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A data-driven weighting scheme for family-based
genome-wide association studies

Huaizhen Qin1, Tao Feng1,2, Shuanglin Zhang1,2 and Qiuying Sha*,1

Recently, Steen et al proposed a novel two-stage approach for family-based genome-wide association studies. In the first stage,

a test based on between-family information is used to rank SNPs according to their P-values or conditional power of the test.

In the second stage, the R most promising SNPs are tested using a family-based association test. We call this two-stage

approach top R method. Ionita-Laza et al proposed an exponential weighting method within a two-stage framework. In the

second stage of this approach, instead of testing top R SNPs, it tests all SNPs and weights the P-values of association test

according to the information of the first stage. However, both of the top R and exponential weighting methods only use the

information from the first stage to rank SNPs. It seems that the two methods do not use information from the first stage

efficiently. Furthermore, it may be unreasonable for the exponential weighting method to use the same weight for all SNPs

within a group when only one or a few SNPs are related with a disease. In this article, we propose a data-driven weighting

scheme within a two-stage framework. In this method, we use the information from the first stage to determine a SNP-specific

weight for each SNP. We use simulation studies to evaluate the performance of our method. The simulation results showed that

our proposed method is consistently more powerful than the top R method and the exponential weighting method, regardless of

the LD structure, population structure, and family structure.
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INTRODUCTION

Family-based genome-wide association studies have identified sus-
ceptibility loci for some complex human diseases.1–3 Currently,
family-based association tests, such as the TDT and its extensions,4–8

are the most commonly used methods to detect disease susceptibility
loci in genome-wide association studies. This kind of method uses the
within-family information, but not the between-family information.
The reason is that the methods using between-family information
may have the problem of population stratification. Recently,
Steen et al1 proposed a two-stage test for family-based genome-
wide association studies. In the first stage, a test based on between-
family information is used to screen SNPs, that is, choose R best
SNPs (SNPs with the smallest P-values). In the second stage,
a family-based test based on within-family information is used
to test the R selected SNPs for association. The two-stage test
is robust to population stratification because the association is
determined by the family-based test in the second stage. Furthermore,
as the statistic used in the first stage is statistically independent of
that in the second stage, the overall significance level of the tests
in the second stage does not need to be adjusted for the first
stage. This two-stage test may be more powerful than family-based
tests.1 Feng et al9 further extended this two-stage approach to
deal with general pedigrees. We call the two-stage approaches
as proposed by Steen et al1 and Feng et al,9 as the top R method.

One problem with the top R method is how to choose the value of R.
Steen et al1 suggested R¼10. Feng et al9 pointed out that when the
SNPs were independent, 5 to 20 were good choices for R and when
there were LDs between SNPs, the optimal value of R was between 100
and 500. In fact, the optimal value of R depends on the LD structure
between SNPs and therefore it is difficult to determine the optimal
value for R.
To avoid the problem of choosing the value of R in the top

R method, Ionita-Laza et al2 proposed an exponential weighting
method within the two-stage framework. In this approach, SNPs are
ordered according to their P-values of the test used in the first stage.
Then, the SNPs are divided into groups with the first group containing
r1 SNPs and having weight w1¼1/(2r1), the second group containing
r2¼2r1 SNPs and having weight w2¼1/(22r2), and so on. In the second
stage, all SNPs are tested using a family-based test. For a SNP in the ith
group with a P-value of pi, when pirwia, the SNP is declared to be
significant at a significance level of a. Ionita-Laza et al2 showed that
the exponential weighting method is more powerful than the top
R method. However, the optimal value for r1 (the number of SNPs in
the first group) also depends on the LD structure between SNPs,
although r1 is more robust to the LD structure than R in the top
R method. Furthermore, it may be unreasonable to use the same
weight for all SNPs within the same group when only one or a few
SNPs are related with a disease.
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In this article, we propose a data-driven weighting scheme within a
two-stage framework. In this method, we use the information from
the test in the first stage to determine a SNP-specific weight for each
SNP. Our method has a similar idea with that of Rubin et al10 and
Roeder et al11 who used information from a linkage study or an
independent association study to determine a SNP-specific weight for
a case–control design. We use simulation studies to evaluate the
performance of our method. The simulation results show that the
proposed method is robust to LD structure and is more powerful than
the top R method with the optimal choice of R and the exponential
weighting method with the optimal choice of r1.

METHODS

Data-driven weighting method
In the two-stage approach, we call the test used in the first stage as the

screening test and the test used in the second stage as an association test.

Within the two-stage framework, the data-driven weighting method has the

following steps:

1. Test all SNPs using a screening test and order SNPs according to their P-

values of the test. In the following discussion, we assume that the SNPs

have been ordered.

2. Similar to Ionita-Laza et al,2 we divided the SNPs into groups with the first

group containing k1 SNPs, the second group containing k2¼2k1 SNPs, the

third group containing k3¼2k2¼22k1, and so on.

3. Let pij
s denote the P-value of the screening test at the jth SNP in the

ith group. Within each group, we will give an importance measure for

each SNP. The importance measure of the jth SNP in the ith group is

given by

Iij ¼
ðe+psijÞ

�1

k�1
i

Pki
l¼1

ðe+psilÞ
�1

in which e is a small number to make the algorithm stable (in our

simulation studies, we used e¼10�6). On the basis of the importance

measure, we defined a weight for each SNP. The weight for the jth SNP in

the ith group is given by wij ¼
Iij
2iki

.

4. Test each SNP using an association test. Denote pij
a the P- value of the

association test at the jth SNP in the ith group. Then, we declared that the

jth SNP in the ith group is significant at a level of a if pij
arawij.

Here, k1 is a parameter in our algorithm. We used k1¼20 in our simulation

studies. However, the results are robust to the choice of k1 as we used different

weights for SNPs within each group. More discussion will be given later in the

discussion section.

Statistics
We needed two test statistics. One was for the screening test used in the first

stage. The other was for the association test used in the second stage. The two

test statistics used in this article are those proposed by Feng et al.9 These test

statistics can be applied to general pedigree data and can corporate the

founder’s phenotype. In brief, consider a sample containing n pedigrees.

Suppose that the ith pedigree contains ni informative nuclear families (with

both parents and at least one being heterozygous or with at most one parent

and two or more children) and the jth informative nuclear family in the ith

pedigree contains nij children. For the jth informative nuclear family in the ith

pedigree, we used ðYijF ; YijM ; Yij1; :::; YijnijÞ and ðXijF ; XijM ; Xij1; :::; XijnijÞ to

denote trait values and genotypic scores of the parents and children. We defined

the mean within-family genotypic score as �Xij ¼ 1
2ðXijF+XijMÞ if the genotypic

information of both parents is available, and as

�Xij ¼ n�1
ij

Xnij
k¼1

Xijk

if otherwise. In addition, we defined the mean within-family trait value of the

children as

�Yij ¼ n�1
ij

Xnij
k¼1

yijk

and the overall mean genotypic score and trait value across the whole sample as
�X and �Y . Then, the screening test statistic was given by

Tscreen ¼
Xn
i¼1

Ui

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

U2
i

s

in which

Ui ¼
Xni
j¼1

½ð �Xij � �XÞð �Yij � �YÞ+ðXijF � �XÞðYijF � �YÞdijF

+ðXijM � �XÞðYijM � �YÞdijM�

and dijF¼1 (dijM¼1) if the father (mother) of the jth nuclear family in the ith

pedigree is a founder, and ¼0 otherwise.

The association test proposed by Feng et al9 used in the second stage is the

quantitative pedigree disequilibrium test.12 The test statistic is given by

Ta ¼
Xn
i¼1

Vi

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

V2
i

s

in which

Vi ¼
Xni
j¼1

1

nij

Xnij
k¼1

ðXijk � �XijÞðYijk � �YÞ:

Under the null hypothesis of no association, both Tscreen and Ta asymptotically

follow the standard normal distribution. The screening test uses the between-

family and founder’s information. The association test uses the within-family

information and thus is robust to population stratification.

Simulation designs
We evaluated the type I error of our proposed data-driven weighting method

and compared the power of the method with that of the top R and exponential

weighting methods using simulation studies. We carried out simulation studies

under several scenarios that included different LD structures, family structures,

and population structures. Under each scenario, we simulate M¼100 000

bi-allelic markers for each individual.

A homogeneous population
In a homogeneous population, the simulation studies include two types of

family structures and two types of LD structures. The two types of

family structures are trio structure and the CEPH family structure.9,13

Each CEPH family contains three generations: four founders, two

parents, and eight grandchildren (see Morley et al13 for more details). The

two types of LD structures include (1) no LD between SNPs and (2) with LD

between SNPs.

For each family structure, we generated genotypes of sampled individuals by

first generating genotypes of the founders and then generating genotypes

of the children by Mendelian law. For the case of no LD, we generated the

founder’s genotypes at each SNP by assuming that the minor allele

frequency follows a uniform distribution on interval [0.1, 0.5]. For the case

of with LD, we generated the founder’s genotypes using the ms program by

Hudson.14 In the ms program, we used a mutation rate of 2.5�10�8 per

nucleotide per generation, a recombination rate of 10�8 per pair of nucleotides

per generation, and an effective population size of 10 000. These choices

were also adopted in Nordborg and Tavare,15 Kimmel and Shamir,16 and

Feng et al.9

Under each scenario, the sample sizes are 400 trios in the trio family

structure and 200 CEPH families in the extended family structure. For power

comparison, we supposed that there is one disease locus. After we generated the

genotypes for all sampled individuals, we randomly chose one SNP at which
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the minor allele frequency among founders is between 0.1 and 0.4 as the

disease locus.

To evaluate type I error rates, we followed Feng et al9 to generate trait values

under null hypothesis. For a nuclear family with m children, let Y1¼(yF, yM)

and Y2¼(y1, y2,y,ym) denote the trait values of the parents and them children.

Assume that (Y1, Y2) follows a multivariate normal distribution with mean

vector of zero and variance–covariance matrix of

X
¼

P
11

P
12P

21

P
22

� �
;

where

P
11 ¼

1 0

0 1

� �
;
P

12 ¼
PT

21 ¼
r ::: r

r ::: r

� �
; and

P
22 ¼

1 ::: r

r ::: 1

0
B@

1
CA

This covariance structure means that the father and mother are independent,

and parents with children and children with children are correlated with

correlation coefficient of r (r¼0.2 is used in this study). The conditional

distribution of Y2¼(y1,y,ym), given the parental trait values Y1¼(yF, yM), is a

multivariate normal distribution with a mean vector of

mc ¼
P

21

P�1
11 Y1

and a variance–covariance matrix of

P
c ¼

P
22 �

P
21

P�1
11

P
12

To generate trait values of all individuals in a pedigree, we first generated the

trait value of each founder by using a standard normal distribution. The trait

values of other members can be generated by a multivariate normal distribu-

tion with mean vector of mc and variance–covariance matrix of
P

c, given the

trait values of their parents.

For power comparisons, we generated trait values of a pedigree

with B members from model yb¼xbb+eb(b¼1, 2,y,B) in which xb is the

additive genotypic score at the disease locus, b is a constant, and e1,y,eB are

background trait values generated under the null hypothesis using aforemen-

tioned method. The value of b is determined by heritability h and is given by

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h

2ð1� hÞf ð1� f Þ

s

in which f is the minor allele frequency at the disease locus.

A structured population
Consider a structured population that consists of two distinct subpopulations

with different allele frequencies and distinct phenotypic means. In this set of

simulation studies, we considered two family structures as we did for the

homogeneous population but only one LD structure, that is, no LD between

SNPs. To generate genotypes of founders in a structured population, we

followed Ionita-Laza et al.2 For each SNP, we randomly selected a number

between 0.1 and 0.9 as the ancestral population allele frequency p. Then,

we independently drew two values from a beta-distribution with parameters

p(1–Fst)/Fst and (1–p)(1–Fst)/Fst and scaled them to the interval (0.1, 0.9) as

allele frequencies for the two subpopulations, in which Fst is Wright’s measure

of population subdivision.17

The phenotype under null hypothesis was generated similar to that in a

homogeneous population. The only difference is that, in the structured

population, we generated trait values of the founders in subpopulation 1 from

the standard normal distribution and those in subpopulation 2 from a normal

distribution with mean 0.2 and variance 1. As argued by Ionita-Laza et al,2 the

differences in allele frequencies and phenotypic means together result in

spurious associations. For power comparisons, trait values are generated in

the same way as that in a homogeneous population.

RESULTS

Type I error rates
Under each of the simulation scenarios, we generated T¼1000 data
sets to estimate type I error rates of the three approaches. For each

approach, we estimated its type I error rate as Error ¼ T�1
PT
t¼1

d0t in

which for the tth data set d0t¼1 if one or more markers were claimed
to be significant, and ¼0 otherwise.
For 1000 replications, the 95% confidence interval of type I error

rates is (0.036, 0.064) for a nominal level of 0.05. Tables 1 and 2 list the
estimated type I error rates of the three approaches in the case of
a homogeneous population and a structured population, respectively.
From the two tables, we can say that, either in a homogeneous
population or a structured population, almost all of the estimated
type I error rates are within the 95% confidence interval, which means
that the three approaches are robust to LD structure and population
stratification.

