Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Effect of inulin-type fructans on blood lipid profile and glucose level: a systematic review and meta-analysis of randomized controlled trials

Abstract

Background/Objectives:

This systematic review and meta-analysis was performed to assess the effects of inulin-type fructans (ITF) on human blood lipids and glucose homeostasis associated with metabolic abnormalities, including dyslipidemia, overweight or obesity, and type-2 diabetes mellitus (T2DM).

Subjects/Methods:

The MEDLINE, EMBASE and Cochrane Library databases were systematically searched for randomized controlled trials (RCTs) before January 2016. Human trials that investigated the effects of ITF supplementation on the lipid profile, fasting glucose and insulin were included using Review Manager 5.3.

Results:

Twenty RCTs with 607 adult participants were included in this systematic review and meta-analysis. In the overall analysis, the supplementation of ITF reduced only the low density lipoprotein-cholesterol (LDL-c) (mean difference (MD): –0.15; 95% confidence interval (CI): –0.29, –0.02; P=0.03) without affecting the other endpoints. Within the T2DM subgroup analysis, ITF supplementation was positively associated with a decreased fasting insulin concentration (MD: –4.01; 95% CI: –5.92, –2.09; P<0.0001) and increased high density lipoprotein-cholesterol (HDL-c) (MD: 0.07; 95% CI: 0, 0.14; P=0.05). Moreover, a reduced fasting glucose tendency was identified only in the T2DM subgroup (MD: –0.42; 95% CI: –0.90, 0.06; P=0.09). There was a potential publication bias, and few trials were available for the T2DM subgroup analysis.

Conclusions:

In summary, the use of ITF may have benefits for LDL-c reduction across all study populations, whereas HDL-c improvement and glucose control were demonstrated only in the T2DM subgroup. Thus, additional, well-powered, long-term, randomized clinical trials are required for a definitive conclusion. Overall, ITF supplementation may provide a novel direction for improving the lipid profile and glucose metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Gibson GR, Roberfroid MB . Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 1995; 125: 1401–1412.

    Article  CAS  Google Scholar 

  2. Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I et al. Prebiotic effects: metabolic and health benefits. Br J Nutr 2010; 104 (Suppl 2), S1–S63.

    Article  CAS  Google Scholar 

  3. Kelly G . Inulin-type prebiotics – a review: part 1. Altern Med Rev 2008; 13: 315–329.

    PubMed  Google Scholar 

  4. Delzenne NM, Neyrinck AM, Backhed F, Cani PD . Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat Rev Endocrinol 2011; 7: 639–646.

    Article  CAS  Google Scholar 

  5. Delzenne NM, Neyrinck AM, Cani PD . Modulation of the gut microbiota by nutrients with prebiotic properties: consequences for host health in the context of obesity and metabolic syndrome. Microb Cell Fact 2011; 10 (Suppl 1), S10.

    Article  Google Scholar 

  6. Ramirez-Farias C, Slezak K, Fuller Z, Duncan A, Holtrop G, Louis P . Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br J Nutr 2009; 101: 541–550.

    Article  CAS  Google Scholar 

  7. Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E et al. Dietary intervention impact on gut microbial gene richness. Nature 2013; 500: 585–588.

    Article  CAS  Google Scholar 

  8. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G et al. Richness of human gut microbiome correlates with metabolic markers. Nature 2013; 500: 541–546.

    Article  CAS  Google Scholar 

  9. Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ, Fagerberg B et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013; 498: 99–103.

    Article  CAS  Google Scholar 

  10. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012; 490: 55–60.

    Article  CAS  Google Scholar 

  11. Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 2008; 57: 1470–1481.

    Article  CAS  Google Scholar 

  12. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011; 472: 57–63.

    Article  CAS  Google Scholar 

  13. Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 2010; 5: e9085.

    Article  Google Scholar 

  14. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE et al. A core gut microbiome in obese and lean twins. Nature 2009; 457: 480–484.

    Article  CAS  Google Scholar 

  15. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI . An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006; 444: 1027–1031.

    Article  Google Scholar 

  16. Cani PD, Delzenne NM . Gut microflora as a target for energy and metabolic homeostasis. Curr Opin Clin Nutr Metab Care 2007; 10: 729–734.

    Article  Google Scholar 

  17. Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 2004; 101: 15718–15723.

    Article  Google Scholar 

  18. Ranganath LR, Beety JM, Morgan LM, Wright JW, Howland R, Marks V . Attenuated GLP-1 secretion in obesity: cause or consequence? Gut 1996; 38: 916–919.

    Article  CAS  Google Scholar 

  19. Bonsu NK, Johnson CS, McLeod KM . Can dietary fructans lower serum glucose? J Diabetes 2011; 3: 58–66.

    Article  CAS  Google Scholar 

  20. Wu T, Yang Y, Zhang L, Han J . Systematic review of the effects of inulin-type fructans on blood lipid profiles: a meta-analysis. Journal of Hygiene Research 2010; 39: 172–176.

