Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Nutrigenomics and molecular nutrition

The bioenergetics of inflammation: insights into obesity and type 2 diabetes

Abstract

Diabetes mellitus is one of the most common chronic metabolic disorders worldwide, and its incidence in Asian countries is alarmingly high. Type 2 diabetes (T2DM) is closely associated with obesity, and the staggering rise in obesity is one of the primary factors related to the increased frequency of T2DM. Low-grade chronic inflammation is also accepted as an integral metabolic adaption in obesity and T2DM, and is believed to be a major player in the onset of insulin resistance. However, the exact mechanism(s) that cause a persistent chronic low-grade infiltration of leukocytes into insulin-target tissues such as adipose, skeletal muscle and liver are not entirely known. Recent developments in the understanding of leukocyte metabolism have revealed that the inflammatory polarization of immune cells, and consequently their immunological function, are strongly connected to their metabolic profile. Therefore, it is hypothesized that dysfunctional immune cell metabolism is a central cellular mechanism that prevents the resolution of inflammation in chronic metabolic conditions such as that observed in obesity and T2DM. The purpose of this review is to explore the metabolic demands of different immune cell types, and identify the molecular switches that control immune cell metabolism and ultimately function. Understanding of these concepts may allow the development of interventions that can correct immune function and may possibly decrease chronic low-grade inflammation in humans suffering from obesity and T2DM. We also review the latest clinical techniques used to measure metabolic flux in primary leukocytes isolated from obese and T2DM patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Jayawardena R, Ranasinghe P, Byrne NM, Soares MJ, Katulanda P, Hills AP . Prevalence and trends of the diabetes epidemic in South Asia: a systematic review and meta-analysis. BMC Public Health 2012; 12: 380.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Shaw JE, Sicree RA, Zimmet PZ . Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 2010; 87: 4–14.

    Article  CAS  PubMed  Google Scholar 

  3. Bongaarts J . Human population growth and the demographic transition. Philos Trans R Soc Lond B Biol Sci 2009; 364: 2985–2990.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hu FB . Globalization of diabetes: the role of diet, lifestyle, and genes. Diabetes Care 2011; 34: 1249–1257.

    Article  PubMed  PubMed Central  Google Scholar 

  5. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 2016; 387: 1513–1530.

    Article  Google Scholar 

  6. Baker RG, Hayden MS, Ghosh S . NF-κB, inflammation, and metabolic disease. Cell Metab 2016; 13: 11–22.

    Article  CAS  Google Scholar 

  7. Calton EK, James AP, Pannu PK, Soares MJ . Certain dietary patterns are beneficial for the metabolic syndrome: reviewing the evidence. Nutr Res 2014; 34: 559–568.

    Article  CAS  PubMed  Google Scholar 

  8. Pingali P . Westernization of Asian diets and the transformation of food systems: implications for research and policy. Food Policy 2007; 32: 281–298.

    Article  Google Scholar 

  9. Thoudam T, Jeon J-H, Ha C-M, Lee I-K . Role of mitochondria-associated endoplasmic reticulum membrane in inflammation-mediated metabolic diseases. Mediators Inflamm 2016; 2016: 18.

    Article  CAS  Google Scholar 

  10. Trayhurn P . Hypoxia and adipose tissue function and dysfunction in obesity. Physiol Rev 2013; 93: 1–21.

    Article  CAS  PubMed  Google Scholar 

  11. Johnson AR, Milner JJ, Makowski L . The inflammation highway: metabolism accelerates inflammatory traffic in obesity. Immunol Rev 2012; 249: 218–238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Odegaard JI, Chawla A . Alternative macrophage activation and metabolism. Annu Rev Pathol 2011; 6: 275–297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Enos RT, Davis JM, Velazquez KT, McClellan JL, Day SD, Carnevale KA et al. Influence of dietary saturated fat content on adiposity, macrophage behavior, inflammation, and metabolism: composition matters. J Lipid Res 2013; 54: 152–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Teng K-T, Chang C-Y, Chang LF, Nesaretnam K . Modulation of obesity-induced inflammation by dietary fats: mechanisms and clinical evidence. Nutr J 2014; 13: 12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. McArdle M, Finucane O, Connaughton R, McMorrow A, Roche H . Mechanisms of obesity-induced inflammation and insulin resistance: insights into the emerging role of nutritional strategies. Front Endocrinol 2013; 4: 52.

