
ARTICLE

Gene and pathway-based second-wave analysis of
genome-wide association studies

Gang Peng1, Li Luo2, Hoicheong Siu1, Yun Zhu1, Pengfei Hu1, Shengjun Hong1, Jinying Zhao3,
Xiaodong Zhou4, John D Reveille4, Li Jin1, Christopher I Amos5 and Momiao Xiong*,2

Despite the great success of genome-wide association studies (GWAS) in identification of the common genetic variants

associated with complex diseases, the current GWAS have focused on single-SNP analysis. However, single-SNP analysis often

identifies only a few of the most significant SNPs that account for a small proportion of the genetic variants and offers only a

limited understanding of complex diseases. To overcome these limitations, we propose gene and pathway-based association

analysis as a new paradigm for GWAS. As a proof of concept, we performed a comprehensive gene and pathway-based

association analysis of 13 published GWAS. Our results showed that the proposed new paradigm for GWAS not only identified

the genes that include significant SNPs found by single-SNP analysis, but also detected new genes in which each single SNP

conferred a small disease risk; however, their joint actions were implicated in the development of diseases. The results also

showed that the new paradigm for GWAS was able to identify biologically meaningful pathways associated with the diseases,

which were confirmed by a gene-set-rich analysis using gene expression data.
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INTRODUCTION

Genome-wide association studies (GWAS) are emerging as a major
tool to identify disease susceptibility loci and have been successful
in detecting the association of a number of SNPs with complex
diseases.1–12 However, testing only for association of a single SNP is
insufficient to dissect the complex genetic structure of common
diseases. Extracting biological insight from GWAS and understanding
the principles underlying the complex phenomena that take place on
various biological pathways remain a major challenge. The common
approach of GWAS is to select dozens of the most significant SNPs in
the list for further investigations. This approach, which takes only
SNPs as basic units of association analysis, has a few serious limita-
tions. First, a single SNP showing a significant association with
complex diseases typically has only mild effects.13 The common
disease often arises from the joint action of multiple loci within a
gene or the joint action of multiple genes within a pathway. If we
consider only the most significant SNPs, the genetic variants that
jointly have significant risk effects but individually make only a small
contribution will be missed. Second, locus heterogeneity, which
implies that alleles at different loci cause diseases in different popula-
tions, will increase difficulty in the replication of association of a single
marker.14 A gene, particularly a pathway, consists of a group of
interacting components that act in concert to perform specific
biological tasks. Replication of association finding at the gene level
or pathway level is much easier than replication at the SNP level.

Third, attempting to understand and interpret a number of significant
SNPs without any unifying biological theme can be challenging and
demanding. SNPs and genes carry out their functions through
intricate pathways of reactions and interactions. The function of
many SNPs may not be well characterized, but the function of genes
and particular pathways have been much better investigated. There-
fore, the gene and pathway-based association analysis allows us to gain
insight into the functional basis of the association and facilitates to
unravel the mechanisms of complex diseases.

To meet the conceptual and technical challenges raised by GWAS
and to take full advantage of the wide opportunities provided by
GWAS, the gene and pathway-based association analysis can be used
as a complementary approach to the genome-wide search association
of a single SNP with a disease . The gene and pathway-based
association analysis considers a gene or a pathway as the basic unit
of analysis. Gene and pathway-based GWAS aim to study simulta-
neously the association of a group of genetic variants in the same
biological pathway,14–16 which can help us to holistically unravel the
complex genetic structure of common diseases in order to gain insight
into the biological processes and disease mechanisms.17

Gene and pathway-based GWAS can be performed by extension of a
gene-set enrichment analysis for gene expression data,18 to genome-
wide association studies. However, a simple application of gene-set
analysis methods for gene expression data to GWAS may not work
very well. The key difference between the gene expression data and
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SNP data is that in expression data analysis each gene is represented by
one value of expression level of the gene, but in GWAS each gene is
represented by a varied number of SNPs. The challenge facing us is how
to represent a gene.19,20 One promising approach is to combine P-values
for correlated SNPs into an overall significance level to represent a gene
and to combine P-values for the genes into an overall significance level to
investigate the association of a pathway with the disease.21

MATERIALS AND METHODS

Gene-based association analysis
Statistical analyses for testing the association of a gene with a disease were

conducted on the basis of the combination of P-values of the SNPs in the

gene14. We assume that the P-values Pi are independent and uniformly

distributed under their null hypotheses although the independence assumption

may be violated because of linkage disequilibrium among SNPs in the gene.

Several methods were used to combine independent P-values. A general

framework for combining independent P-values is as follows. Let Pi be the

P-value for the corresponding statistic Ti with G distribution to test the i-th

marker Mi. Let H be a continuous monotonic function. A transformation of the

P-value is defined as Zi ¼ H�1ð1 � PiÞ

Fisher’s combination test
The full combination methods are to combine P-values of all SNPs within

the gene. The statistic for combining K independent P-values or for combining

information from K SNPs is usually given by

ZF ¼ �2
XK
i¼1

logPi

which follows a w2
(2K) distribution.21

Sidak’s combination test (the best SNP)
If we consider only the best SNP in the gene, then the statistic is defined as

ZB¼P(1), which is distributed as P(ZBrw)¼1�(1–w)K. This statistic is often

referred to as Sidak’s correction.

Simes’ combination test
Let P-values be ordered as P(1)pP(2)pypP(k). The P-value is calculated as

PS ¼ min
i

kPðiÞ
i

� �

The FDR method
Let p be the proportion of tests with a true null hypothesis and F(a) be the

expected proportion of tests yielding a P-value less than or equal to a, V(a) be the

expected proportion of tests giving a false positive result with significance level a.

Suppose that there are d distinct P-values among p¼{p1, y, pk}. Let
~p1o~p2o . . .o~pd . Let mj be the number of P-values among P that are equal

to p̃j.

Then, ~FðaÞ ¼ 1
k

Pd
j¼1

Ið~pj � aÞmj,where I is an indicator function. For a

two-sided test define p¼min(1,2p̄), and for a one-sided test (w2-test, trend

test) define p¼min(1,2ā), where �p ¼ 1
k

Pk
i¼1

pi; �a ¼ 1
k

Pk
i¼1

ai; ai ¼ 2 minðpi; 1 � piÞ

Then, v(a)is estimated by v(a)¼pa. Define tðiÞ ¼ vðpðiÞÞ
FðpðiÞÞ

and q(i)¼minjZi{t(j)},

q(1)rq(2)ryrq(m) are the ordered false discovery rates. We also take

q(1)¼min{t(j)} as the false discovery rate for the gene or pathway.19

Pathway-based association analysis
Consider m genes in a pathway. Assume that the P-value for each gene is

calculated using one of the methods of combining independent P-values

mentioned in the previous section. The methods for testing the association

of a pathway with the disease are given below.

Hypergeometric test (Fisher’s exact test)
Fisher’s exact test is performed to search for an overrepresentation of sig-

nificantly associated genes among all the genes in the pathway. We assume that

the total number of genes that are of interest is N. Let S be the number of genes

that are significantly associated with the disease (P-value r0.05, calculated by

Fisher’s combination test) and m be the number of genes in the pathway. Let k

be the number of significantly associated genes in the pathway. The P-value of

observing k-significant genes in the pathway is calculated by

P ¼ 1 �
XK
i¼0

S
i

� �
N � S
m� i

� �

N
m

� �

Sidak’s method
Both P-values for testing the association of the gene and the pathway are

calculated by Sidak’s method, which is described in the previous section.

Simes’ method
Both P-values for testing the association of the gene and the pathway are

calculated by Simes’ method that is described in the previous section.

Simes/FDR method
The P-value for testing the association of the gene is calculated by Simes’

method and the P-value for testing the association of the pathway is calculated

by the FDR method.

RESULTS

To investigate what should be the basic units for genome-wide
association studies and to illustrate how to perform the gene and
pathway-based genome-wide association analysis, we examine the 13
published GWAS (Supplementary Table 1), in which WTCCC repre-
sents the Wellcome Trust Case Control Consortium, NARAC, the
North American Rheumatoid Arthritis Consortium, EIRA, the Swed-
ish Epidemiological Investigation of Rheumatoid Arthritis, DGI, the
Diabetes Genetics Initiative, AREDS, The Age-Related Eye Disease
Study, CORIELL, Coriell Institute for Medical Research, and 10
diseases: bipolar disorder (BD), coronary artery disease (CAD),
Crohn’s disease (CD), hypertension (HT), rheumatoid arthritis
(RA), type I diabetes (T1D), type II diabetes (T2D), Parkinson’s
disease (PD), age-related eye disease (AREDS) and Amyotrophic
lateral sclerosis (ALS). As only P-values for testing the association of
a single SNP (but not individual genotypes) were publically accessible,
we used the statistical methods for combining independent P-values to
perform gene and pathway-based GWAS (see Materials and methods).
The methods for combining dependent P-values require individual
genotype information and cannot be applied here. The number of
typed cases and controls, the number of typed SNPs and genes, and P-
values for ensuring genome-wide significance using Bonferroni cor-
rection for each study are listed in Supplementary Table 1.

The procedure for gene and pathway-based GWAS consists of two
steps. The first step is to combine a set of P-values for SNPs in a gene,
which is obtained from GWAS of a single SNP, into an overall
significance level of the gene. The second step is to combine a set of
P-values for genes in a pathway into an overall P-value for the
pathway. To combine P-values, one typically assumes that the P-values
are independent and uniformly distributed under the null hypothesis.
In this report, four combination tests: Fisher’s combination test,
Sidak’s combination test, Simes’ combination test and a test based
on false discovery rate, were used (see Materials and methods). As the
SNPs within a gene may be in linkage disequilibrium, P-values of
SNPs from the same gene are often not independent and hence
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independent assumption of combining P-values is violated. We used
methods for combining independent P-values for the following
reasons. First, the methods for combining dependent P-values require
the data of individual genotypes. However, in many cases, individual
genotypes cannot be publically accessed. Second, errors that arise from
violation of independent assumptions are not very high. (We will
present the results of comparison of methods combining independent
P-values and those combining dependent P-values elsewhere.) Third,
Q–Q plots for the four combining tests (Supplementary Figure 1)
showed that the observed distribution of P-values of the combining
tests (except for Fisher’s combination test) matches that expected for
the majority of the data, but begins to depart from the null at 3.15
�10�6 (gene) and 10�4 (pathway).

We obtained the combined P-values for each gene. Supplementary
Table 2a and 2b summarizes the total number of significant genes,
significant SNPs and significant SNPs that belong to insignificant
genes. The numbers of replicated SNPs and genes in the different
studies, or the numbers of significant SNPs and genes shared by
several diseases, are shown in Table 1. In Supplementary Tables S3–S15
we have listed all significant genes with P-values r3.15�10�6, which
were calculated by the Fisher’s combination test or by the test based on
the false discovery rate (FDR) for 13 studies. In these tables we also
included the number of typed SNPs within each significant gene and
P-value of the most significant SNP in the gene. Supplementary Tables
S16–S18 list the significant SNPs and genes for PA, RA and T2D
diseases shared by two independent studies. Three remarkable features
emerge from these tables. First, these tables show that except for the
diseases RA and T1D, the number of significant SNPs in each study is
very small, but the number of significant genes is quite large. From
these tables we can find that the large proportion of significant genes
even contains no single significant SNP. For example, in the T2D study
(WTCCC), the P-values of the best SNPs in the genes PPARG, JAZF1,
TSPAN8 and THADA were 0.001205, 0.001681, 0.0000156 , and
0.01080, respectively, but the overall P-values of these genes were
2.87�10�5, 8.58�10�7, 3.17�10�13, and 1.80�10�5, respectively.
Although an initial single SNP analysis did not find any significant
SNPs in these genes, a recent meta-analysis22 showed that the
P-values of the best SNPs in these genes were 2.00�10�7,
5.00�10�14, 1.10�10�9, and 1.10�10�9, respectively. This shows

that the results of the gene-based association analysis were consistent
with the results of meta-analysis. If we conduct only the single-SNP
association analysis, these significant genes might be missed because of
the low power of small sample sizes in the initial GWAS. Second,
replication of association findings at gene level in additional indepen-
dent samples is much easier than that at SNP level. We examined
association studies of three diseases: T2D, PA, and RA, each with two
independent studies. For T2D, no SNPs were replicated in two
independent studies (WTCCC and DGI) after correction for multiple
tests by the Bonferroni method. However, seven genes, including genes
TCF7L2 (transcription factor 7-like 2) and CDKAL1 (CDK5 regula-
tory subunit associated protein 1-like 1), were replicated (Supplemen-
tary Table S17). The gene TCF7L2, which has a marked effect on type
II diabetes, had a widely replicated association in several studies 2,23. In
single-SNP association analysis, although a strong association of
CDKAL1 was reported from WTCCC (P¼1.02�10�6) and
WTCCC/UKT2D2,3 (P¼10�8), the original scan and follow-up repli-
cation samples from DGI only support nominal association
(P¼0.0024). In gene-based analysis, a strong association of CDKAL1
was observed from WTCCC (Po10�20) and DGI (P¼1.84�10�6)
(Supplementary Table S17). To explain why replication of significant
genes in independent samples is much easier than replication of
significant SNPs, we have listed all SNPs with P-values o0.05 for
the genes in Table 2. Table 2 shows that although a few single SNPs in
the genes CDKAL1, TTLL5 and BTBD16 showed significant associa-
tion in the WTCCC study or DGI study, the joint effects of multiple
SNPs with very mild effects led to three genes being strongly associated
with the diseases in both studies. Third, gene-based association
analysis can more effectively identify the common genes that are
shared within a disease group than single-SNP association analysis.
Although there is considerable heterogeneity among complex diseases,
many diseases share common phenotypes, forming a group of
diseases. In the studies that we examined here, CD+RA+T1D are
autoimmune diseases, and CAD+HT+T2D have metabolic and car-
diovascular phenotypes in common. GWAS offers us an opportunity
to reveal the genetic variants that confer a risk of more than one
disease. Supplementary Table 19 summarizes the shared genes within
the disease group based on the best SNP within the gene. In other
words, a gene is shared within a disease group if at least one significant

Table 1 Number of replicated or shared SNPs and genes

Study 1 Study 2

Number of replicated

or shared SNPs

Number of replicated or shared SNPs which

are not located in significant genes

Number of replicated

or shared genes

(a) Fisher’s method

RA (WTCCC) RA(NARAC and EIRA) 28 0 42

T2D (WTCCC) T2D (DGI) 0 0 7

PD(CORIELL) PD(NCBI) 4 4 82

WTCCC

CAD+HT+T2D 0 0 6

RA+T1D 29 0 57

CD+RA+T1D 0 0 5

(b) FDR Method

RA (WTCCC) RA(NARAC and EIRA) 28 0 36

T2D (WTCCC) T2D (DGI) 0 0 0

PA(CORIELL) PA(NCBI) 4 2 4

WTCCC

CAD+HT+T2D 0 0 0

RA+T1D 29 0 35

CD+RA+T1D 0 0 0
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SNP in the gene is common within the disease group. As shown in
Supplementary Table 19, based on the most significant SNPs in the
gene shared within a disease group, we can only find the shared genes
in the RA+T1D disease group. However, if we perform gene-based

Table 2 Overall P-values of the genes CDKAL1, TTLL5 and BTBD16 and their SNPs with P-values less than 0.05 in WTCCC and DGI studies

WTCCC DGI

Gene P-value Gene P-value Gene P-value Gene P-value

CDKAL1 o1.0E-20 TTLL5 3.0E-15 CDKAL1 2.0E-6 BTBD16 1.0E-6

No of SNPs 126 No of SNPs 25 No of SNPs 114 No of SNPs 30

SNP P-value SNP P-value SNP P-value SNP P-value

rs714831 0.0022 rs760233 0.0093 rs714830 0.0135 rs1885512 0.0183

rs2294809 0.037 rs1158282 0.0206 rs736425 0.0208 rs2273796 0.0086

rs2328529 0.0011 rs2302592 0.0465 rs1548145 0.0117 rs7078328 0.0165

rs2328549 0.0001 rs2303345 0.0458 rs2305955 0.0394 rs7098436 0.0098

rs2328573 0.0183 rs2359866 0.0267 rs2820001 0.0188 rs10510107 0.0165

rs2819999 0.0246 rs2359983 0.0177 rs6905567 0.0354 rs10788281 0.0167

rs4236002 0.0054 rs4903350 0.0273 rs6926388 0.0237 rs11200528 0.0132

rs4291090 0.0163 rs4903359 0.0089 rs6927356 0.0478 rs11200537 0.0351

rs4413596 0.032 rs6574258 0.0092 rs6938184 0.0183

rs4527692 0.0254 rs7156551 0.0356 rs7747752 0.0468

rs6456368 2.0E-05 rs8015242 0.0441 rs7754840 0.0075

rs6908425 0.0074 rs8020986 0.0396 rs7767391 0.0365

rs7739578 0.0064 rs9323619 0.0178 rs9460546 0.0057

rs7739596 0.0076 rs10131117 0.0053 rs9465871 0.0445

rs7741604 0.0198 rs10143790 0.0353 rs10484632 0.0122

rs7747752 0.0018 rs11621464 0.0394 rs10946398 0.0059

rs7752602 0.0351 rs11621718 0.0129 rs11970425 0.0375

rs7754840 4.5E–05 rs12887886 0.0427 rs16884481 0.0073

rs7763304 0.0067 Gene P-value Gene P-value

rs7766346 0.0271 BTBD16 5.0E-08 TTLL5 4.0E-07

rs7767391 5.5E–06 No of SNPs 31 No of SNPs 21

rs9348440 8.5E–05 SNP P-value SNP P-value

rs9350257 0.0427 rs1022782 0.0017 rs760233 0.0316

rs9358395 0.0071 rs4237539 0.0021 rs4903359 0.0268

rs9366357 0.0057 rs4317918 0.0027 rs6574258 0.0129

rs9368283 0.0157 rs7078328 0.004 rs8018962 0.0272

rs9460546 3.7E–05 rs10510107 0.0025 rs8020986 0.0382

rs9465871 1.0E–06 rs10887121 0.0053 rs10131117 0.0128

rs10946398 2.5E–05 rs10887122 0.001 rs11621464 0.0231

rs16883996 0.0469 rs11200528 0.002 rs17183738 0.0454

rs11200537 0.0053

Table 3 The number of pathways showing a significant association

Number of pathways

Sources Disease Exact Simes/FDR

WTCCC BD 15 3.23% 22 4.73%

CAD 22 4.73% 28 6.02%

CD 26 5.59% 77 16.56%

HT 23 4.95% 21 4.52%

RA 36 7.74% 67 14.41%

T1D 24 5.16% 136 29.25%

T2D 33 7.10% 28 6.02%

DGI T2D 53 11.40% 24 5.16%

NARAC & EIRA RA 40 8.60% 103 22.15%

CORIELL PD 24 5.16% 47 10.11%

NCBI PD 15 3.23% 31 6.67%

CORIELL ALS 35 7.53% 29 6.24%

NCBI AREDS 26 5.59% 104 22.37%

Table 4 Number of replicated or shared pathways

Study 1 Study 2 Exact Simes/FDR

RA (WTCCC) RA(NARAC & EIRA) 7 45

T2D (WTCCC) T2D (DGI) 5 10

PD(CORIELL) PD(NCBI) 10 30

WTCCC

Number of shared pathways

Exact Simes/FDR

CAD+HT+T2D 1 0

RA+T1D 6 49

CD+RA+T1D 1 7

Gene and pathway-based analysis
G Peng et al

114

European Journal of Human Genetics



GNRH1 0.9960
GNRH2 0.9999

GNRHR
0.85

GNAS
0.0097

ADCY1 0.93
ADCY2 0.0002
ADCY3 0.999
ADCY4 0.023
ADCY5 0.50
ADCY7 0.25
ADCY8 0.08
ADCY9 0.98

PRKACB 4.48E-6

GNA11 0.85
GNAQ 0.99

PLCB1 0.848
PLCB2 0.883
PLCB3 0.064
PLCB4 0.292

ITPR1 0.911
ITPR2 0.987
ITPR3 <1E-20

Gonadotropins
gene expression

& secretion

CALM1 0.024
CALM2 0.717
CALM3 0.961

CAMK2A 0.78
CAMK2B 0.18
CAMK2D 1.6E-9
CAMK2G 0.691

CACNA1C 0.138
CACNA1D 0.184
CACNA1S 0.492

PRKCA 0.609
PRKCB1 0.048
PRKCD 0.781

MAP3K1 0.989
MAP3K2 0.235
MAP3K3 0.932
MAP3K4 0.940

MAP2K3 0.287
MAP2K6 0.910

MAPK13 0.228
MAPK14 0.173

PLD1 0.669
PLD2 0.394

PLA2G12A 0.64
PLA2G1B 0.097
PLA2G2A 0.0129
PLA2G2D 0.136
PLA2G2E 0.237
PLA2G2F 0.323
PLA2G3 0.150
PLA2G4A 0.047
PLA2G5 0.958
PLA2G6 0.817