    PubMed  Google Scholar 

  21. Moher D, Liberati A, Tetzlaff J, Altman DG . Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 2009; 62: 1006–1012.

    Article  Google Scholar 

  22. Higgins J, Green S . Cochrane handbook for systematic reviews of interventions. Cochrane collaboration 2011. Available at: www.cochranehandbook.org.

  23. Laird NM, Mosteller F . Some statistical methods for combining experimental results. International J Technol Assess Health Care 1990; 6: 5–30.

    Article  CAS  Google Scholar 

  24. Higgins JP, Thompson SG, Deeks JJ, Altman DG . Measuring inconsistency in meta-analyses. BMJ 2003; 327: 557–560.

    Article  Google Scholar 

  25. Sterne JA, Sutton AJ, Ioannidis JP, Terrin N, Jones DR, Lau J et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ 2011; 343: d4002.

    Article  Google Scholar 

  26. Dehghan P, Gargari BP, Jafar-Abadi MA, Aliasgharzadeh A . Inulin controls inflammation and metabolic endotoxemia in women with type 2 diabetes mellitus: a randomized-controlled clinical trial. Int J Food Sci and Nutr 2014; 65: 117–123.

    Article  CAS  Google Scholar 

  27. Dehghan P, Pourghassem GB, Asgharijafarabadi M . Effects of high performance inulin supplementation on glycemic status and lipid profile in women with type 2 diabetes: a randomized, placebo-controlled clinical trial. Health Promot Perspect 2013; 3: 55–63.

    PubMed  PubMed Central  Google Scholar 

  28. Van Dokkum W, Wezendonk B, Srikumar TS, Van Den Heuvel EG . Effect of nondigestible oligosaccharides on large-bowel functions, blood lipid concentrations and glucose absorption in young healthy male subjects. Eur J Clin Nutr 1999; 53: 1–7.

    Article  CAS  Google Scholar 

  29. Forcheron F, Beylot M . Long-term administration of inulin-type fructans has no significant lipid-lowering effect in normolipidemic humans. Metabol – Clin and Experim 2007; 56: 1093–1098.

    Article  CAS  Google Scholar 

  30. Letexier D, Diraison F, Beylot M . Addition of inulin to a moderately high-carbohydrate diet reduces hepatic lipogenesis and plasma triacylglycerol concentrations in humans. American J Clin Nutr 2003; 77: 559–564.

    Article  CAS  Google Scholar 

  31. Luo J, Van Yperselle M, Rizkalla SW, Rossi F, Bornet FR, Slama G . Chronic consumption of short-chain fructooligosaccharides does not affect basal hepatic glucose production or insulin resistance in type 2 diabetics. J Nutr 2000; 130: 1572–1577.

    Article  CAS  Google Scholar 

  32. Pedersen A, Sandstrom B, Van Amelsvoort JM . The effect of ingestion of inulin on blood lipids and gastrointestinal symptoms in healthy females. Br J Nutr 1997; 78: 215–222.

    Article  CAS  Google Scholar 

  33. Russo F, Chimienti G, Riezzo G, Pepe G, Petrosillo G, Chiloiro M et al. Inulin-enriched pasta affects lipid profile and Lp(a) concentrations in Italian young healthy male volunteers. Eur J Nutr 2008; 47: 453–459.

    Article  CAS  Google Scholar 

  34. Scheid MM, Genaro PS, Moreno YM, Pastore GM . Freeze-dried powdered yacon: effects of FOS on serum glucose, lipids and intestinal transit in the elderly. Eur J Clin Nutr 2014; 53: 1457–1464.

    Article  CAS  Google Scholar 

  35. Causey JL, Feirtag JM, Gallaher DD . Effects of dietary inulin on serum lipids, blood glucose and the gastrointestinal environment in hypercholesterolemic men. Nutr Res 2000; 20: 191–201.

    Article  CAS  Google Scholar 

  36. Davidson MH, Maki KC . Effects of dietary inulin on serum lipids. J Nutr 1999; 129: 1474S–1477S.

    Article  CAS  Google Scholar 

  37. Giacco R, Clemente G, Luongo D, Lasorella G, Fiume I, Brouns F et al. Effects of short-chain fructo-oligosaccharides on glucose and lipid metabolism in mild hypercholesterolaemic individuals. Clin Nutr 2004; 23: 331–340.

    Article  CAS  Google Scholar 

  38. Jackson KG, Taylor GR, Clohessy AM, Williams CM . The effect of the daily intake of inulin on fasting lipid, insulin and glucose concentrations in middle-aged men and women. Br J Nutr 1999; 82: 23–30.

    Article  CAS  Google Scholar 

  39. Daud NM, Ismail NA, Thomas EL, Fitzpatrick JA, Bell JD, Swann JR et al. The impact of oligofructose on stimulation of gut hormones, appetite regulation and adiposity. Obesity (Silver Spring) 2014; 22: 1430–1438.

    Article  CAS  Google Scholar 

  40. de Luis DA, de la Fuente B, Izaola O, Aller R, Gutierrez S, Morillo M . Double blind randomized clinical trial controlled by placebo with a fos enriched cookie on saciety and cardiovascular risk factors in obese patients. Nutr Hosp 2013; 28: 78–85.

