Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Maternal and pediatric nutrition

Developmental origins of type 2 diabetes: a perspective from China

Abstract

There has been a marked increase in the prevalence of diabetes in Asia, including China, over the last few decades. While the increased prevalence of diabetes has often been attributed to the nutritional transition associated with recent economic development, emerging data suggest that early-life exposures also play a major role in shaping developmental trajectories, and contributes to alter an individual’s susceptibility to diabetes and other non-communicable diseases (NCDs). Early-life exposures such as in utero exposure to undernutrition has been consistently linked with later risk of diabetes and obesity. Furthermore, in utero exposure to maternal hyperglycemia, maternal obesity and excess gestational weight gain are all linked with increased childhood obesity and later risk of diabetes. Emerging data have also highlighted the potential link between early-feeding practices, the role of one-carbon metabolism in metabolic programming and endocrine disrupting chemicals (EDCs) with later risk of diabetes. These different developmental exposures may all be highly relevant to the current epidemic of diabetes in China. For example, the prevalence of gestational diabetes has increased markedly over the last two decades, and may contribute to the diabetes epidemic by driving macrosomia, childhood obesity and later risk of diabetes. In order to address the current burden of diabetes, a lifecourse perspective, incorporating multisectoral efforts from public health policy down to the individuals, will be needed. Several major initiatives have been launched in China as part of its national plans for NCD prevention and treatment, and the experience from these efforts would be invaluable.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ramachandran A, Ma RC, Snehalatha C . Diabetes in Asia. Lancet 2010; 375: 408–418.

    Article  PubMed  Google Scholar 

  2. Nanditha A, Ma RC, Ramachandran A, Snehalatha C, Chan JC, Chia KS et al. Diabetes in Asia and the Pacific: implications for the global epidemic. Diabetes Care 2016; 39: 472–485.

    Article  CAS  PubMed  Google Scholar 

  3. Xu Y, Wang L, He J, Bi Y, Li M, Wang T et al. Prevalence and control of diabetes in Chinese adults. JAMA 2013; 310: 948–959.

    Article  CAS  PubMed  Google Scholar 

  4. Chan JC, Zhang Y, Ning G . Diabetes in China: a societal solution for a personal challenge. Lancet Diabetes Endocrinol 2014; 2: 969–979.

    Article  PubMed  Google Scholar 

  5. Yeung RO, Zhang Y, Luk A, Yang W, Sobrepena L, Yoon KH et al. Metabolic profiles and treatment gaps in young-onset type 2 diabetes in Asia (the JADE programme): a cross-sectional study of a prospective cohort. Lancet Diabetes Endocrinol 2014; 2: 935–943.

    Article  CAS  PubMed  Google Scholar 

  6. Chan JC, Lau ES, Luk AO, Cheung KK, Kong AP, Yu LW et al. Premature mortality and comorbidities in young-onset diabetes: a 7-year prospective analysis. Am J Med 2014; 127: 616–624.

    Article  PubMed  Google Scholar 

  7. Huo X, Gao L, Guo L, Xu W, Wang W, Zhi X et al. Risk of non-fatal cardiovascular diseases in early-onset versus late-onset type 2 diabetes in China: a cross-sectional study. Lancet Diabetes Endocrinol 2016; 4: 115–124.

    Article  PubMed  Google Scholar 

  8. Zheng Y, Ji L, Ling W . Cost-of-illness studies of diabetes mellitus in China: a systematic review. Chin J Endocrinol Metab 2012; 28: 821–825.

    Google Scholar 

  9. Wang W, McGreevey WP, Fu C, Zhan S, Luan R, Chen W et al. Type 2 diabetes mellitus in China: a preventable economic burden. Am J Manag Care 2009; 15: 593–601.

    PubMed  Google Scholar 

  10. Lu J, Wang L, Li M, Xu Y, Jiang Y, Wang W et al. Metabolic syndrome among adults in China - The 2010 China Noncommunicable Disease Surveillance. J Clin Endocrinol Metab 2016, e-pub ahead of print 29 November 2016.

  11. Hu FB . Globalization of diabetes: the role of diet, lifestyle, and genes. Diabetes Care 2011; 34: 1249–1257.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ma RC, Lin X, Jia W . Causes of type 2 diabetes in China. Lancet Diabetes Endocrinol 2014; 2: 12.

    Article  Google Scholar 

  13. Popkin BM . Synthesis and implications: China's nutrition transition in the context of changes across other low- and middle-income countries. Obes Rev 2014; 15 (Suppl 1), 60–67.

    Article  PubMed  Google Scholar 

  14. Yang G, Wang Y, Zeng Y, Gao GF, Liang X, Zhou M et al. Rapid health transition in China, 1990-2010: findings from the Global Burden of Disease Study 2010. Lancet 2013; 381: 1987–2015.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wang H, Zhai F . Programme and policy options for preventing obesity in China. Obes Rev 2013; 14 (Suppl 2), 134–140.

    Article  CAS  PubMed  Google Scholar 

  16. Gluckman PD, Hanson MA, Cooper C, Thornburg KL . Effect of in utero and early-life conditions on adult health and disease. N Engl J Med 2008; 359: 61–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Godfrey KM, Gluckman PD, Hanson MA . Developmental origins of metabolic disease: life course and intergenerational perspectives. Trends Endocrinol Metab 2010; 21: 199–205.

    Article  CAS  PubMed  Google Scholar 

  18. Berends LM, Ozanne SE . Early determinants of type-2 diabetes. Best Pract Res Clin Endocrinol Metab 2012; 26: 569–580.

    Article  CAS  PubMed  Google Scholar 

  19. Hanson MA, Gluckman PD . Early developmental conditioning of later health and disease: physiology or pathophysiology? Physiol Rev 2014; 94: 1027–1076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hales CN, Barker DJ, Clark PM, Cox LJ, Fall C, Osmond C et al. Fetal and infant growth and impaired glucose tolerance at age 64. BMJ 1991; 303: 1019–1022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barker DJP, Hales CN, Fall CD, Osmond C, Phipps K, Clark P . Type 2 (non-insulin-dependent) diabetes mellitus, hypertension, and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia 1993; 36: 62–67.

    Article  CAS  PubMed  Google Scholar 

  22. Whincup PH, Kaye SJ, Owen CG, Huxley R, Cook DG, Anazawa S et al. Birth weight and risk of type 2 diabetes: a systematic review. JAMA 2008; 300: 2886–2897.

    Article  CAS  PubMed  Google Scholar 

  23. Wei JN, Sung FC, Li CY, Chang CH, Lin RS, Lin CC et al. Low birth weight and high birth weight infants are both at an increased risk to have type 2 diabetes among schoolchildren in Taiwan. Diabetes Care 2003; 26: 343–348.

    Article  PubMed  Google Scholar 

  24. Chen Y, Li G, Ruan Y, Zou L, Wang X, Zhang W . An epidemiological survey on low birth weight infants in China and analysis of outcomes of full-term low birth weight infants. BMC Pregnancy Childbirth 2013; 13: 242.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shan X, Chen F, Wang W, Zhao J, Teng Y, Wu M et al. Secular trends of low birthweight and macrosomia and related maternal factors in Beijing, China: a longitudinal trend analysis. BMC Pregnancy Childbirth 2014; 14: 105.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li G, Kong L, Li Z, Zhang L, Fan L, Zou L et al. Prevalence of macrosomia and its risk factors in China: a multicentre survey based on birth data involving 101723 singleton term infants. Paediatr Perinat Epidemiol 2014; 28: 345–350.

    Article  PubMed  Google Scholar 

  27. McMillen IC, Robinson JS . Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev 2005; 85: 571–633.

    Article  CAS  PubMed  Google Scholar 

  28. Ravelli AC, van der Meulen JH, Michels RP, Osmond C, Barker DJ, Hales CN et al. Glucose tolerance in adults after prenatal exposure to famine. Lancet 1998; 351: 173–177.

    Article  CAS  PubMed  Google Scholar 

  29. Hales CN, Barker DJ . Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Int J Epidemiol 2013; 42: 1215–1222.

    Article  CAS  PubMed  Google Scholar 

  30. Smil V . China's great famine: 40 years later. BMJ 1999; 319: 1619–1621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li Y, He Y, Qi L, Jaddoe VW, Feskens EJ, Yang X et al. Exposure to the Chinese famine in early life and the risk of hyperglycemia and type 2 diabetes in adulthood. Diabetes 2010; 59: 2400–2406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang N, Wang X, Han B, Li Q, Chen Y, Zhu C et al. Is exposure to famine in childhood and economic development in adulthood associated with diabetes? J Clin Endocrinol Metab 2015; 100: 4514–4523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li J, Liu S, Li S, Feng R, Na L, Chu X et al. Prenatal exposure to famine and the development of hyperglycemia and type 2 diabetes in adulthood across consecutive generations: a population-based cohort study of families in Suihua, China. Am J Clin Nutr 2017; 105: 221–227.

    Article  CAS  PubMed  Google Scholar 

  34. Liu L, Wang W, Sun J, Pang Z . Association of famine exposure during early life with the risk of type 2 diabetes in adulthood: a meta-analysis. Eur J Nutr 2016; e-pub ahead of print 20 December 2016 doi:10.1007/s00394-016-1363-1.

    Article  PubMed  Google Scholar 

  35. Ma RC, Chan JC, Tam WH, Hanson MA, Gluckman PD . Gestational diabetes, maternal obesity, and the NCD burden. Clin Obstet Gynecol 2013; 56: 633–641.

    Article  PubMed  Google Scholar 

  36. International Diabetes Federation. IDF Diabetes Atlas, 7th edn. The International Diabetes Federation: Brussels, Belgium, 2015..

  37. Pettitt DJ, Aleck KA, Baird HR, Carraher MJ, Bennett PH, Knowler WC . Congenital susceptibility to NIDDM. Role of intrauterine environment. Diabetes 1988; 37: 622–628.

    Article  CAS  PubMed  Google Scholar 

  38. Ma RC, Chan JC . Pregnancy and diabetes scenario around the world: China. Int J Gynaecol Obstet 2009; 104 (Suppl 1), S42–S45.

    Article  PubMed  Google Scholar 

  39. Ma RC, Tutino GE, Lillycrop KA, Hanson MA, Tam WH . Maternal diabetes, gestational diabetes and the role of epigenetics in their long term effects on offspring. Prog Biophys Mol Biol 2015; 118: 55–68.

    Article  CAS  PubMed  Google Scholar 

  40. Tam CH, Wang Y, Luan J, Lee HM, Luk AO, Tutino GE et al. Maternal history of diabetes is associated with increased cardiometabolic risk in Chinese. Nutr Diabetes 2014; 4: e112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang F, Dong L, Zhang CP, Li B, Wen J, Gao W et al. Increasing prevalence of gestational diabetes mellitus in Chinese women from 1999 to 2008. Diabet Med 2011; 28: 652–657.

    Article  CAS  PubMed  Google Scholar 

  42. Leng J, Shao P, Zhang C, Tian H, Zhang F, Zhang S et al. Prevalence of gestational diabetes mellitus and its risk factors in Chinese pregnant women: a prospective population-based study in Tianjin, China. PLoS One 2015; 10: e0121029.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Zhu WW, Yang HX, Wei YM, Yan J, Wang ZL, Li XL et al. Evaluation of the value of fasting plasma glucose in the first prenatal visit to diagnose gestational diabetes mellitus in China. Diabetes Care 2013; 36: 586–590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tam WH, Ma RC, Yang X, Ko GT, Tong PC, Cockram CS et al. Glucose intolerance and cardiometabolic risk in children exposed to maternal gestational diabetes mellitus in utero. Pediatrics 2008; 122: 1229–1234.

    Article  PubMed  Google Scholar 

  45. Tam WH, Ma RC, Ozaki R, Li AM, Chan MHM, Yuen LY et al. In utero exposure to maternal hyperglycemia increases children’s cardiometabolic risk. Diabetes Care 2017, e-pub ahead of print 9 March 2017 doi:10.2337/dc16-2397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shi P, Yang W, Yu Q, Zhao Q, Li C, Ma X et al. Overweight, gestational weight gain and elevated fasting plasma glucose and their association with macrosomia in Chinese pregnant women. Matern Child Health J 2014; 18: 10–15.

    Article  PubMed  Google Scholar 

  47. Institute of Medicine (IOM) and National Research Council (NRC). Weight Gain During Pregnancy: Reexamining the Guidelines, The National Academies Collection: Reports funded by National Institutes of Health. National Academies Press: Washington, DC, USA, 2009..

  48. Tam CHT, Ozaki R, So WY, Chan JCN, Song X, Tam WH et alGestational weight gain is associated with short and long-term child health outcomes in Chinese: an analysis using structural equation modeling. World Diabetes Congress 2015: Vancouver, Canada, 2015.

  49. Hochner H, Friedlander Y, Calderon-Margalit R, Meiner V, Sagy Y, Avgil-Tsadok M et al. Associations of maternal prepregnancy body mass index and gestational weight gain with adult offspring cardiometabolic risk factors: the Jerusalem Perinatal Family Follow-up Study. Circulation 2012; 125: 1381–1389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Masuyama H, Hiramatsu Y . Effects of a high-fat diet exposure in utero on the metabolic syndrome-like phenomenon in mouse offspring through epigenetic changes in adipocytokine gene expression. Endocrinology 2012; 153: 2823–2830.

    Article  CAS  PubMed  Google Scholar 

  51. Crume TL, Brinton JT, Shapiro A, Kaar J, Glueck DH, Siega-Riz AM et al. Maternal dietary intake during pregnancy and offspring body composition: The Healthy Start Study. Am J Obstet Gynecol 2016; 215: 609 e1–609 e8.

    Article  CAS  Google Scholar 

  52. Shapiro AL, Kaar JL, Crume TL, Starling AP, Siega-Riz AM, Ringham BM et al. Maternal diet quality in pregnancy and neonatal adiposity: the Healthy Start Study. Int J Obes 2016; 40: 1056–1062.

    Article  CAS  Google Scholar 

  53. Hanson MA, Bardsley A, De-Regil LM, Moore SE, Poston L, Ma RC et al. FIGO recommendation on adolescent, preconception and maternal nutrition: think nutrition first. Int J Gynaecol Obstet 2015; 131 (Suppl 4), S213–S253. in press.

    Article  PubMed  Google Scholar 

  54. Yajnik CS, Deshpande SS, Jackson AA, Refsum H, Rao S, Fisher DJ et al. Vitamin B12 and folate concentrations during pregnancy and insulin resistance in the offspring: the Pune Maternal Nutrition Study. Diabetologia 2008; 51: 29–38.

    Article  CAS  PubMed  Google Scholar 

  55. Finer S, Saravanan P, Hitman G, Yajnik C . The role of the one-carbon cycle in the developmental origins of type 2 diabetes and obesity. Diabet Med 2014; 31: 263–272.

    Article  CAS  PubMed  Google Scholar 

  56. Liu N, Mao L, Sun X, Liu L, Chen B, Ding Q . Postpartum practices of puerperal women and their influencing factors in three regions of Hubei, China. BMC Public Health 2006; 6: 274.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Chan SM, Nelson EA, Leung SS, Cheung PC, Li CY . Special postpartum dietary practices of Hong Kong Chinese women. Eur J Clin Nutr 2000; 54: 797–802.

    Article  CAS  PubMed  Google Scholar 

  58. Jaddoe VW, de Jonge LL, van Dam RM, Willett WC, Harris H, Stampfer MJ et al. Fetal exposure to parental smoking and the risk of type 2 diabetes in adult women. Diabetes Care 2014; 37: 2966–2973.

    Article  PubMed  Google Scholar 

  59. Gardebjer EM, Anderson ST, Pantaleon M, Wlodek ME, Moritz KM . Maternal alcohol intake around the time of conception causes glucose intolerance and insulin insensitivity in rat offspring, which is exacerbated by a postnatal high-fat diet. FASEB J 2015; 29: 2690–2701.

    Article  CAS  PubMed  Google Scholar 

  60. Voerman E, Jaddoe VW, Gishti O, Hofman A, Franco OH, Gaillard R . Maternal caffeine intake during pregnancy, early growth, and body fat distribution at school age. Obesity (Silver Spring) 2016; 24: 1170–1177.

    Article  CAS  Google Scholar 

  61. Thayer ZM, Feranil AB, Kuzawa CW . Maternal cortisol disproportionately impacts fetal growth in male offspring: evidence from the Philippines. Am J Hum Biol 2012; 24: 1–4.

    Article  PubMed  Google Scholar 

  62. Long Q, Klemetti R, Wang Y, Tao F, Yan H, Hemminki E . High caesarean section rate in rural China: is it related to health insurance (New Co-operative Medical Scheme)? Soc Sci Med 2012; 75: 733–737.

    Article  PubMed  Google Scholar 

  63. Yang X, Li Y, Li C, Zhang W . Current overview of pregnancy complications and live-birth outcome of assisted reproductive technology in mainland China. Fertil Steril 2014; 101: 385–391.

    Article  PubMed  Google Scholar 

  64. Dominguez-Bello MG, De Jesus-Laboy KM, Shen N, Cox LM, Amir A, Gonzalez A et al. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat Med 2016; 22: 250–253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Freeman E, Fletcher R, Collins CE, Morgan PJ, Burrows T, Callister R . Preventing and treating childhood obesity: time to target fathers. Int J Obes 2012; 36: 12–15.

    Article  CAS  Google Scholar 

  66. Ng SF, Lin RC, Laybutt DR, Barres R, Owens JA, Morris MJ . Chronic high-fat diet in fathers programs beta-cell dysfunction in female rat offspring. Nature 2010; 467: 963–966.

    Article  CAS  PubMed  Google Scholar 

  67. Donkin I, Versteyhe S, Ingerslev LR, Qian K, Mechta M, Nordkap L et al. Obesity and bariatric surgery drive epigenetic variation of spermatozoa in humans. Cell Metab 2016; 23: 369–378.

    Article  CAS  PubMed  Google Scholar 

  68. Ziegler AG, Wallner M, Kaiser I, Rossbauer M, Harsunen MH, Lachmann L et al. Long-term protective effect of lactation on the development of type 2 diabetes in women with recent gestational diabetes mellitus. Diabetes 2012; 61: 3167–3171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gunderson EP, Hurston SR, Ning X, Lo JC, Crites Y, Walton D et al. Lactation and progression to type 2 diabetes mellitus after gestational diabetes mellitus: a Prospective Cohort Study. Ann Intern Med 2015; 163: 889–898.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Stuebe AM, Rich-Edwards JW, Willett WC, Manson JE, Michels KB . Duration of lactation and incidence of type 2 diabetes. JAMA 2005; 294: 2601–2610.

    Article  CAS  PubMed  Google Scholar 

  71. Gunderson EP, Kim C, Quesenberry Jr CP, Marcovina S, Walton D, Azevedo RA et al. Lactation intensity and fasting plasma lipids, lipoproteins, non-esterified free fatty acids, leptin and adiponectin in postpartum women with recent gestational diabetes mellitus: the SWIFT cohort. Metabolism 2014; 63: 941–950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yan J, Liu L, Zhu Y, Huang G, Wang PP . The association between breastfeeding and childhood obesity: a meta-analysis. BMC Public Health 2014; 14: 1267.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Dewey KG, Heinig MJ, Nommsen LA, Peerson JM, Lonnerdal B . Breast-fed infants are leaner than formula-fed infants at 1 y of age: the DARLING study. Am J Clin Nutr 1993; 57: 140–145.

    Article  CAS  PubMed  Google Scholar 

  74. Dewey KG, Heinig MJ, Nommsen LA, Peerson JM, Lonnerdal B . Growth of breast-fed and formula-fed infants from 0 to 18 months: the DARLING Study. Pediatrics 1992; 89 (6 Pt 1), 1035–1041.

    CAS  PubMed  Google Scholar 

  75. Jingxiong J, Rosenqvist U, Huishan W, Koletzko B, Guangli L, Jing H et al. Relationship of parental characteristics and feeding practices to overweight in infants and young children in Beijing, China. Public Health Nutr 2009; 12: 973–978.

    Article  PubMed  Google Scholar 

  76. Mei H, Guo B, Yin B, Liang X, Adair L, Thompson A et al. Interactive effects of early exclusive breastfeeding and pre-pregnancy maternal weight status on young children's BMI - A Chinese Birth Cohort. PLoS One 2015; 10: e0144357.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  77. Crowther NJ, Cameron N, Trusler J, Gray IP . Association between poor glucose tolerance and rapid post natal weight gain in seven-year-old children. Diabetologia 1998; 41: 1163–1167.

    Article  CAS  PubMed  Google Scholar 

  78. Yang Z, Lai J, Yu D, Duan Y, Pang X, Jiang S et al. Breastfeeding rates in China: a cross-sectional survey and estimate of benefits of improvement. Lancet 2016; 388 (Suppl 1), S47.

    Article  Google Scholar 

  79. Tang L, Lee AH, Binns CW, Yang Y, Wu Y, Li Y et al. Widespread usage of infant formula in China: a major public health problem. Birth 2014; 41: 339–343.

    Article  PubMed  Google Scholar 

  80. Wadsworth M, Butterworth S, Marmot M, Ecob R, Hardy R . Early growth and type 2 diabetes: evidence from the 1946 British Birth Cohort. Diabetologia 2005; 48: 2505–2510.

    Article  CAS  PubMed  Google Scholar 

  81. Yu Z, Han S, Chu J, Xu Z, Zhu C, Guo X . Trends in overweight and obesity among children and adolescents in China from 1981 to 2010: a meta-analysis. PLoS One 2012; 7: e51949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Song Y, Wang HJ, Ma J, Wang Z . Secular trends of obesity prevalence in urban Chinese children from 1985 to 2010: gender disparity. PLoS One 2013; 8: e53069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gillman MW, Ludwig DS . How early should obesity prevention start? N Engl J Med 2013; 369: 2173–2175.

    Article  CAS  PubMed  Google Scholar 

  84. Popkin BM, Hawkes C . Sweetening of the global diet, particularly beverages: patterns, trends, and policy responses. Lancet Diabetes Endocrinol 2016; 4: 174–186.

    Article  PubMed  Google Scholar 

  85. Schulze MB, Manson JE, Ludwig DS, Colditz GA, Stampfer MJ, Willett WC et al. Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women. JAMA 2004; 292: 927–934.

    Article  CAS  PubMed  Google Scholar 

  86. Ma W, Ma G, Hu X . The beverage consumption practice of Chinese children in four urban areas. Chin J School Health 2011; 22: 102–104.

    Google Scholar 

  87. Shang XW, Liu AL, Zhang Q, Hu XQ, Du SM, Ma J et al. Report on childhood obesity in China (9): sugar-sweetened beverages consumption and obesity. Biomed Environ Sci 2012; 25: 125–132.

    PubMed  Google Scholar 

  88. Lu L, Yu Z, Pan A, Hu FB, Franco OH, Li H et al. Plasma 25-hydroxyvitamin D concentration and metabolic syndrome among middle-aged and elderly Chinese individuals. Diabetes Care 2009; 32: 1278–1283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Trasande L, Blustein J, Liu M, Corwin E, Cox LM, Blaser MJ . Infant antibiotic exposures and early-life body mass. Int J Obes 2013; 37: 16–23.

    Article  CAS  Google Scholar 

  90. Cho I, Yamanishi S, Cox L, Methe BA, Zavadil J, Li K et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 2012; 488: 621–626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Legler J, Fletcher T, Govarts E, Porta M, Blumberg B, Heindel JJ et al. Obesity, diabetes, and associated costs of exposure to endocrine-disrupting chemicals in the European Union. J Clin Endocrinol Metab 2015; 100: 1278–1288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sun Q, Yue P, Deiuliis JA, Lumeng CN, Kampfrath T, Mikolaj MB et al. Ambient air pollution exaggerates adipose inflammation and insulin resistance in a mouse model of diet-induced obesity. Circulation 2009; 119: 538–546.

    Article  CAS  PubMed  Google Scholar 

  93. O'Neill MS, Veves A, Zanobetti A, Sarnat JA, Gold DR, Economides PA et al. Diabetes enhances vulnerability to particulate air pollution-associated impairment in vascular reactivity and endothelial function. Circulation 2005; 111: 2913–2920.

    Article  PubMed  Google Scholar 

  94. Wei Y, Zhang JJ, Li Z, Gow A, Chung KF, Hu M et al. Chronic exposure to air pollution particles increases the risk of obesity and metabolic syndrome: findings from a natural experiment in Beijing. FASEB J 2016; 30: 2115–2122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Li M, Xu Y, Xu M, Ma L, Wang T, Liu Y et al. Association between nonalcoholic fatty liver disease (NAFLD) and osteoporotic fracture in middle-aged and elderly Chinese. J Clin Endocrinol Metab 2012; 97: 2033–2038.

    Article  CAS  PubMed  Google Scholar 

  96. Crews D, McLachlan JA . Epigenetics, evolution, endocrine disruption, health, and disease. Endocrinology 2006; 147 (6 Suppl), S4–10.

    Article  CAS  PubMed  Google Scholar 

  97. Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM et al. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev 2009; 30: 293–342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Song Y, Chou EL, Baecker A, You NC, Song Y, Sun Q et al. Endocrine-disrupting chemicals, risk of type 2 diabetes, and diabetes-related metabolic traits: a systematic review and meta-analysis. J Diabetes 2016; 8: 516–532.

    Article  CAS  PubMed  Google Scholar 

  99. Wang T, Li M, Chen B, Xu M, Xu Y, Huang Y et al. Urinary bisphenol A (BPA) concentration associates with obesity and insulin resistance. J Clin Endocrinol Metab 2012; 97: E223–E227.

    Article  CAS  PubMed  Google Scholar 

  100. Li DK, Miao M, Zhou Z, Wu C, Shi H, Liu X et al. Urine bisphenol-A level in relation to obesity and overweight in school-age children. PLoS One 2013; 8: e65399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Casals-Casas C, Desvergne B . Endocrine disruptors: from endocrine to metabolic disruption. Annu Rev Physiol 2011; 73: 135–162.

    Article  CAS  PubMed  Google Scholar 

  102. Batista TM, Alonso-Magdalena P, Vieira E, Amaral ME, Cederroth CR, Nef S et al. Short-term treatment with bisphenol-A leads to metabolic abnormalities in adult male mice. PLoS One 2012; 7: e33814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Alonso-Magdalena P, Ropero AB, Carrera MP, Cederroth CR, Baquie M, Gauthier BR et al. Pancreatic insulin content regulation by the estrogen receptor ER alpha. PLoS One 2008; 3: e2069.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  104. Kurita H, Yoshioka W, Nishimura N, Kubota N, Kadowaki T, Tohyama C . Aryl hydrocarbon receptor-mediated effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on glucose-stimulated insulin secretion in mice. J Appl Toxicol 2009; 29: 689–694.

    Article  CAS  PubMed  Google Scholar 

  105. Li F, Liu Y, Lu J, Liang L, Harmer P . Ambient air pollution in China poses a multifaceted health threat to outdoor physical activity. J Epidemiol Community Health 2015; 69: 201–204.

    Article  CAS  PubMed  Google Scholar 

  106. Desvergne B, Feige JN, Casals-Casas C . PPAR-mediated activity of phthalates: a link to the obesity epidemic? Mol Cell Endocrinol 2009; 304: 43–48.

    Article  CAS  PubMed  Google Scholar 

  107. Lau C, Anitole K, Hodes C, Lai D, Pfahles-Hutchens A, Seed J . Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicol Sci 2007; 99: 366–394.

    Article  CAS  PubMed  Google Scholar 

  108. Zhao YG, Wong CK, Wong MH . Environmental contamination, human exposure and body loadings of perfluorooctane sulfonate (PFOS), focusing on Asian countries. Chemosphere 2012; 89: 355–368.

    Article  CAS  PubMed  Google Scholar 

  109. Zhang H, Shi Z, Liu Y, Wei Y, Dai J . Lipid homeostasis and oxidative stress in the liver of male rats exposed to perfluorododecanoic acid. Toxicol Appl Pharmacol 2008; 227: 16–25.

    Article  CAS  PubMed  Google Scholar 

  110. Xu J, Shimpi P, Armstrong L, Salter D, Slitt AL . PFOS induces adipogenesis and glucose uptake in association with activation of Nrf2 signaling pathway. Toxicol Appl Pharmacol 2016; 290: 21–30.

    Article  CAS  PubMed  Google Scholar 

  111. Lin Y, Wei J, Li Y, Chen J, Zhou Z, Song L et al. Developmental exposure to di(2-ethylhexyl) phthalate impairs endocrine pancreas and leads to long-term adverse effects on glucose homeostasis in the rat. Am J Physiol Endocrinol Metab 2011; 301: E527–E538.

    Article  CAS  PubMed  Google Scholar 

  112. Slomko H, Heo HJ, Einstein FH . Minireview: epigenetics of obesity and diabetes in humans. Endocrinology 2012; 153: 1025–1030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Godfrey KM, Sheppard A, Gluckman PD, Lillycrop KA, Burdge GC, McLean C et al. Epigenetic gene promoter methylation at birth is associated with child's later adiposity. Diabetes 2011; 60: 1528–1534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kucharski R, Maleszka J, Foret S, Maleszka R . Nutritional control of reproductive status in honeybees via DNA methylation. Science 2008; 319: 1827–1830.

    Article  CAS  PubMed  Google Scholar 

  115. Asencot M, Lensky Y . The effect of sugars and juvenile hormone on the differentiation of the female honeybee larvae (Apis mellifera L.) to queens. Life Sci 1976; 18: 693–699.

    Article  CAS  PubMed  Google Scholar 

  116. Buttstedt A, Ihling CH, Pietzsch M, Moritz RF . Royalactin is not a royal making of a queen. Nature 2016; 537: E10–E12.

    Article  CAS  PubMed  Google Scholar 

  117. Lillycrop KA, Rodford J, Garratt ES, Slater-Jefferies JL, Godfrey KM, Gluckman PD et al. Maternal protein restriction with or without folic acid supplementation during pregnancy alters the hepatic transcriptome in adult male rats. Br J Nutr 2010; 103: 1711–1719.

    Article  CAS  PubMed  Google Scholar 

  118. Lillycrop KA, Burdge GC . Maternal diet as a modifier of offspring epigenetics. J Dev Orig Health Dis 2015; 6: 88–95.

    Article  CAS  PubMed  Google Scholar 

  119. Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA 2008; 105: 17046–17049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Clarke-Harris R, Wilkin TJ, Hosking J, Pinkney J, Jeffery AN, Metcalf BS et al. PGC1alpha promoter methylation in blood at 5-7 years predicts adiposity from 9 to 14 years (EarlyBird 50). Diabetes 2014; 63: 2528–2537.

    Article  PubMed  Google Scholar 

  121. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012; 490: 55–60.

    Article  CAS  PubMed  Google Scholar 

  122. Cox LM, Blaser MJ . Pathways in microbe-induced obesity. Cell Metab 2013; 17: 883–894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ley RE, Turnbaugh PJ, Klein S, Gordon JI . Microbial ecology: human gut microbes associated with obesity. Nature 2006; 444: 1022–1023.

    Article  CAS  PubMed  Google Scholar 

  124. Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA, Maza O et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 2014; 514: 181–186.

    Article  CAS  PubMed  Google Scholar 

  125. Karlsson FH, Tremaroli V, Nookaew I, Bergstrom G, Behre CJ, Fagerberg B et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013; 498: 99–103.

    Article  CAS  PubMed  Google Scholar 

  126. World Health Organization. Report of the Commission on Ending Childhood Obesity. World Health Organization 2016: Geneva, Switzerland, 2015..

  127. The International Federation of Gynecology and Obstetrics (FIGO) recommendations on adolescent, preconception, and maternal nutrition (Chinese translated version). Chin J Perinat Med 2016; 19 12: 960–963.

  128. Sustainable Development Goals-17 Goals to Transform our World. United Nations, New York, NY, USA, 2015. Available from: http://www.un.org/sustainabledevelopment/sustainable-development-goals/.

  129. Persson LA . Prenatal nutrition, socioenvironmental conditions, and child development. Lancet Glob Health 2017; 5: e127–e128.

    Article  PubMed  Google Scholar 

  130. Colchero MA, Popkin BM, Rivera JA, Ng SW . Beverage purchases from stores in Mexico under the excise tax on sugar sweetened beverages: observational study. BMJ 2016; 352: h6704.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Hanson M, Barker M, Dodd JM, Kumanyika S, Norris S, Steegers E et al. Interventions to prevent maternal obesity before conception, during pregnancy, and post partum. Lancet Diabetes Endocrinol 2017; 5: 65–76.

    Article  PubMed  Google Scholar 

  132. Simmons D, van Poppel MN . UPBEAT, RADIEL, and DALI: what's the difference? Lancet Diabetes Endocrinol 2015; 3: 761.

    Article  PubMed  Google Scholar 

  133. Song C, Li J, Leng J, Ma RC, Yang X . Lifestyle intervention can reduce the risk of gestational diabetes: a meta-analysis of randomized controlled trials. Obes Rev 2016; 17: 960–969.

    Article  CAS  PubMed  Google Scholar 

  134. Catalano P, deMouzon SH . Maternal obesity and metabolic risk to the offspring: why lifestyle interventions may have not achieved the desired outcomes. Int J Obes 2015; 39: 642–649.

    Article  CAS  Google Scholar 

  135. Yan J, Yang H . Gestational diabetes in China: challenges and coping strategies. Lancet Diabetes Endocrinol 2014; 2: 930–931.

    Article  PubMed  Google Scholar 

  136. Chinese Centre for Disease Control and Prevention (China CDC). China National Plan for NCD Prevention and Treatment, 2012-2015. Available from: http://www.chinacdc.cn/en/ne/201207/t20120725_64430.html (accessed 10 February 2017).

  137. Gordon-Larsen P, Wang H, Popkin BM . Overweight dynamics in Chinese children and adults. Obes Rev 2014; 15 (Suppl 1), 37–48.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Lu Y, Zhang J, Lu X, Xi W, Li Z . Secular trends of macrosomia in southeast China, 1994-2005. BMC Public Health 2011; 11: 818.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

RCWM acknowledges funding support from the Health and Medical Research Fund from the Food and Health Bureau of the Government of the Hong Kong Special Administrative Region (13140761). WHT acknowledges support from the Research Grant Council General Research Fund (14118316).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R C W Ma.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, R., Tsoi, K., Tam, W. et al. Developmental origins of type 2 diabetes: a perspective from China. Eur J Clin Nutr 71, 870–880 (2017). https://doi.org/10.1038/ejcn.2017.48

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ejcn.2017.48

This article is cited by

Search

Quick links