CGA
0.393

PTK2B 0.704

SRC 0.88
MMP2
0.22

MMP14
0.021

HBEGF
0.73

EGFR
0.012

CDC42
0.878

MAP3K1 0.989
MAP3K2 0.235
MAP3K3 0.932
MAP3K4 0.940

MAPK8 0.975
MAPK9 0.767
MAPK10 0.091

GRB2
0.999

SOS1 0.97
SOS2 0.45

KRAS 0.99
NRAS 0.38

RAF1
0.0079

MAP2K1
0.999

MAPK1
0.907

WTCCC GnRH Pathway

MAPK7   0.13

LHB
0.784

FSHB
0.024

MAP2K4
0.038

GNRH1
0.601

GNRHR
0.81

GNAS
0.695

ADCY1 0.376
ADCY2 0.328
ADCY3 0.96
ADCY4 0.00004
ADCY5 0.024
ADCY6 0.0895
ADCY7 0.869
ADCY8 0.589
ADCY9 0.372

PRKCA 0.10
PRKACB 0.646

PRKX 0.274

GNA11 0.302
GNAQ 0.892

PLCB1 0.566
PLCB2 0.760
PLCB3 0.051
PLCB4 0.014

ITPR1 0.622
ITPR2 0.289

ITPR3 <1E-20

Gonadotropins 
gene expression 

& secretion

CALM1 0.017
CALM2 0.030
CALM3 0.198

CAMK2A 0.817
CAMK2B 0.071
CAMK2D 5.8E-5
CAMK2G 0.988

CACNA1C 0.246
CACNA1D 0.958
CACNA1F 0.627
CACNA1S 0.006

PRKCA 0.66
PRKCB1 0.0017
PRKCD 0.126

MAP3K1 0.221
MAP3K2 0.067
MAP3K3 0.853
MAP3K4 8.5E-4

MAP2K3 0.623
MAP2K6 0.313

MAPK11 0.094
MAPK12 0.0022
MAPK13 0.724
MAPK14 0.0015

PLD1 0.706
PLD2 0.083

PLA2G12A 0.944
PLA2G12B 0.285
PLA2G1B 0.259
PLA2G2A 0.236
PLA2G2D 0.125
PLA2G2E 0.845
PLA2G2F 0.020
PLA2G3 0.630
PLA2G4A 0.474
PLA2G5 0.858
PLA2G6 0.136

CGA 0.137

PTK2B 0.60

SRC 0.507
MMP2
0.726

MMP14
0.534

HBEGF
0.148

EGFR
0.278

CDC42 
0.020

MAP3K1 0.221
MAP3K2 0.067
MAP3K3 0.853
MAP3K4 8.5E-4

MAP2K3 0.49
MAP2K6 0.63

MAPK8 0.303
MAPK9 0.940
MAPK10 0.592

JUN
0.004

GRB2
1.27E-5

SOS1 0.77
SOS2 0.98

KRAS 7.8E-6
NRAS 0.444

RAF1
0.986

MAP2K1 0.005
MAP2K2 0.035

MAPK1
0.76

ELK
0.835

NARAC&EIRA GnRH Pathway

Figure 1 P-values of genes in GnRH pathway for RA. (a) P-values of genes in GnRH pathway for RA in WTCCC studies. Blocks containing significant genes

are in red color, blocks containing mild significant genes are in light red color and blocks containing no significant genes are in green color. (b) P-values of
genes in GnRH pathway for RA in NARAC and EIRA studies. Blocks containing significant genes are in red color, blocks containing mild significant genes are

in light red color and blocks containing no significant genes are in green color.
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association analysis, as shown in Supplementary Table 20, we can find
a number of shared genes within CD+RA+T1D, CAD+HT+T2D and
RA + T1D disease groups. Numerous genome-wide gene expression
analyses have shown that single-gene analysis can find little similarity
between two independent studies, but pathway-based analysis may
find a number of pathways in common.24 A pathway analysis is done
to identify pathways that are significantly associated with the disease.
In other words, we attempt to test whether the pathway is over-
represented by the genes that are significantly associated with the
disease. We assembled 465 pathways from KEGG25 and Biocarta
(http://www.biocarta.com). Table 3 summarizes the number of sig-
nificant pathways and Table 4 summarizes the number of replicated
pathways associated with the diseases RA, T2D, and PA in two
independent studies, or the number of pathways shared within the
diseases CAD+HT+T2D, RA+T1D, and CD+RA+T1D in the WTCCC
studies. These significant pathways were identified by an overrepre-
sentation test and the Simes/FDR method. Supplementary Tables 21–
33 summarize all significant pathways with P-values r0.01, which
were calculated by Fisher’s exact test and by the Simes/FDR method
for 13 studies. Supplementary Tables 34–36 list all significant pathways
associated with the diseases RA, T2D and PA, which were replicated in
two independent studies, and Supplementary Tables 37–39 list the
significant pathways shared by the disease groups CAD+HT+T2D,
RA+T1D, and CD+RA+T1D. These tables show several remarkable
features that should be used to extract biological insight from GWAS.
First, As shown in Table 3, a much larger proportion of pathways was
significantly associated with the disease than that of genes, let alone
SNPs. This implies that pathways have essential roles in causing
disease. We note that many identified pathways showing significant
association form the core of the pathway definition of complex
diseases. For example, the MAPK pathway, JNK pathway, the ubiqui-
tin–proteasome pathway, O-Glycan biosynthesis and Axon guidance,
which showed significant association with PD in two studies (COR-
IELL and NCBI), have been reported as a set of major pathways
implicated in PD.26,27 Pathway-based association analysis identified
NF-kB, p38 MAPK, Angiotensin II-mediated activation of the JNK
pathway, activation of PKC through G-protein-coupled receptor path-
way, Wnt-signaling pathway, adherens junction, melanogenesis, ECM-
receptor interaction and vitamin C in the brain pathway, which form
the major pathways defining T2D28 (Supplementary Table 40). Sec-
ond, the results of pathway-based GWAS can be verified by functional
pathway enrichment analysis of gene expressions. For example, RA is
an autoimmune disease. Its major feature is a chronic inflammation of
the joints. Our pathway-based association analysis identified cytokine–
cytokine receptor interaction, IFN a signaling, Jak-STAT signaling,
complement and coagulation cascades, and fatty acid biosynthesis
pathways that were confirmed by pathway enrichment analysis of gene
expression profiling of the peripheral blood cells of RA29. Third, a
replication of the association of pathways in independent samples is
much easier than a replication of genes or SNPs. Replications can be
performed at the level of the SNP, the gene or the pathway. As shown
in Table 1, no significant SNPs (using the Bonferroni method for
correction of multiple tests) can be replicated in GWAS of T2D, and
only seven significant genes can be replicated in the WTCCC and DGI
studies. However, 10 (Simes/FDR) or 5 (Fisher’s exact test) pathways
can be replicated (Table 4). Risk genes may be different for different
individuals, but may be in the same pathway. Identification of the
pathways associated with a disease allows to easily discover the
pathogenesis of the disease. Figures 1a and b plot the GnRH-signaling
pathway that was associated with RA in the WTCCC studies with P-
value p1.48�10�14 (Fisher’s combination test), p0.025 (Fisher’s

