG (1–G) and H is a normal

distribution with mean kG* and variance kG*(1–G*). The ROC curve can then

be expressed as ROCðtÞ ¼ �Hð�F�1ðtÞÞ for 0 oto1, where F̄ and H̄ are the

survival functions of F and H, respectively.7 The survival function F̄ for controls

is given by �FðtÞ ¼1 � F t�kGffiffiffiffiffiffiffiffiffiffiffiffiffi
kGð1�GÞ

p
� �

and the survival function �H for cases is given by

�HðtÞ ¼1 � F t�kG�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kG�ð1�G�Þ

p
� �

, where F is the cumulative distribution function of the

normal distribution. The ROC curve can then be expressed as

ROCðtÞ ¼ �Hð�F�1ðtÞÞ ¼ 1 � F
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kGð1�GÞ

p
F�1ð1�tÞ+kðG�G�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�G�ð1�G�Þ

p
� �

, for 0 oto1, and the AUC is given

by F kðG��GÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kG�ð1�G�Þ+kGð1�GÞ

p
� �

.

Heritability and PAF
The analytical expressions given above are valid for any number of markers (k).

However, it is possible to investigate the relationship between the relative risk of

genetic markers and the number of markers that contribute to risk of disease

based on known disease prevalence and heritability or known PAF. Let p be the

disease prevalence and h2 the heritability of the disease, the number of markers

that contribute to risk of disease is then given by11 (Appendix A):

k ¼½logfh2ð1 � pÞ+pg � log p�=½logfR2G+ð1 � GÞg
� 2 logfRG+ð1 � GÞg�:

Similarly, the number of markers that contribute to risk of disease when PAF

is known is given by12:

k ¼ � log ð1 � PAFÞ
log ½GR+ð1 � GÞ�

Calculation of AUC for k risk genotypes with different relative
risks and genotype frequency
Next, we consider the scenario when genotype frequency and effect sizes are

different for different genetic variants. Let X be a vector of values of k different

markers obtained from a randomly picked patient in the controls and let U be a

similar vector of a randomly picked patient in the cases. Consider the linear

combinations, V ¼
Pk

i¼1aiXi and W ¼
Pk

i¼1aiUi. Su and Liu13 showed that

Fisher’s linear discriminant function (LDF) provides a linear combination of

markers to maximize the sensitivity over the entire specificity range uniformly

under the multivariate normal distribution model with proportional covariance

matrices. They also provided a solution of the best linear combination of

markers in the sense that the AUC of this combination is maximized among all

possible linear combinations. The LDF is frequently applied to binary vari-

ables.14–16 Almost all the results suggest that LDF can be recommended for

binary variables because of its expected stability as the number of variables

increases. Furthermore, as shown in many studies that have been conducted,

the losses incurred by LDF under nonoptimal conditions compared with other

procedures are small enough not to be of any practical importance.17 Applying

the results of Su and Liu13 to our binary variables, the optimal linear

combination is given by the coefficients:

ai ¼
G�
i � Gi

G�
i ð1 � G�

i Þ+Gið1 � GiÞ
;

i¼1, 2,y , k, and the AUC of the optimal combination is given by

A ¼ F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
i¼1

ðG�
i � GiÞ2

G�
i ð1 � G�

i Þ+Gið1 � GiÞ

vuut
0
@

1
A:

Note that when the genotype frequency and relative risks are identical, this

expression is identical to the AUC derived for this situation previously.