    CAS  PubMed  Google Scholar 

  41. Dewulf EM, Cani PD, Claus SP, Fuentes S, Puylaert PG, Neyrinck AM et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 2013; 62: 1112–1121.

    Article  CAS  Google Scholar 

  42. Genta S, Cabrera W, Habib N, Pons J, Carillo IM, Grau A et al. Yacon syrup: beneficial effects on obesity and insulin resistance in humans. Clin Nutr 2009; 28: 182–187.

    Article  CAS  Google Scholar 

  43. Parnell JA, Reimer RA . Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults. Am J Clin Nutr 2009; 89: 1751–1759.

    Article  CAS  Google Scholar 

  44. Tovar AR, Caamano MC, Garcia-Padilla S, Garcia OP, Duarte MA, Rosado JL . The inclusion of a partial meal replacement with or without inulin to a calorie restricted diet contributes to reach recommended intakes of micronutrients and decrease plasma triglycerides: a randomized clinical trial in obese Mexican women. Nutr J 2012; 11: 44.

    Article  CAS  Google Scholar 

  45. Alles MS, de Roos NM, Bakx JC, van de Lisdonk E, Zock PL, Hautvast GA . Consumption of fructooligosaccharides does not favorably affect blood glucose and serum lipid concentrations in patients with type 2 diabetes. Am J Clin Nuti 1999; 69: 64–69.

    Article  CAS  Google Scholar 

  46. Wu X, Ma C, Han L, Nawaz M, Gao F, Zhang X et al. Molecular characterisation of the faecal microbiota in patients with type II diabetes. Curr Microbiol 2010; 61: 69–78.

    Article  CAS  Google Scholar 

  47. Beserra BT, Fernandes R, Do RV, Mocellin MC, Kuntz MG, Trindade EB . A systematic review and meta-analysis of the prebiotics and synbiotics effects on glycaemia, insulin concentrations and lipid parameters in adult patients with overweight or obesity. Clin Nutr 2015; 34: 845–858.

    Article  CAS  Google Scholar 

  48. Brighenti F . Dietary fructans and serum triacylglycerols: a meta-analysis of randomized controlled trials. J Nutr 2007; 137: 2552S–2556S.

    Article  CAS  Google Scholar 

  49. Roberfroid MB, Delzenne NM . Dietary fructans. Annu Rev Nutr 1998; 18: 117–143.

    Article  CAS  Google Scholar 

  50. Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I et al. Prebiotic effects: metabolic and health benefits. Br J Nutr 2010; 104 (Suppl 2), S1–S63.

    Article  CAS  Google Scholar 

  51. Liu TW, Cephas KD, Holscher HD, Kerr KR, Mangian HF, Tappenden KA et al. Nondigestible fructans alter gastrointestinal barrier function, gene expression, histomorphology, and the microbiota profiles of diet-induced obese C57BL/6 J mice. J Nutr 2016; 146: 949–956.

    Article  CAS  Google Scholar 

  52. Holme I . An analysis of randomized trials evaluating the effect of cholesterol reduction on total mortality and coronary heart disease incidence. Circulation 1990; 82: 1916–1924.

    Article  CAS  Google Scholar 

  53. 1996. National Heart Foundation clinical guidelines for the assessment and management of dyslipidaemia. Dyslipidaemia Advisory Group on behalf of the scientific committee of the National Heart Foundation of New Zealand. N Z Med J 1996; 109: 224–231.

  54. Jenkins DJ, Jones PJ, Lamarche B, Kendall CW, Faulkner D, Cermakova L et al. Effect of a dietary portfolio of cholesterol-lowering foods given at 2 levels of intensity of dietary advice on serum lipids in hyperlipidemia: a randomized controlled trial. JAMA 2011; 306: 831–839.

    Article  CAS  Google Scholar 

  55. Ooi LG, Liong MT . Cholesterol-lowering effects of probiotics and prebiotics: a review of in vivo and in vitro findings. Int J Mol Sci 2010; 11: 2499–2522.

    Article  CAS  Google Scholar 

  56. Dikeman CL, Murphy MR, Fahey GJ . Dietary fibers affect viscosity of solutions and simulated human gastric and small intestinal digesta. J Nutr 2006; 136: 913–919.

    Article  CAS  Google Scholar 

  57. Levrat MA, Remesy C, Demigne C . High propionic acid fermentations and mineral accumulation in the cecum of rats adapted to different levels of inulin. J Nutr 1991; 121: 1730–1737.

    Article  CAS  Google Scholar 

  58. Delzenne NM, Daubioul C, Neyrinck A, Lasa M, Taper HS . Inulin and oligofructose modulate lipid metabolism in animals: review of biochemical events and future prospects. Br J Nutr 2002; 87 (Suppl 2), S255–S259.

    Article  CAS  Google Scholar 

  59. Wolever TM, Brighenti F, Royall D, