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The success of the genome-wide association
approach: a brief story of a long struggle
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The genome-wide association approach has been the most powerful and efficient study design thus far in
identifying genetic variants that are associated with complex human diseases. This approach became feasible
as the result of several key advancements in genetic knowledge, genotyping technologies, statistical analysis
algorithms and the availability of large collections of cases and controls. With all these necessary tools in hand,
many genome-wide association studies were recently completed, and many more studies which will explore
the genetic basis of various complex diseases and quantitative traits are soon to come. This approach has
started to reap the fruits of its labor over the past several months. Publications of genome-wide association
studies in several complex diseases such as inflammatory bowel disease, type-2 diabetes, breast cancer and
prostate cancer have been abundant in the first half of this year. The aims of this review are firstly, to provide a
timely summary for most of the genome-wide association studies that have been published until June/July 2007
and secondly, to evaluate to what extent these results have been validated in subsequent replication studies.
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Introduction
The genome-wide association (GWA) approach for genetic

studies of complex human diseases was first proposed by

Risch and Merikangas in 1996,1 but only became feasible

10 years later. The Human Genome Project (HGP) was

launched in 1990 and it took 13 years to finish the

sequencing of the human genome. In 2001, both the

International Human Genome Sequencing Consortium

and Celera Genomics reported draft sequences of the

human genome.2,3 The HGP was deemed complete in

April 2003, exactly 50 years after the description of the

DNA double helix structure by James Watson and Francis

Crick.4 The HGP revealed that the human genome is

composed of B3 billion base pairs and an estimated

20000–25000 protein-coding genes. The completion of

HGP, which represents an important milestone in human

genomics,5 was followed by identification and deposition

of millions of single nucleotide polymorphisms (SNPs)

into public databases by The SNP Consortium (TSC) and

International Human Genome Sequencing Consortium.6

This provided the foundation upon which GWA studies

would subsequently build.

SNPs and copy number variations
SNPs are the most common genetic variations in the

human genome; currently 410 million SNPs have been

deposited into public databases, most of which are

anticipated to have no functional effect. These genetic

polymorphisms have proven to be very useful as genetic

markers, and can be used to detect the disease variants via
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linkage disequilibrium (LD). Owing to the large number of

SNPs in the human genome, they provide the highest

resolution (in comparison to other genetic markers such as

micro-satellites and mini-satellites) and enable researchers

to comprehensively interrogate the entire human genome.

Nonetheless, SNPs alone can neither explain the total

human genetic diversity nor explain the genetic suscepti-

bility to complex diseases and adverse drug reactions.

Recently, the discovery of thousands of copy number

variations (CNVs), which are ubiquitous in the human

genome, has provided another new insight into the

complexity of the genetic variations in the human

genome. CNVs are expected to play an important role in

the genetic basis of complex diseases, and are therefore

expected to share the limelight with SNPs in the future

GWA studies. CNVs are structural variations or genomic

alterations that change the number of copies of DNA

involving segments that are larger than 1kb (including

deletions, insertions and duplications). CNVs were first

reported ubiquitous in the human genome in 2004.7,8 The

global map of CNVs was finished in 2006 and lead to

identification of about 1500 CNV regions.9

CNVs and other structural variations, such as inversions,

that have thus far been identified have been deposited in

the Database of Genomic Variants (http://projects.tcag.ca/

variation/). The main objective of this international

database is to provide a comprehensive catalog of structural

variations in the human genome. The detailed description

of CNVs is beyond the scope of this paper; however, a

detailed review paper about structural variations is avail-

able.10 CNVs have been reported to affect the gene

expression11 and the importance of CNVs has become

recently apparent in susceptibility to complex diseases like

autoimmune diseases, autism and bipolar disorder.12–15

International HapMap Project and the concept
of LD
With the identification of millions of SNPs in the human

genome, it remains a daunting task to genotype every

single SNP, even with the latest genotyping technologies.

To overcome this obstacle, the International HapMap

Project was initiated in 200316 with the aim of characteriz-

ing LD patterns, and identifying haplotype-tagging SNPs in

a total of 270 DNA samples that was collected from four

major populations of European, African and Asian ances-

try. The Phase I and Phase II of the International HapMap

Project were completed in 2005 and 2007 respectively.17,18

The application of the International HapMap Project is

evident once we consider tagging SNPs that were identified

in this global project were found to be ‘transferable’ in

many populations around the world19,20 and in isolated

populations.21,22

At the same time, Perlegens Sciences genotyped B1.58

million SNPs on 71 individuals of European, African and

Asian ancestry, and reported that these SNPs were able to

capture most of the common genetic variations based on

LD.23 The major lesson that geneticists learnt from these

two studies is that it is not necessary to genotype every

single SNP in the human genome because this would be

redundant. SNPs that are close to each other within a

genomic region tend to be inherited together more

frequent than expected by chance in a block pattern

(known as haplotype) due to the presence of LD. Because of

this unique relationship among SNPs, genotyping merely a

set of informative SNPs to serve as proxy markers (usually

called tagging SNPs, with r240.8) is sufficient to capture

most of the genetic information of SNPs, which are not

genotyped with only slight loss of statistical power. r2 is a

measurement of ‘correlation’ or LD between two SNPs

whose value ranges from 0 to 1 (r2 of one indicates

complete LD). r2 depends on both allele frequencies and

recombination between the two SNPs. The sample size that

is required in a genetic association study is inversely

proportional to the r2 value.24,25

Key advancements in genotyping technology and
genetic information
With the rapid development of genotyping technologies

and decreasing of genotyping costs, currently, genotyping

half a million SNPs on thousands of DNA samples is within

the capacity of many research institutes. In addition to

the fixed content genome-wide genotyping arrays, several

custom made genotyping products were also introduced by

Illuminas and Affymetrixs to accelerate the fine mapping

of the genomic regions identified by GWA studies and

linkage analysis.26 –28 The genome-wide genotyping pro-

ducts supplied by Illumina and Affymetrix such as Illumina

HumanHap550 and Affymetrix GeneChip 500K offer good

coverage of the International HapMap Phase I and Phase II

data in both Caucasians and Asians. However, the genomic

coverage in Africans was lower due to greater genetic

diversity and weaker LD.29,30

With the wealth of genetic information gathered from

the HGP and International HapMap Project, the collection

of large number of cases and controls, the rapid advance-

ment in genotyping technologies and the advent of

powerful analysis algorithms such as PLINK,31 the GWA

approach is rapidly becoming feasible. GWA approach

represents the most powerful and efficient study design in

genetic dissection of complex diseases in comparison to

traditional linkage studies24,25 and will remain so until we

reach the $1000 whole-genome sequencing era.32

GWA studies of complex human diseases
The strengths of GWA approach are that it is hypothesis

free and that it is able to comprehensively interrogate the
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entire human genome. This approach enables investigators

to identify novel loci or genes for various diseases and

quantitative traits. The achievements of GWA studies have

been witnessed in genetic dissection of several complex

diseases, namely, age-related macular degeneration (AMD),

obesity, inflammatory bowel diseases (IBD), type-2 diabetes

(T2D), breast cancer and prostate cancer. Owing to article

length constraints, only the GWA studies that were

published on these six complex diseases have been selected

to be reviewed in this paper. Table 1 summarizes the genes

or loci that were identified by GWA studies or consistently

replicated for these diseases. In Figure 1, which illustrates

the number of GWA publications from 2005 to June/July

2007, we see a sharp increase in the number of publications

in 2007 in comparison to the previous 2 years. The aims of

this review paper are to provide a timely summary of the

GWA studies that were published until June/July 2007 and

to evaluate to what extent the results have been replicated

and validated. Replication of GWA results is essential to

distinguish between ‘statistical’ artifacts and true associa-

tions.57 This review paper was organized into several

sections according to the disease phenotypes and chron-

ologically by the year of publication. The disease sections

are followed by a discussion on the determinant factors of a

successful GWA study, the future challenges and limita-

tions of GWA approach.

AMD
The success of GWA approach in genetic dissection of

complex diseases was apparent in April 2005.33 The first

GWA study which used a commercial genotyping platform

to examine the genetic basis of AMD had been published.

In the genome-wide scan, Klein et al33 identified a

common intronic variant in the complement factor H

(CFH) gene that strongly associated with AMD in 96 cases

and 50 controls. The P-value of this association surpassed

the genome-wide significance by Bonferroni correction even

with a relatively small sample size. Perhaps both the

commonness of the allele and the large genetic effect was

reported to have – odds ratio (OR) for homozygous risk allele

was 7.4 – contributed to the highly significant finding. In

addition, accurate phenotyping may have played a key role

in the study, since only AMD patients with the presence of

large drusen were recruited, which reduced phenotypic

heterogeneity. The genomic region that initially identified

was followed by re-sequencing and fine mapping, and

finally a nonsynonymous SNP (Y402H) that was strongly

associated with AMD was reported. Concurrently, two

independent groups58,59 also reported similar results via

fine mapping of the genomic region in 1q31-32 that was

identified in previous studies. That three separate studies

firmly pinned down the same functional variant speaks of

the robustness of the association, which subsequent

studies60 have replicated. This is by far the most robust

association that has been derived from a GWA study.

AMD can be classified into two clinical subtypes, dry

(non-neovascular) or wet (neovascular). The former sub-

type, which accounts for B90% of AMD cases, was

associated with the functional variant identified in CFH.

However, a novel genetic variant, an SNP (rs11200638)

located upstream of the HtrA serine peptidase 1 (HTRA1)

putative transcription start site, was also identified for wet

subtype of AMD in the study by DeWan et al.34 This

association was subsequently replicated in a Caucasian

population61 and in a Japanese population.62

Body mass index and obesity
Several GWA studies were published in 2006 after the

genetic community witnessed the successful results of

Table 1 The genes or loci that were identified by GWA
studies or consistently replicated for complex diseases is
reviewed in this paper

Disease Gene/locus Reference

AMD CFH 33

HTRA1 34

BMI and obesity INSIG2 35

FTO 36

IBD CARD15/NOD2a 37,38

5q31a 37,39

IL23Ra 40,37

ATG16L1a 41,37

10q21a 41,37

5p13.1a 37,42

5q33 (IRGM) 37,43

3p21 (BSN) 37,43

10q24.2 (NKX2-3) 37,43

18p11 (PTPN22) 37,43

T2D PPARGb 44

KCNJ11b 45

TCF7L2b 46

SLC30A8b 47

LD block contains IDE-KIF11-HHEXb 47

LD block contains EXT2-ALX4 47

CDKN2A/CDKN2B 48–50

CDKAL1 48–51

IGF2BP2 48–50

Breast cancer FGFR2 52

TNRC9 52

MAP3K1 52

LSP1 52

FGFR2 53

2q35 54

16q12 54

Prostate cancer 8q24 55,56

aThese genes and loci were successfully replicated by WTCCC GWA
study (Reference 37).
bThese genes were successfully replicated by GWA studies
(Reference: 48 – 51).
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AMD. The first was published in April 2006 to study the

genetic basis of obesity. Using the Affymetrix GeneChip

100K to genotype individuals from the Framingham Heart

Study cohort, Herbert et al35 identified a novel common

genetic variant (rs7566605) near the insulin signaling

protein type 2 (INSIG2) gene that was associated with an

increased body mass index (BMI) or obesity. They subse-

quently tested the SNP in five additional cohorts and the

association was replicated in all except one. These results

provided strong statistical evidence to support the associa-

tion between INSIG2 gene and obesity; nevertheless, the

genetic association failed to be replicated by three

independent studies.63–66 To date, the results from sub-

sequent genetic association studies have been conflicting;

the association seems to be reproduced in several but not

all the studies.67 Since then, there has been little success

in the identification of genetic determinants of obesity,

except for one novel gene that will be discussed in the T2D

section of this review.

IBD
The first GWA study on IBD was conducted by the North

American IBD Genetics Consortium.40 IBD is a chronic

inflammatory disease of gastro-intestinal tract and it can be

divided into two clinical subtypes, namely, Crohn’s disease

(CD) and ulcerative colitis. The investigators recruited ileal

CD cases to minimize the phenotypic heterogeneity. This

careful ascertainment of cases is recommended because it

will increase the statistical power to detect the disease

variants especially if the diverse clinical manifestations

are due to genetic heterogeneity. Duerr et al40 identified a

novel gene for IBD – a nonsynonymous SNP (Arg381Gln)

in interleukin-23 receptor (IL23R) gene, during an interim

analysis of their data. This gene encodes a subunit of the

receptor for IL23 (pro-inflammatory cytokine) and thus is

an interesting and biologically plausible gene for inflam-

matory diseases. The genetic association was subsequently

replicated in a Jewish case–control and in a family-based

association study.

The association that they found in the interim analysis

was then unequivocally replicated in four independent

groups68–71 and provided compelling evidence to support

IL23R as a genuine susceptibility gene for IBD. The results

of their complete genome scan were published recently41

and the investigators were able to uncover several novel

loci for IBD, the most notable novel gene was autophagy-

related 16-like 1 (ATG16L1). The nonsynonymous SNP

(rs2241880) located in the exon 8 of this autophagy gene

was previously reported to be associated with CD in a

gene-centric GWA study.72 Likewise, this association was

unambiguously replicated by two independent studies

from UK.73,74

T2D
Although the role of genetic susceptibility in T2D is well

established, the results from genetic association studies

* Ref: 33, 83  

** Ref: 34, 35, 40  

*** Ref: 36, 37, 41, 42, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 81, 82, 88, 89, 90 

This is not a complete file.

0

2

4

6

8

10

12

14

16

18

20

2005* 2006** June/July 2007***

Figure 1 The number of GWA publications from 2005 to June/July 2007.
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have been quite disappointing. Before 2006, there was

limited success in genetic studies of T2D. The genes

identified, with the exception of PPARG and KCNJ11

gene,44,45 have been conflicting and inconsistent. In

2006, TCF7L2 gene was first reported to be associated with

T2D by deCODE Genetics, who fine mapped a suggestive

linkage region identified previously in an Icelandic popu-

lation.46 The association has since been consistently

replicated in more than 20 studies across different popula-

tions with diverse ancestral backgrounds, thereby providing

convincing evidence that TCF7L2 was associated with

T2D.75

The first GWA study on T2D revealed four novel loci, the

most notable being a nonsynonymous SNP in solute carrier

family 30 member 8 (SLC30A8) gene.47 It encodes a zinc

transporter protein expressed only in b cells, which is also

implicated in the final stages of insulin biosynthesis,

making this gene a strong biological candidate for T2D.

In addition, the investigator also confirmed the previously

identified diabetes gene – TCF7L2. However, only two from

these four novel loci, were successfully replicated by three

diabetes GWA studies that published concurrently in

Science (discussed below).

The aim of the GWA study by Frayling et al36 was to

identify susceptibility genes for T2D; however, they

uncovered a new gene for BMI – fat mass and obesity-

associated (FTO) gene. Initially, several SNPs in FTO gene

were found strongly associated with T2D. However, the

association was abolished after adjustment for BMI in cases

and controls. It was therefore concluded that the FTO gene

was more likely to be associated with BMI or obesity. To test

this hypothesis the investigators attempted to replicate

the association in nine independent studies and the

results showed that the common variants in FTO gene

were reproducibly associated with BMI and the risk of

being overweight or obese from childhood to adult. This

enormous replication effort has provided strong evidence

beyond statistical doubt for the genetic association.

Huge success in genetic dissection of T2D was achieved

this year by three GWA studies conducted by the Wellcome

Trust Case Control Consortium (WTCCC), Diabetes Genetic

Initiative and Finland-United States Investigation of

Non-Insulin Dependent Diabetes Mellitus Genetics.48–50

These diabetes research groups were able to discover three

novel loci for T2D. Their success highlights the importance

of scientific collaboration and sharing of genome-wide

genotyping data among different research groups. For

these three GWA studies, the combined sample size

exceeded 32000 samples. This large sample size allowed

the investigators to detect variants with modest genetic

effects (OR of 1.1–1.2). All three putative candidate genes

that were identified are biologically plausible genes for

T2D, that is, cyclin-dependent kinase inhibitor 2A/2B

(CDKN2A/CDKN2B), CDK5 regulatory subunit associated

protein 1-like 1 (CDKAL1) and insulin-like growth factor 2

binding protein 2 (IGF2BP2). In addition to these dis-

coveries, they also successfully replicated the genetic

association of several genes known to be associated with

diabetes, namely, PPARG, KCNJ11, TCF7L2, SLC30A8 and

HHEX. In all, eight loci/genes have been detected and

consistently replicated for T2D in Caucasians. Interest-

ingly, all the genetic variants identified have been located

in noncoding regions, particularly an SNP (rs10811661)

that is located 125 kb away from the nearest annotated

genes that is CDKN2A/CDKN2B. In addition to these three

studies, an independent GWA study was conducted con-

currently in an Icelandic population.51 The investigators

also managed to identify the CDKAL1 gene for T2D. All

newly discovered loci by these GWA studies were replicated

in a series of studies with large sample size, and are

therefore likely to be bona fide loci or genes for T2D. The

identification of these novel loci is important to further

enhance our understanding on the genetic basis and

pathogenesis of T2D.

Breast cancer
The highly penetrant genes – BRCA1 and BRCA2 – only

account for B20% of the total genetic risk of breast cancer.

Thus far, the results from the genetic association studies

for this cancer have been dissatisfying. However, with the

efforts of the Breast Cancer Association Consortium in

conducting candidate gene case–control association stu-

dies with enhanced statistical power by combining several

breast cancer cohorts, two novel genes were identified,

namely, CASP8 and TGFB1.76 Recently, the success of

genetic studies of breast cancer has also been seen in three

studies52–54 and their findings are starting to shed some

new light on the genetic basis of this cancer. With their

three-stage study design and a sample size of more than

50000 cases and controls, Easton et al52 identified six

highly significant SNPs. The most notable genes identified

were fibroblast growth factor receptor 2 (FGFR2) and the

LD block, which contain TNRC9 gene. FGFR2 encodes a

tyrosine kinase receptor, which was overexpressed in breast

cancer. Therefore, it is a strong biological candidate gene.

This novel gene was simultaneously uncovered by Hunter

et al53 who identified four SNPs within intron 2 of FGFR2

that were highly associated with breast cancer. Collectively,

these findings indicate a novel susceptibility gene for

breast cancer, but further studies are required to fine map

and to identify the disease variants.

The third GWA study was done by Stacey et al54 in

Icelandic breast cancer cases and controls. Ten SNPs with

the most significant P-values were tested in additional

five cohorts. However, only two SNPs were consistently

associated with breast cancer that is one SNP on chromo-

some 2q35 (rs13387042) and the other one on 16q12

(rs3803662). Interestingly, the 2q35 region contains no
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known genes, but the SNP that falls on 16q12 is located

near the 50 region of TNRC9 gene that was simultaneously

identified by Easton et al52.

Prostate cancer
Just as with other cancers; identifying the genetic variants

with modest effect for prostate cancer has been proven

difficult. However, some success was achieved recently

in genetic studies of prostate cancer. Chromosome 8q24

region was first identified via the genome-wide linkage

analysis in Icelandic families with prostate cancer. Allele-8

of the microsatellite DG8S737 was consistently associated

with the disease in a series of studies.77 One year later, the

investigators reported the second genetic variant in the

8q24 region for prostate cancer through GWA study.55

Yeager et al56 also applied the same approach in genetic

exploration of prostate cancer. Haiman et al78 followed up

on their initial admixture results by extensively fine

mapping the region. The results from these three indepen-

dent studies suggest that 8q24 is implicated in prostate

cancer and that this genomic region, may be harboring

susceptibility genes for prostate cancer. Further studies are

needed to discern the disease variants and genes within

this region.

WTCCC
WTCCC is the largest ever GWA study to explore the

genetics of seven common diseases.37 In total, 17 000

individuals that is 2000 cases for each of the seven

common diseases and 3000 shared controls were geno-

typed by Affymetrix GeneChip 500K. This is a huge success

because many novel loci were uncovered for these

common diseases and many of them have been success-

fully replicated in other independent sample sets, namely,

T2D (as discussed above), CD,43 and type-1 diabetes.79 As

for CD, the second autophagy gene – immunity-related

GTPase family, M – was revealed in the study by Parkes

et al.43 In addition to the discovery of many novel loci,

almost all of the genes that identified by previous studies

for these common diseases were successfully replicated

by WTCCC, for example, HLA-DRB1, INS, CTLA4, PTPN22,

IFIH1 and IL2RA80 genes were replicated for type-1

diabetes. As a whole, these results suggest that there may

be two important pathways for the pathogenesis of CD that

is IL23 and autophagy pathways.

From the list of novel loci or genes revealed by WTCCC,

one of the most intriguing results, perhaps, is the

association of coronary artery disease with the region on

chromosome 9p21 as this region contains the coding

sequences for CDKN2A/CDKN2B, which are genes asso-

ciated with T2D as well. At the same time, the same region

was found to be associated with coronary heart disease and

myocardial infarction by other two independent studies

respectively.81,82 These results might help to explain why

some individuals are more susceptible to these two closely

related common diseases.

Parkinson disease and other neurological diseases
The papers that were discussed above are examples of

successful GWA studies, which yielded spectacular results

(except the association of INSIG2 gene with obesity). On

the other hand, there have been examples of GWA studies

of complex diseases where validation of initial results has

not been achieved yet. For instance, a two-stage GWA

study by Maraganore et al83 identified 13 SNPs strongly

associated with Parkinson disease. Nevertheless, lack of

replication was observed subsequently84–86 despite a large

sample size of B10000 from a large scale international

study.87

Hitherto three genome-wide scans using either Illumina

HumanHap300 or HumanHap550 genotyping platform

were completed for these complex diseases, namely,

Parkinson disease, ischemic stroke and amyotrophic lateral

sclerosis88–90 and the data was released into public

domain. None of the SNPs achieved or surpassed genome-

wide significance in these three studies. There are

several possible explanations: (1) the Bonferroni correction

is too stringent, which may have overcorrected the

significance threshold, (2) there is a lack of statistical

power to detect common variants with modest effect in

these genome-wide scans because of relatively small

sample sizes and finally, (3) perhaps there is no disease

variant with large genetic effect (like the case of CFH gene

for AMD) for these neurological diseases. Nevertheless, the

availability of these resources will allow researchers to

access the genome-wide scan data and will thus accelerate

the pace of discovery to identify novel genetic variants for

these neurological diseases.

Determinant factors for a successful GWA study
From the experience of recent GWA studies, we learn that

one of the major determinants of the success seems to be

the requirement of a large sample size to provide adequate

statistical power to detect genetic variants with modest

effect that is ORo1.5. The statistical power of genetic

association study is basically a function of sample size,

magnitude of genetic effect, and allele frequency. As the

latter two factors are unknown until the genetic variants

are uncovered, sample size is the major controllable factor

in the determination of statistical power. In addition,

power also depends on the tag SNPs selected that is the

genome coverage.91 Both these factors are modifiable,

thus, increasing both the sample size and the genome

coverage will increase the statistical power of the study.
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The large sample size can be more easily achieved through

consortia or collaboration as demonstrated in the breast

cancer (BCAC) and T2D studies respectively, and the

Genetic Association Information Network is a good

example of these efforts. Genetic Association Information

Network is a public–private partnership that was estab-

lished to interrogate the genetic basis of common diseases

through a series of collaborative GWA studies.92

Almost all the SNPs that appeared highly significant in

WTCCC GWA study either had strong prior evidence of

association with the diseases studied or were successfully

confirmed in the subsequent replication studies. A large

sample size with an enriched statistical power is both

crucial and essential in GWA study to ensure that genuine

associations rank at the top of the SNPs according to the

P-values.93 Researchers should be cautious when applying

stringent significance thresholds (like Bonferroni correc-

tions) or when weighing the SNPs for replication in a two-

stage study design to control the false-positive associations,

as they run the risk of overcorrecting and subsequently

having type II error (because many true positive associa-

tions with modest P-values would have been excluded in

the genome-wide scan). Stringent significance threshold is

only reasonable if the sample size in the genome-wide scan

is large and the statistical power is adequate enough to

allow most of the true signals to rank at the top of the list.

All reviewed studies used commercially available geno-

typing platforms from Illumina, Affymetrix or Perlegen.

Good genome coverage is of utmost importance in GWA

studies because the underlying principle of this approach is

based on LD to detect the disease variants. In those regions

with a scarce number of SNPs or which are poorly covered

by markers, genuine disease variants might be missed since

these disease variants were not in strong LD (r240.8) with

any of the SNPs that were genotyped on the array.

Furthermore, extensive replication is essential to declare a

bona fide association. Reproducing strong associations that

were found in the GWA does not seem to be a major issue

in the recent GWA studies discussed above (with few

exceptions), as all were successfully validated in a series of

replication studies and provided strong evidence to sup-

port the genetic association.

Proper study design also plays a key role in determining

the success of GWA studies. Researchers need to pay more

attention on the methodology and analysis issues such as

applying stringent control of the quality of genotyping

data to minimize the genotyping errors which could both

produce spurious associations and mask the true associa-

tions. It is also recommended to use other genotyping

platforms such as Sequenom iPlex to validate the SNPs

from genome-wide scan since this genotyping technology

uses a totally different principle in allelic discrimination or

genotyping, that is, MALDI-TOF MS (matrix assisted laser

desorption/ionization, time-of-flight mass spectrometry)94

versus hybridization and fluorescent intensity measure-

ment methods employed in both Illumina and Affymetrix

platforms. The accuracy of classification of disease pheno-

type is equally important for a successful GWA study; the

importance of this criterion was demonstrated in the AMD

and Crohn’s disease studies by Klein et al and Duerr

et al33,40 respectively.

It is important to address the issue of population

stratification, even when the study was conducted in a

relatively homogenous population, or if the cases and

controls were well matched and recruited from the same

geographical location, because these techniques cannot

totally eliminate the effect of population stratification. The

effect of this confounding factor will be intensified in

the GWA studies where tens of thousands of samples are

needed.95 Freeware such as EIGENSTRAT96 (available on-

line) should be applied in GWA studies to identify outliers

with different ancestry backgrounds and to exclude them

from further analysis. This issue has been receiving

attention from researchers in their GWA studies as

discussed above to exclude entirely the possibility that

the positive associations observed are attributed to popula-

tion stratification.

Challenges waiting ahead
Once the researchers establish the association beyond

statistical doubt, three additional challenges are still wait-

ing ahead. First, although many novel loci were identified

for complex diseases, the task of identifying the actual

functional disease variants remains ahead. It is often

difficult to discern the disease variants, especially when

the surrounding markers are in perfect or nearly perfect LD

(r240.9), because they will give almost similar strength of

association. Therefore, re-sequencing is usually needed

after identifying the genomic region that potentially

harbors the disease variants. Re-sequencing strategies will

enable investigators to uncover novel and uncommon

variants. Often, functional studies are also required, but

these studies are only feasible for those genes or regions,

which are well-characterized. In most cases, GWA approach

is unlikely to directly reveal the functional variants for the

disease. This is demonstrated by the AMD study where

DeWan and coworkers first identified an intragenic SNP in

their genome-wide scan before they unraveled the func-

tional variant that affects the transcription of HTRA1

gene.34

Second, it remains difficult to establish the functional

role of the disease variants, for example, how the disease

variants affect the structure and function of the genes (and

its end product – proteins), and also transcription regula-

tion. This is especially challenging for SNPs located in

genes, which are not well-characterized or unknown

functions, noncoding regions and gene deserts since our

knowledge about the functional elements in the human

The success of the genome-wide association approach
CS Ku and KS Chia

560

European Journal of Human Genetics



genome is still very limited. For instance, a strong

association for a cluster of SNPs on chromosome 5p13.1

was consistently found for CD.37,42 Interestingly this

region was located within a 1.2Mb gene desert and the

nearest annotated gene is prostaglandin E receptor 4

(PTGER4). So, one wonders how these ‘long-distance’

variants affect the function of the disease genes? Perhaps

we can get some answers from the pilot phase of the

ENCODE Project.97 The ENCODE Projects found that

regulatory regions or elements of a gene can be located

far from it and yet still be able to affect expression and

function the gene. This project was initiated after the

completion of HGP with the aim to identify and char-

acterize all the functional elements within the entire

human genome.98 Although the pilot phase of the

ENCODE Project was finished; there is still 99% of human

genome that needs to be explored. Investigating the

functional roles of those SNPs located within noncoding

regions and gene deserts pose tremendous challenges while

promising the possibility of great rewards, the identifica-

tion of novel functional elements previously uncharacter-

ized. Lastly, it is not a trivial task to elucidate the molecular

pathway based on the results derived from GWA studies of

the disease, especially for genes or proteins with unknown

function.

Limitations of GWA studies
Nowadays, GWA approach is the ‘best’ medicine in

dissecting the genetic basis of complex diseases, but it is

not the ‘panacea’. There are several limitations and

problems with this study design. In GWA approach, several

hundred thousands of SNP markers throughout the entire

genome are analyzed at once, creating a multiple-hypoth-

esis problem which can lead to substantial type I error. To

minimize the false-positive results, statistical adjustment

like Bonferroni correction is applied and a very stringent

P-value is needed, usually at the significance level of 10�7.

This translates into the requirement of a large sample size

of tens of thousands of samples for both genome-wide scan

and replication studies. This requirement is hard and is not

likely to be attained in a single study; hence, collabo-

rations and the establishment of consortia are of utmost

importance.

GWA approach is based on the principle of LD; therefore,

the genetic markers that identified are unlikely to be the

disease variants. Extensive re-sequencing and fine mapping

are required to discern the disease variants; it is a great

challenge in fine mapping when the SNPs within the

genomic region are in strong LD. This is a double-edged

sword, although strong LD helps to reduce the number of

markers to genotype in the genome-wide scan, it also limits

the ability to ‘resolve’ the association and creates difficulty

to identify the ‘culprits’. Biological studies are therefore

required to determine the functional roles of the disease

variants.

The GWA study design is hypothesis-generating rather

than hypothesis-testing; therefore, replication is para-

mount in GWA studies to confirm the results, and

replication has been widely accepted as the gold standard

to discern genuine genetic associations. Lack of replication

or conflicting result is still a problem in some GWA studies

of diseases such as Parkinson’s disease83 and INSIG2 gene

for obesity.35 These and other problems in GWA studies

have been well addressed by Shriner et al99 and Williams

et al100 in their Letters to Science.

Conclusions
The genetic spectrum of complex human diseases has yet

to be elucidated, but the recent achievements in genetic

studies of various complex diseases have provided some

new insights. Most of the genetic variants that have been

consistently identified for the diseases studied are common

(minor allele frequency 45%) and confer only modest

genetic effect (ORo1.5). Does it mean that the genetic

spectrum of complex diseases comprises only of common

variants with modest effect? The answer is probably no;

rare variants, such as IL23R,40 are likely to contribute to

disease risk as well as influence the quantitative trait for

example, high-density lipoprotein cholesterol level.101,102

The relative proportion of common variants versus rare

variants in the total genetic contribution to both complex

diseases and quantitative traits is still largely unknown.

Less than expected success in identifying rare genetic

variants might be due to the fact that current genotyping

platforms have poor coverage for rare variants. The SNP

markers included in both Illumina and Affymetrix geno-

typing arrays are biased toward common alleles. As a result,

these markers are in weak LD (r2) with rare variants, mainly

because of the discrepancy between their frequencies. To

get a high r2 value, the frequencies of the two SNPs must be

comparable in addition to no recombination that occurred

between them, so the proxy marker could predict the

nongenotyped SNP via LD. Since statistical power drops

drastically for those rare SNPs, a larger sample size than the

figure reported in the recent GWA studies might be needed

to detect rare variants.

According to the common disease common variant

hypothesis,24,25 common disease such as T2D is likely

due to common genetic variants with modest effect. Since

the genetic variants are common, they are likely to be

shared across different populations with diverse ancestry

backgrounds. Most of the GWA and replication studies

were conducted in Caucasian populations; less replication

effort has been devoted in other populations like Asians

and Africans. So it would be interesting to determine and

investigate how many loci or genes identified by these

The success of the genome-wide association approach
CS Ku and KS Chia

561

European Journal of Human Genetics



GWA studies are also associated with the disease pheno-

types in other populations. Well-designed replication

studies are crucial to either validate or refute the initial

positive association. The guidelines to conduct replication

studies were suggested by NCI-NHGRI Working Group on

Replication in Association Studies.57

The most successful studied diseases thus far are T2D and

CD; about 10 loci or genes have been consistently

identified in each of the diseases from the findings of

GWA studies. Does this signal the end of genetic associa-

tion studies of these diseases? This is probably only the

beginning; it has been predicted that there are still plenty

of genetic variants or genes underlying the genome for the

researchers to uncover.

Note
The pace of development in GWA studies is at an

unprecedented speed, such that during the submission

and revision of this review paper, a substantial number of

GWA studies were also published. However, it is certainly

beyond the scope and the length in this review paper.

However, we think that it is important to briefly highlight

the GWA studies published during July–December 2007

(although the list is incomplete); the complex diseases that

were interrogated by these GWA studies include the restless

legs syndrome (periodic limb movements),103,104 coronary

artery disease,105 multiple sclerosis,106 gallstone disor-

der,107 exfoliation glaucoma,108 colorectal cancer,109,110

HIV,111 type 1 diabetes,112 childhood asthma,113 atrial

fibrillation,114 sporadic amyotrophic lateral sclerosis115,116

and rheumatoid arthritis.117,118
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