RESULTS

Figure 1 gives the AUC when relative risks are 1.1, 1.3 and 1.5, and
genotype frequencies are 0.1, 0.2 and 0.3, for 40 and 80 identical
markers. As expected, the lowest AUC, 0.55, corresponds to the lowest
relative risk, 1.1, and lowest genotype frequency, 0.1, for 40 markers.
When relative risk is 1.1 for 40 markers, the increase in AUC obtained
by increasing the genotype frequency from 0.1 to 0.3 is only 0.03 or
5%; when relative risk is 1.5, the increase in AUC is 0.09 or 12.5%.
Similarly, when genotype frequency is 0.1, for 40 markers, the increase
in AUC obtained by increasing the relative risk from 1.1 to 1.5 is 0.17
or 31%; when genotype frequency is 0.3, the increase in AUC is 0.23 or
40%. Overall, the AUC increases when the number of markers are
doubled to 80 with the smallest increase corresponding to the lowest
values of relative risk and genotype frequency and the largest increase
corresponding to the highest values of relative risk and genotype
frequency. Genotypes with low relative risk (around 1.1) and genotype
frequency (around 0.1) require about 1000 markers in the genomic
profile to have a reasonable discriminative power (AUC around 0.74).

When the relative risk is 1.1, genotype frequency, 0.1, disease
prevalence, 5%, and heritability, 5%, the number of markers that
contribute to risk of disease is 758 (AUC¼0.71); if we increase
heritability to 10%, the number of markers that contribute to risk
of disease is 1208 (AUC¼0.76). With heritability at 5%, when the
disease prevalence is increased to 10%, the number of markers decline
to 422 (AUC¼0.66). When heritability and relative risk are also
increased to 10% and 1.5, respectively, the number of markers that
contribute to disease decline to 32 (AUC¼0.70); when genotype
frequency is increased to 0.3, the number of markers decline further
to 17 (AUC¼0.71). Interestingly, AUC as a function of heritability and
disease prevalence remains approximately same for the ranges of
relative risks (1.1–1.5) and genotype frequencies (0.1–0.3) considered.
For example, when heritability is 5% and disease prevalence is 5%, the
AUC remains around 0.71; when disease prevalence is increased to
10%, AUC declines to 0.66. When heritability is 10% and disease
prevalence is 5%, the AUC is 0.76; increasing disease prevalence to
10% results in a decline of AUC to 0.71.

Even when the PAF is 50%, the AUC remains less than 0.64 for the
ranges of genotype frequency and relative risks considered. When PAF
is 50%, genotype frequency 0.1 and relative risk 1.1, the number of
markers that contribute to risk of disease is 70 (AUC¼0.57). When we
increase the relative risk to 1.5, the number of markers decline to 14
(AUC¼0.64). This is the maximum AUC obtained when PAF is 50%.
Increasing the genotype frequency to 0.3 results in the number of
markers declining further to 5 (AUC¼0.62). These results show that
for a given value of PAF, the number of markers that contribute to risk
of disease declines with increasing genotype frequency and results in
lower AUC; however, the number of markers that contribute to risk of
disease also declines with increasing relative risks but leads to higher
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AUC. When the relative risk is 1.5, the PAF has to be at least 84% to
have a reasonable discriminative power (AUC around 0.70) for the
range of genotype frequency considered. When the relative risk is 1.1
and genotype frequency 0.3, even with a PAF of 99% the AUC is only
0.65.

When genotype frequency and relative risks differ for different
markers, we used the formula derived for the best linear combination
of markers to calculate the AUC. We also simulated one million
observations for a case control study for specified genotype frequen-
cies for cases and controls for multiple markers assuming a disease
prevalence of 10%. The logistic procedure in SAS (Cary, NC, USA)
was used to calculate the concordance statistic for the simulated data.
Tables 1a–c give the AUC calculated using the best linear combination
of markers (AUCB) and the AUC calculated from the logistic
procedure (AUCS) for different values of relative risks and different
genotype frequencies for two, three and five markers, respectively. For
two or three markers, AUCB is always greater than AUCS. This is to be
expected because the AUCS is based on the empirical ROC curve and
the AUCB is based on the binormal ROC curve. The maximum
difference between AUCS and AUCB was less than 0.024 for all the
ranges of genotype frequencies (0.1–0.4) and relative risks (1.1–2.0)
considered. For five markers, there is almost no difference between
AUCB and AUCS. These tables show again that AUC increases with
increasing genotype frequency, increasing relative risks and increasing
number of markers in the genomic profile.