exact test) and p0.017 (Simes/FDR), and in the NARAC and EIRA
studies with P-value p1.00�10�17 (Fisher’s combination test),
p0.0055(Fisher’s exact test) and p1.39�10�16 (Simes/FDR).
Although the GnRH pathway was significantly associated with RA
in both studies, the genes that showed significant association in the
two studies were different. Two paths: Gs - AC - PKA -
Gonadotropins gene expression and secretion and MAPK pathway
(GRB2 - Sos –4 Ras - Raf1 - MEK1/2 - ERK1/2 -
Gonadotropins gene expression and secretion) are involved in the
GnRH pathway. In the WTCCC studies, genes, such as GNAS (Gs, P-
value o0.0097), ADCY2 (AC, P-value o0.000191) and PRKACB
(PKA, P-value o4.48�10�6) in the first path showed a strong or
mild association, but did not show any association in the NARAC and
EIRA studies. The genes in the second path (MAPK pathway): GRB2
(P-value o1.27�10�5), KRAS (Ras, P-value o7.77�10�6) and
MAP2K1 (ERK, P-value o0.005), were associated with RA in the
NARAC and EIRA studies, but not in the WTCCC studies. It is well
known that the endocrine system may have an important role in the
pathogenesis of RA. Gonadotropins are hormones secreted by gona-
dotrope cells of the pituitary gland. The two major gonadotropins are
luteinizing hormone and follicle-stimulating hormone. Gonadotro-
pins have marked immunomodulatory properties and may have
important roles in the pathogenesis of various immune-regulatory
diseases. Sex hormone levels, including estrogen and/or progesterone
in women and testosterone in men, are reported as relatively low in
most RA patients.30 These observations are consistent with the disease
mechanisms associated with gonadotropin. It is interesting to note
that the P-values of the best SNP in genes PRKACB, GRB2 and KRAS
were 0.013, 0.006 and 0.0012, respectively. This example shows that
each SNP may confer a small contribution, but their joint actions may
affect the functioning of the pathway, which in turn will cause the
disease.

DISCUSSION

Despite the rapid progress of GWAS, the most widely used approach
in GWAS is individual SNP association analysis. In other words, it
evaluates the significance of individual SNPs. However, GWAS at only
SNP level has serious limitations. It offers only a limited under-
standing of complex diseases as an integrated whole. What should be
the future developments for GWAS? To address this issue, we
proposed to take a system biology approach, which considers not
only SNP but also gene and pathway as basic units of GWAS, to
decipher a complex path from genotype to phenotype. The proposed
paradigm for GWAS consists of three components: SNP-, gene- and
pathway-based association analyses. We performed comprehensive
gene and pathway-based GWAS for 11 diseases, assuming that the
results of single-SNP association analysis are available. Our results
showed that the proposed new paradigm for GWAS not only identi-
fied the genes that include significant SNPs found by single-SNP
analysis, but also detected new genes in which each single SNP
conferred a small disease risk; however, their joint actions were
implicated in the development of diseases. We analysed the new
genes that were identified by the new paradigm for GWAS from
two aspects. First, these new findings were replicated in two indepen-
dent samples. Second, the SNPs that are located in the newly identified
genes were not significant in any of their original studies, but showed
strong association in the recently published meta-analysis of genome-
wide association data and large-scale replication. Our results also
strongly showed that the replication of an association finding at the
gene or pathway level is much easier than replication at the individual
SNP level. One of the major advantages offered by the new paradigm
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for GWAS is that the pathway-based analysis can add structure to
genomic data and allows us to gain insight into a deeper under-
standing of cellular processes as intricate networks of functionally
related genes. We further showed that the new paradigm can also offer
opportunities for finding the pathways that are common within
disease groups. We used RA as an example to show that the pathways
identified by the new paradigm for GWAS can be confirmed by a
gene-set-rich analysis using gene expression data. This implies that the
new paradigm for GWAS will open a new avenue to integrate GWAS
with other functional analyses and hence will facilitate to uncover the
mechanism of complex diseases.

As the current GWAS only report the P-value for a single SNP, and
the individual genotype data are not publically available, our methods
for a gene and pathway-based GWAS are designed for the P-value data.
The major tool for gene and pathway-based analyses is to combine
independent P-values of single SNPs in the gene into an overall P-
value for the gene and independent P-values of a single gene in the
pathway into an overall P-value for the pathway. As the SNPs in a gene
are often dependent, we need methods for combining dependent P-
values, which in turn require individual genotype information. The
limitation of the proposed gene and pathway-based association
analysis is that it is based on combining independent P-values and
is not appropriate to be applied to dependent data. Therefore, the P-
values for the gene or pathway, which are calculated by Fisher’s
method of combining independent P-values of SNPs, will be inflated
if there exist large correlations among SNPs in the gene. A gene and
pathway-based analysis that uses methods to combine dependent P-
values will be needed. Gene and pathway-based GWAS that take
correlations among the SNP and genes into account will be carried
out in the near future.
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