    Article  Google Scholar 

  16. Calton EK, Keane K, Soares MJ . The potential regulatory role of vitamin D in the bioenergetics of inflammation. Curr Opin Clin Nutr Metab Care 2015; 18: 367–373.

    Article  CAS  PubMed  Google Scholar 

  17. Liu TF, Brown CM, El Gazzar M, McPhail L, Millet P, Rao A et al. Fueling the flame: bioenergy couples metabolism and inflammation. J Leukoc Biol 2012; 92: 499–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Buck MD, O'Sullivan D, Pearce EL . T cell metabolism drives immunity. J Exp Med 2015; 212: 1345–1360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Norata GD, Caligiuri G, Chavakis T, Matarese G, Netea MG, Nicoletti A et al. The cellular and molecular basis of translational immunometabolism. Immunity 2015; 43: 421–434.

    Article  CAS  PubMed  Google Scholar 

  20. O'Neill LA, Pearce EJ . Immunometabolism governs dendritic cell and macrophage function. J Exp Med 2016; 213: 15–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. O'Neill LA, Kishton RJ, Rathmell J . A guide to immunometabolism for immunologists. Nat Rev Immunol 2016; 16: 553–565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Freitag J, Berod L, Kamradt T, Sparwasser T . Immunometabolism and autoimmunity. Immunol Cell Biol 2016; 94: 925–934.

    Article  CAS  PubMed  Google Scholar 

  23. Chang C-H, Pearce EL . Emerging concepts in immunotherapy – T cell metabolism as a therapeutic target. Nat Immunol 2016; 17: 364–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chacko BK, Kramer PA, Ravi S, Johnson MS, Hardy RW, Ballinger SW et al. Methods for defining distinct bioenergetic profiles in platelets, lymphocytes, monocytes, and neutrophils, and the oxidative burst from human blood. Lab Invest 2013; 93: 690–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. O'Sullivan D, van der Windt GJ, Huang SC, Curtis JD, Chang CH, Buck MD et al. Memory CD8(+) T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity 2014; 41: 75–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kramer PA, Ravi S, Chacko B, Johnson MS, Darley-Usmar VM . A review of the mitochondrial and glycolytic metabolism in human platelets and leukocytes: implications for their use as bioenergetic biomarkers. Redox Biol 2014; 2: 206–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pearce EJ, Everts B . Dendritic cell metabolism. Nat Rev Immunol 2015; 15: 18–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Krawczyk CM, Holowka T, Sun J, Blagih J, Amiel E, DeBerardinis RJ et al. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood 2010; 115: 4742–4749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Everts B, Amiel E, Huang SC, Smith AM, Chang CH, Lam WY et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKɛ supports the anabolic demands of dendritic cell activation. Nat Immunol 2014; 15: 323–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Maroof A, English NR, Bedford PA, Gabrilovich DI, Knight SC . Developing dendritic cells become 'lacy' cells packed with fat and glycogen. Immunology 2005; 115: 473–483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Everts B, Amiel E, van der Windt GJ, Freitas TC, Chott R, Yarasheski KE et al. Commitment to glycolysis sustains survival of NO-producing inflammatory dendritic cells. Blood 2012; 120: 1422–1431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rodriguez-Prados JC, Traves PG, Cuenca J, Rico D, Aragones J, Martin-Sanz P et al. Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J Immunol 2010; 185: 605–614.

    Article  CAS  PubMed  Google Scholar 

  33. Palsson-McDermott EM, Curtis AM, Goel G, Lauterbach MAR, Sheedy FJ, Gleeson LE et al. Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction, and is a critical determinant of the Warburg effect in LPS-activated macrophages. Cell Metab 2015; 21: 65–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Luo W, Hu H, Chang R, Zhong J, Knabel M, O’Meally R et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 2011; 145: 732–744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Infantino V, Convertini P, Cucci L, Panaro MA, Di Noia MA, Calvello R et al. The mitochondrial citrate carrier: a new player in inflammation. Biochem J 2011; 438: 433–436.

    Article  CAS  PubMed  Google Scholar 

  36. Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF, Goel G et al. Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha. Nature 2013; 496: 238–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vats D, Mukundan L, Odegaard JI, Zhang L, Smith KL, Morel CR et al. Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation. Cell Metab 2006; 4: 13–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jha AK, Huang SC, Sergushichev A, Lampropoulou V, Ivanova Y, Loginicheva E et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 2015; 42: 419–430.

    Article  CAS  PubMed  Google Scholar 

  39. Canto C, Auwerx J . PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol 2009; 20: 98–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Newsholme P, Cruzat VF, Keane KN, Carlessi R, de Bittencourt PIH . Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem J 2016; 473: 4527–4550.

    Article  CAS  PubMed  Google Scholar 

  41. Nakaya M, Xiao Y, Zhou X, Chang JH, Chang M, Cheng X et al. Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity 2014; 40: 692–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J et al. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab 2012; 15: 110–121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gubser PM, Bantug GR, Razik L, Fischer M, Dimeloe S, Hoenger G et al. Rapid effector function of memory CD8+ T cells requires an immediate-early glycolytic switch. Nat Immunol 2013; 14: 1064–1072.

    Article  CAS  PubMed  Google Scholar 

  44. Huynh A, DuPage M, Priyadharshini B, Sage PT, Quiros J, Borges CM et al. Control of PI(3) kinase in Treg cells maintains homeostasis and lineage stability. Nat Immunol 2015; 16: 188–196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR et al. HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med 2011; 208: 1367–1376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Berod L, Friedrich C, Nandan A, Freitag J, Hagemann S, Harmrolfs K et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat Med 2014; 20: 1327–1333.

    Article  CAS  PubMed  Google Scholar 

  47. Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, Mason EF et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol 2011; 186: 3299–3303.

    Article  CAS  PubMed  Google Scholar 

  48. Gerriets VA, Kishton RJ, Nichols AG, Macintyre AN, Inoue M, Ilkayeva O et al. Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. J Clin Invest 2015; 125: 194–207.

    Article  PubMed  Google Scholar 

  49. van der Windt GJ, Everts B, Chang CH, Curtis JD, Freitas TC, Amiel E et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 2012; 36: 68–78.

    Article  CAS  PubMed  Google Scholar 

  50. Delgoffe GM, Kole TP, Zheng Y, Zarek PE, Matthews KL, Xiao B et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 2009; 30: 832–844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Procaccini C, De Rosa V, Galgani M, Carbone F, Cassano S, Greco D et al. Leptin-induced mTOR activation defines a specific molecular and transcriptional signature controlling CD4+ effector T cell responses. J Immunol 2012; 189: 2941–2953.

    Article  CAS  PubMed  Google Scholar 

  52. Soliman GA . The role of mechanistic target of rapamycin (mTOR) complexes signaling in the immune responses. Nutrients 2013; 5: 2231–2257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hackstein H, Taner T, Zahorchak AF, Morelli AE, Logar AJ, Gessner A et al. Rapamycin inhibits IL-4-induced dendritic cell maturation in vitro and dendritic cell mobilization and functionin vivo. Blood 2003; 101: 4457–4463.

    Article  CAS  PubMed  Google Scholar 

  54. Wise DR, Thompson CB . Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci 2010; 35: 427–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Newsholme P . Why is L-glutamine metabolism important to cells of the immune system in health, postinjury, surgery or infection? J Nutr 2001; 131 (9 Suppl), 2515S–2522S. discussion 23S-4S.

    Article  CAS  PubMed  Google Scholar 

  56. Palazon A, Goldrath AW, Nizet V, Johnson RS . HIF transcription factors, inflammation, and immunity. Immunity 2014; 41: 518–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Marin-Hernandez A, Gallardo-Perez JC, Ralph SJ, Rodriguez-Enriquez S, Moreno-Sanchez R . HIF-1alpha modulates energy metabolism in cancer cells by inducing over-expression of specific glycolytic isoforms. Mini Rev Med Chem 2009; 9: 1084–1101.

    Article  CAS  PubMed  Google Scholar 

  58. Kominsky DJ, Campbell EL, Colgan SP . Metabolic shifts in immunity and inflammation. J Immunol 2010; 184: 4062–4068.

    Article  CAS  PubMed  Google Scholar 

  59. Philip B, Ito K, Moreno-Sanchez R, Ralph SJ . HIF expression and the role of hypoxic microenvironments within primary tumours as protective sites driving cancer stem cell renewal and metastatic progression. Carcinogenesis 2013; 34: 1699–1707.

    Article  CAS  PubMed  Google Scholar 

  60. Treins C, Giorgetti-Peraldi S, Murdaca J, Semenza GL, Van Obberghen E . Insulin stimulates hypoxia-inducible factor 1 through a phosphatidylinositol 3-kinase/target of rapamycin-dependent signaling pathway. J Biol Chem 2002; 277: 27975–27981.

    Article  CAS  PubMed  Google Scholar 

  61. O'Neill LA, Hardie DG . Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature 2013; 493: 346–355.

    Article  CAS  PubMed  Google Scholar 

  62. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P . Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 2005; 434: 113–118.

    Article  CAS  PubMed  Google Scholar 

  63. Wang Q, Zhang Y, Yang C, Xiong H, Lin Y, Yao J et al. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 2010; 327: 1004–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu TF, Yoza BK, El Gazzar M, Vachharajani VT, McCall CE . NAD+-dependent SIRT1 deacetylase participates in epigenetic reprogramming during endotoxin tolerance. J Biol Chem 2011; 286: 9856–9864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. McCall CE, Yoza B, Liu T, El Gazzar M . Gene-specific epigenetic regulation in serious infections with systemic inflammation. J Innate Immun 2010; 2: 395–405.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Frede S, Stockmann C, Winning S, Freitag P, Fandrey J . Hypoxia-inducible factor (HIF) 1alpha accumulation and HIF target gene expression are impaired after induction of endotoxin tolerance. J Immunol 2009; 182: 6470–6476.

    Article  CAS  PubMed  Google Scholar 

  67. Svajger U, Obermajer N, Jeras M . Dendritic cells treated with resveratrol during differentiation from monocytes gain substantial tolerogenic properties upon activation. Immunology 2010; 129: 525–535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 2006; 127: 1109–1122.

    Article  CAS  PubMed  Google Scholar 

  69. Pecht T, Gutman-Tirosh A, Bashan N, Rudich A . Peripheral blood leucocyte subclasses as potential biomarkers of adipose tissue inflammation and obesity subphenotypes in humans. Obes Rev 2014; 15: 322–337.

    Article  CAS  PubMed  Google Scholar 

  70. Hotamisligil GS, Shargill NS, Spiegelman BM . Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 1993; 259: 87–91.

    Article  CAS  PubMed  Google Scholar 

  71. Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM . Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 1995; 95: 2409–2415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Schmidt FM, Weschenfelder J, Sander C, Minkwitz J, Thormann J, Chittka T et al. Inflammatory cytokines in general and central obesity and modulating effects of physical activity. PLoS One 2015; 10: e0121971.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Marques-Vidal P, Bastardot F, von Kanel R, Paccaud F, Preisig M, Waeber G et al. Association between circulating cytokine levels, diabetes and insulin resistance in a population-based sample (CoLaus study). Clin Endocrinol 2013; 78: 232–241.

    Article  CAS  Google Scholar 

  74. Panee J . Monocyte chemoattractant protein 1 (MCP-1) in obesity and diabetes. Cytokine 2012; 60: 1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Calton EK, Keane KN, Soares MJ, Rowlands J, Newsholme P . Prevailing vitamin D status influences mitochondrial and glycolytic bioenergetics in peripheral blood mononuclear cells obtained from adults. Redox Biol 2016; 10: 243–250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Donath MY . Targeting inflammation in the treatment of type 2 diabetes. Diabetes Obes Metab 2013; 15 (Suppl 3), 193–196.

    Article  CAS  PubMed  Google Scholar 

  77. Keane KN, Cruzat VF, Carlessi R, de Bittencourt PIH, Newsholme P . Molecular events linking oxidative stress and inflammation to insulin resistance and beta-cell dysfunction. Oxid Med Cell Longev 2015; 2015: 15.

    Article  CAS  Google Scholar 

  78. Hotamisligil GS . Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 2010; 140: 900–917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Back SH, Kaufman RJ . Endoplasmic reticulum stress and type 2 diabetes. Annu Rev Biochem 2012; 81: 767–793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cameron NE . Role of endoplasmic reticulum stress in diabetic neuropathy. Diabetes 2013; 62: 696–697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jeschke MG, Boehning D . Endoplasmic reticulum stress and insulin resistance post-trauma: similarities to type 2 diabetes. J Cell Mol Med 2012; 16: 437–444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hartman M-L, Shirihai OS, Holbrook M, Xu G, Kocherla M, Shah A et al. Relation of mitochondrial oxygen consumption in peripheral blood mononuclear cells to vascular function in type 2 diabetes mellitus. Vasc Med 2014; 19: 67–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kramer PA, Ravi S, Chacko B, Johnson MS, Darley-Usmar VM . A review of the mitochondrial and glycolytic metabolism in human platelets and leukocytes: implications for their use as bioenergetic biomarkers. Redox Biol 2014; 2: 206–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. O'Grada CM, Morine MJ, Morris C, Ryan M, Dillon ET, Walsh M et al. PBMCs reflect the immune component of the WAT transcriptome–implications as biomarkers of metabolic health in the postprandial state. Mol Nutr Food Res 2014; 58: 808–820.

    Article  CAS  PubMed  Google Scholar 

  85. Tyrrell DJ, Bharadwaj MS, Jorgensen MJ, Register TC, Molina AJ . Blood cell respirometry is associated with skeletal and cardiac muscle bioenergetics: implications for a minimally invasive biomarker of mitochondrial health. Redox Biol 2016; 10: 65–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Maynard S, Hejl AM, Dinh TS, Keijzers G, Hansen AM, Desler C et al. Defective mitochondrial respiration, altered dNTP pools and reduced AP endonuclease 1 activity in peripheral blood mononuclear cells of Alzheimer's disease patients. Aging 2015; 7: 793–815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tyrrell DJ, Bharadwaj MS, Van Horn CG, Marsh AP, Nicklas BJ, Molina AJ . Blood-cell bioenergetics are associated with physical function and inflammation in overweight/obese older adults. Exp Gerontol 2015; 70: 84–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Biniecka M, Canavan M, McGarry T, Gao W, McCormick J, Cregan S et al. Dysregulated bioenergetics: a key regulator of joint inflammation. Ann Rheum Dis 2016; 75: 2192–2200.

    Article  CAS  PubMed  Google Scholar 

  89. Keane KN, Calton EK, Cruzat VF, Soares MJ, Newsholme P . The impact of cryopreservation on human peripheral blood leucocyte bioenergetics. Clin Sci 2015; 128: 723–733.

    Article  CAS  Google Scholar 

  90. Widlansky ME, Wang J, Shenouda SM, Hagen TM, Smith AR, Kizhakekuttu TJ et al. Altered mitochondrial membrane potential, mass, and morphology in the mononuclear cells of humans with type 2 diabetes. Transl Res 2010; 156: 15–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Czajka A, Ajaz S, Gnudi L, Parsade CK, Jones P, Reid F et al. Altered mitochondrial function, mitochondrial DNA and reduced metabolic flexibility in patients with diabetic nephropathy. EBioMedicine 2015; 2: 499–512.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Chacko BK, Kramer PA, Ravi S, Benavides GA, Mitchell T, Dranka BP et al. The Bioenergetic Health Index: a new concept in mitochondrial translational research. Clin Sci 2014; 127: 367–373.

    Article  CAS  Google Scholar 

  93. Krause M, Keane K, Rodrigues-Krause J, Crognale D, Egan B, De Vito G et al. Elevated levels of extracellular heat-shock protein 72 (eHSP72) are positively correlated with insulin resistance in vivo and cause pancreatic beta-cell dysfunction and death in vitro. Clin Sci 2014; 126: 739–752.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the School of Biomedical Sciences and School of Public Health in the Faculty of Health Sciences at Curtin University, along with Telethon Kids Institute, University of Western Australia, Perth, Australia for research support. Curtin Health Innovation Research Institute (CHIRI) is acknowledged with thanks for access to excellent research facilities. EKC is the recipient of an Australian postgraduate scholarship award (APA).

Author contributions

The present work was designed by KNK. Initial manuscript preparation and draft was undertaken by KNK, EKC and PHH, and subsequently revised by RC and PN. Figures were designed by KNK, EKC and RC, and prepared by KNK and EKC. All authors approved the final version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K N Keane.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keane, K., Calton, E., Carlessi, R. et al. The bioenergetics of inflammation: insights into obesity and type 2 diabetes. Eur J Clin Nutr 71, 904–912 (2017). https://doi.org/10.1038/ejcn.2017.45

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ejcn.2017.45

This article is cited by

Search

Quick links