Example
Zheng et al.18 studied the genetic predisposition to prostate cancer by
examining the association between prostate cancer and five SNPs that
map to the three 8q24 loci, to 17q12 and to 17q24.3. Individually, the

risk ratios associated with these loci ranged from 1.22 to 1.53. Table 2
gives the odds ratios adjusted for age and geographic region, and
genotype frequency of the five SNPs for prostate cancer susceptibility
(AUC¼0.58).

Let the genotype frequencies for the five SNPs are given by
G1¼0.30, G2¼0.25, G3¼0.07, G4¼0.77 and G5¼0.26, and the relative
risks by R1¼1.38, R2¼1.28, R3 ¼1.53, R4 ¼1.37 and R5¼1.22. The
AUC calculated using the formula (AUCB) is 0.58. The joint PAF
using the formula given in Zheng et al.18 for the five SNPs is 0.4045.
When we consider five identical markers with average relative risk 1.36
and average genotype frequency 0.33, and PAF 0.40, the AUC
calculated using the formula for PAF is 0.59.

DISCUSSION

We provide a direct method to evaluate the clinical discriminative
accuracy of a set of polymorphisms in a genomic profile when
genotype frequency and relative risks of each polymorphism are
known. The comparison of AUCs obtained from our method and
the simulation using logistic regression show that our method
provides almost identical AUC. There have been some concerns of
using the Fisher’s LDF for binary data. For example, for two genetic
variants, the Fisher’s LDF will behave poorly for those situations where
either both genetic variants are present or none of them are present
occur more frequently in one population (cases or controls) whereas
only one of the two genetic variants is present occur more frequently
in the other population.19 These situations never occurred in our
simulation study for the ranges of genotype frequency and relative
risks considered in this paper.

Our results show that both genotype frequencies and relative risks
are equally important factors for predicting common diseases.
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Figure 1 Area under the ROC curve (AUC) for genotype frequency (G) equal to 0.1, 0.2 and 0.3, and relative risks (R) equal to 1.1, 1.3 and 1.5, for 40 markers
(AUC_1) and 80 markers (AUC_2).
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The discriminative accuracy increases with increasing genotype
frequency, increasing relative risk and increasing number of risk
genotypes. If lower bounds and upper bounds of relative risks and
genotype frequency are available, one can use the formula for AUC
given in this paper to obtain the empirical distribution of AUC by
considering a range of values of genotype frequency and relative risks
between these two bounds.

For a given value of PAF, the discriminative accuracy increases with
increasing relative risks, but declines with increasing genotype
frequency. The joint PAF for the five SNPs given in the example is
0.40 and the AUC is 0.59. The clinical discriminative accuracy of these
five SNPs in a genomic profile for prostate cancer is very low and the
planned marketing of a genetic test based on this study20 is clearly
premature. Assuming the average relative risk (1.36) and average
genotype frequency (0.33) in this example for each risk genotype,
25 risk genotypes are required to be in the genomic profile
(PAF¼0.94) to have a reasonable clinical discriminative accuracy for
prostate cancer.

For given values of relative risk and genotype frequency, the
discriminative accuracy increases with increasing heritability but
declines with increasing prevalence of the disease. An analysis of
monozygotic and dizygotic twin pairs in Scandinavia concluded that
42% (95% confidence interval (29–50%)) of prostate cancer risk may
be accounted for by heritable factors.21 The prevalence of diagnosed
prostate cancer in US adult population is about 1.6% based on the
estimates from the National Health Interview Survey. Assuming an
average relative risk of 1.36 and a genotype frequency of 0.33, the
clinical discriminative accuracy is 90% for 146 risk genotypes. Because
the true prevalence of prostate cancer is unknown, assuming an upper
bound of 3.2% for the prevalence of prostate cancer, the clinical
discriminative accuracy declines to 87% for 115 risk genotypes.

Our study is limited by the assumption of independence of the
genetic variants, and our inability to model gene–gene interactions.
We also assumed multiplicative risk models. Joint genetic effects on
risk may be neither multiplicative nor additive. Unfortunately, for
statistical modeling, epidemiological analyses have had to deal with
multiplicative or additive models. Multiplicative risk models are
expected to yield higher predictive accuracy than that of additive
models because the joint effect of risks for multiplicative models is
higher than the joint effect of risks for additive models.

If the genetic variants are in linkage disequilibrium, the variance
covariance matrix of the exposure variables will contain nonzero
covariance terms for both cases and controls. Assuming binary
environmental risk factors and the independence of genes and
environmental risk factors in controls, gene–environmental inter-
actions would lead to nonzero covariance terms in the variance
covariance matrix of the exposure variables in cases. It is known
that the LDF does not perform well when binary variables are
correlated. More methodological work is needed in this area to

Table 1b Areas under the ROC curves for the best linear combination

of markers (AUCB) and for simulated data using logistic regression

(AUCS) for three markers

G1 G2 G3 R1 R2 R3 AUCS AUCB

0.1 0.1 0.1 1.1 1.1 1.1 0.511 0.514

0.1 0.1 0.1 1.1 1.5 2.0 0.559 0.576

0.1 0.1 0.1 1.1 2.0 2.0 0.574 0.594

0.1 0.1 0.1 2.0 2.0 2.0 0.596 0.614

0.1 0.1 0.4 1.1 1.1 1.5 0.554 0.558

0.1 0.4 0.1 1.1 1.1 1.5 0.531 0.540

0.1 0.2 0.4 1.1 1.5 2.0 0.605 0.608

0.1 0.2 0.4 2.0 2.0 2.0 0.633 0.643

0.4 0.2 0.1 1.1 1.5 2.0 0.573 0.583

0.4 0.4 0.4 1.1 1.1 1.1 0.521 0.523

0.4 0.4 0.4 1.1 1.1 1.5 0.558 0.560

0.4 0.4 0.4 1.1 1.5 1.5 0.579 0.581

0.4 0.4 0.4 1.5 1.5 1.5 0.593 0.600

0.4 0.4 0.4 2.0 2.0 2.0 0.657 0.665

Table 1c Areas under the ROC curves for the best linear combination

of markers (AUCB) and for simulated data using logistic regression

(AUCS) for five markers

G1 G2 G3 G4 G5 R1 R2 R3 R4 R5 AUCS AUCB

0.1 0.1 0.1 0.1 0.1 1.1 1.1 1.1 1.1 1.1 0.516 0.518

0.1 0.1 0.1 0.1 0.1 1.1 1.2 1.4 1.8 2.0 0.581 0.593

0.2 0.2 0.2 0.2 0.2 1.1 1.2 1.4 1.8 2.0 0.617 0.619

0.1 0.2 0.3 0.3 0.4 1.1 1.2 1.4 1.8 2.0 0.634 0.634

0.2 0.2 0.2 0.3 0.3 1.2 1.2 1.2 1.3 1.3 0.559 0.561

0.2 0.2 0.2 0.3 0.3 1.2 1.2 1.2 1.3 2.0 0.605 0.606

0.3 0.3 0.2 0.2 0.1 1.1 1.2 1.4 1.8 2.0 0.604 0.608

0.2 0.2 0.3 0.3 0.4 1.1 1.2 1.4 1.8 2.0 0.634 0.634

0.2 0.2 0.3 0.4 0.4 1.1 1.2 1.4 1.8 2.0 0.635 0.636

0.3 0.3 0.3 0.3 0.3 1.1 1.2 1.4 1.8 2.0 0.633 0.633

0.4 0.3 0.3 0.2 0.1 1.1 1.2 1.4 1.8 2.0 0.608 0.610

0.2 0.2 0.3 0.3 0.4 1.2 1.2 1.2 1.2 1.2 0.549 0.552

0.4 0.4 0.4 0.4 0.4 1.1 1.2 1.4 1.8 2.0 0.637 0.637

0.4 0.4 0.4 0.4 0.4 2.0 2.0 2.0 2.0 2.0 0.704 0.709

Table 2 Genotype frequency and odds ratios of five SNPs for prostate

cancer susceptibility

SNP

Chromosomal

region

Risk

group

Genotype

frequency (G)

Odds

ratio (R) PAF

rs4430796 17q12 CC/TC vs TT 0.30 1.38 0.1023

rs1859962 17q24.3 GT/TT vs GG 0.25 1.28 0.0654

rs16901979 8q24 (region 2) CC vs AA/CA 0.07 1.53 0.0358

rs6983267 8q24 (region 3) TT vs GT/GG 0.77 1.37 0.2217

rs1447295 8q24 (region 1) CC vs CA/AA 0.26 1.22 0.0541

Table 1a Areas under the ROC curves for the best linear combination

of markers (AUCB) and for simulated data using logistic regression

(AUCS) for two markers

G1 G2 R1 R2 AUCS AUCB

0.1 0.1 1.1 1.1 0.508 0.512

0.1 0.1 1.1 1.5 0.524 0.538

0.1 0.1 1.5 1.5 0.538 0.552

0.1 0.1 2 2 0.571 0.594

0.1 0.4 1.1 2 0.588 0.597

0.1 0.4 2 1.1 0.549 0.568

0.4 0.1 1.1 1.5 0.530 0.539

0.4 0.1 1.5 1.1 0.552 0.557

0.4 0.4 1.1 1.1 0.517 0.519

0.4 0.4 1.5 1.1 0.555 0.558

0.4 0.4 1.5 1.5 0.575 0.580

0.4 0.4 2 2 0.626 0.636
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study the proper discriminant function for the range of genotype
frequency and relative risks considered in this paper.

Although our calculations assume an unrealistic scenario of
identical risk genotypes, we clearly show that to have an improved
risk prediction for any common disease, many more risk genotypes
associated with a disease are required in a genomic profile than the
ones currently available. It is clear that the five SNPs in the example do
not explain the full familial aggregation for prostate cancer supporting
the existence of additional loci for prostate cancer. A study of 160
unique polymorphisms-disease associations included in commercial
genomic profiles found only 29 polymorphisms significantly
associated with the diseases in meta-analyses.22 There were 33 diseases
significantly associated with one or more of these 29 polymorphisms
and the maximum number of polymorphisms significantly associated
with a given disease was only 3. Until a sufficient number of
polymorphisms significantly associated with a disease are found that
would provide a reasonable clinical discriminative accuracy, genomic
profiling is currently not an effective tool for clinical applications.
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APPENDIX A

Let P be the prevalence of disease, h2 the heritability of the disease on
the observed scale, G the genotype frequency, R the relative risk and k
the number of loci.

Let d¼Prob (affected| genotype)¼IRX, where I is the background
risk and X is the number of genotypes. Then,

P ¼ EðdÞ ¼
Xk

X¼0

IRXGXð1 � GÞð1�XÞ ¼ I½RG+ð1 � GÞ�k

VðdÞ ¼ Eðd2Þ � ½EðdÞ�2 ¼I2
Xk
X¼0

IR2XGXð1 � GÞð1�XÞ � I2½RG+ð1 � GÞ�2k

¼I2½R2G+ð1 � GÞ�k � I2½RG+ð1 � GÞ�2k

¼P2½R2G+ð1 � GÞ�k

½RG+ð1 � GÞ�2k
� P2

ðA:1Þ

The variance of disease prevalence due to genetic factors is h2 P(1�P).
Therefore,

h2Pð1 � PÞ ¼ P2½R2G+ð1 � GÞ�k

½RG+ð1 � GÞ�2k
� P2

and

h2ð1 � PÞ+P
P

¼ ½R2G+ð1 � GÞ�k

½RG+ð1 � GÞ�2k

The number of loci k is given by

k ¼ ½log fh2ð1 � pÞ+pg � log p�=½log fR2G+ð1 � GÞg
� 2 log fRG+ð1 � GÞg�
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