Power comparisons
For power comparisons, we simulated T¼1000 data sets under each of
the simulation scenarios. Each data set contains either 400 trios or 200
CEPH pedigrees. For a given approach, we assessed its power as the
proportion of the simulated replications at which the method success-
fully identified the disease locus. Precisely, we assess the power as

Power ¼ T�1
PT
t¼1

d1t in which for the tth data set d1t¼1 if the disease

locus is detected, and ¼0 otherwise.

With parental phenotypes
We assumeed that parental phenotypes are available. In the homo-
geneous population, we first considered the trio design (Figure 1). In
the trio design, we compared the power of our data-driven weighting
scheme with that of the top R method for different values of R and

Table 1 Type I error rates for the case of a homogeneous population

(nominal level a¼0.05)

400 tros 200 CEPHs

Without LD With LD Without LD With LD

Data-driven weighting 0.051 0.024 0.041 0.029

Exponential weighting 0.047 0.045 0.054 0.033

Top R 0.048 0.052 0.049 0.042

In the top R method, R¼20 and in the exponential weighting method, r1¼20.

Table 2 Type I error rates for the case of a structured population

(nominal level a¼0.05)

400 tros 200 CEPHs

Fst Fst

0.001 0.005 0.01 0.001 0.005 0.01

Data-driven weighting 0.041 0.053 0.037 0.052 0.051 0.059

Exponential weighting 0.034 0.038 0.055 0.055 0.039 0.053

Top R 0.052 0.047 0.054 0.051 0.049 0.056

In the top R method, R¼20 and in the exponential weighting method, r1¼20. Fst is Wright’s
measure of population subdivision.
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exponential weighting method for different values of r1 (Table 3).
From Figure 1a, we can see that our data-driven weighting
method is consistently more powerful than the top R method and
exponential weighting method, regardless of marker LD and the values
of R and r1. Figure 1b gives power comparisons of the three methods
for different values of heritability and different LD structures when R
and r1 in the top Rmethod and the exponential weighting method are
chosen by their corresponding optimal values. Again, Figure 1b shows
that our proposed method is consistently more powerful than the
other two methods for different values of heritability and different LD
structures.
For the CEPH family structure, we used the same simulation

setup as that for the trio family structure. The pattern of power
comparisons for the CEPH family structure (Figure 2) is very similar
to that for the trio family structure. Summarizing the results
mentioned above, we may conclude that our proposed weighting
scheme is more powerful than the top R method and exponential
weighting method, regardless of the LD structure, family structure,
and heritability.
We also compared the power of the three methods in a structured

population. The results of power comparisons are summarized in
Figure 3. From this figure, we can make the following two conclusions.
One is that our data-driven weighting method is more powerful than
the other two methods for different family structures and different

values of Fst (which measures the ‘how’ difference of the two
subpopulations). The other is that the power of all the three methods
is not much affected by different values of Fst, which means that the
power of the three methods is relatively robust to population
stratification. Ionita-Laza et al2 has pointed out that the power of
the top R method will be affected by Fst if R is fixed, for example,
R¼10. Our results do not contradict with that of Ionita-Laza et al
because our conclusion for the top R and exponential weighting
methods is based on the fact that R and r1 in the two methods are
chosen by their optimal values and the optimal values depend on the
value of Fst.

Without parental phenotypes
In this set of simulations, we assumed that parental phenotypes are
not available. The simulation setup is the same as that in the section of

h = 0.05, without LD, α = 0.05 h = 0.05, with LD, α = 0.05
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Figure 1 Power comparisons based on 400 trios in a homogeneous population with parental phenotypes. (a) The power comparisons for different values of R

and r1 in the top R and exponential weighting methods (see Table 3 for the values of R and r1 corresponding to each scale on the x axis). (b) The power

comparisons for different values of heritability h when R and r1 in the top R and exponential weighting methods are chosen by their optimal values.

Table 3 The values of R and r1 for each scale on the x axis

Scale on x axis 1 2 3 4 5 6 7 8 9

R 1 5 10 20 50 100 200 500 10000

r1 1 3 5 10 20 50 100 200 500
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‘With Parental Phenotypes’, but the minor allele frequency at
each SNP (in the case of no LD) is simulated from a beta-distribution
with parameters 3/14 and 1/2 (scale them to the interval (0.1, 0.5))

instead of a uniform distribution. The power comparisons in
this set of simulations are summarized in Figures 4 to 6. From
these figures, we can see that the patterns of power comparisons
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Figure 2 Power comparisons based on 200 CEPH families in a homogeneous population with parental phenotypes. (a) The power comparisons for different

values of R and r1 in the top R and exponential weighting methods (see Table 3 for the values of R and r1 corresponding to each scale on the x axis). (b) The

power comparisons for different values of heritability h when R and r1 in the top R and exponential weighting methods are chosen by their optimal values.
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Figure 3 (a) The power comparisons for 400 triad families. (b) The power comparisons for 200 CEPH pedigrees. Power comparisons for different values of

Fst in a structured population with parental phenotypes. R and r1 in the top R and exponential weighting methods are chosen by their optimal values and

heritability h¼0.05.
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without parental phenotypes are very similar to that with parental
phenotypes.

DISCUSSIONS

In this article, we proposed a novel data-driven weighting scheme for
family-based two-stage association studies. This scheme improves the
exponential weighting method of Ionita-Laza et al2 by allowing
different weights for SNPs in the same group. Our simulation studies
show that the proposed weighting scheme is consistently more power-
ful than the top R method with the optimal value of R and the
exponential weighting scheme with the optimal value of r1 in all the
cases that we considered in the simulation studies.
The innovation of our new scheme is that it uses the between-

family information to calculate marker-specific weights. In contrast,
the classical top R and exponential weighting approaches only use
the between-family information to rank the SNPs. Our proposed
weighting scheme is not only applicable to two-stage family-based
association studies, but also to other two-stage approaches as
long as the statistics used in the two stages are independent or
orthogonal. For example, Chung et al18 analyzed the orthogonal
property between some linkage statistics and family-based association
statistics. Our weighting scheme can be applied to a two-stage
approach in which the first stage is a linkage test and the second

stage is a family-based association test and the two tests are indepen-
dent or orthogonal.
One thing to be mentioned is that when we performed the

power comparison, our proposed method used a constant value for
parameter k1 (k1¼20), and the top R method and exponential
weighting method used the optimal value of R and r1, respectively.
In practice, it is difficult to know the optimal values for R or r1. The
optimal value of R or r1 depends on multiple factors, for example,
pedigree structure, marker LD, heritability, and so on. The optimal
value is small in the absence of LD between SNPs. In the presence of
LD, the optimal value of R or r1 could be much larger. To evaluate the
effect of parameter k1 in our proposed method, we have conducted
simulation studies for k1¼1, 5, 10, 20, 50, and 100. The simulation
studies (results are not shown) showed that the results of our
proposed method are very similar for different values of k1, which
means that our proposed method is relatively robust to different
choices of k1.
In this study, we assumed consistent genetic effects across

all ages. We realize that this assumption may not be true for some
diseases, for example, childhood asthma versus adult asthma, child-
hood obesity versus adult obesity (see Lasky-Su et al19). For the
diseases in which the genetic effects are age dependent, we
may need to incorporate age of onset into association tests.
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Figure 4 Power comparisons based on 400 triads in a homogeneous population without parental phenotypes. (a) The power comparisons for different values

of R and r1 in the top R and exponential weighting methods (see Table 3 for the values of R and r1 corresponding to each scale on the x axis). (b) The power
comparisons for different values of heritability h when R and r1 in the top R and exponential weighting methods are chosen by their optimal values.
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However, further analysis on how to incorporate age of onset into
testing is needed.
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Figure 5 Power comparisons based on 200 CEPH families in a homogeneous population without parental phenotypes. (a) The power comparisons for different

values of R and r1 in the top R and exponential weighting methods (see Table 3 for the values of R and r1 corresponding to each scale on the x axis). (b) The

power comparisons for different values of heritability h when R and r1 in the top R and exponential weighting methods are chosen by their optimal values.

400 triad families (h = 0.05, α = 0.05)  200 CEPH pedigrees (h = 0.05, α = 0.05)
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Figure 6 (a) The power comparisons for 400 triad families. (b) The power comparisons for 200 CEPH pedigrees. Power comparisons for different values of Fst in

a structured population without parental phenotypes. In both panels, R and r1 in the top R and exponential weighting methods are chosen by their optimal values.
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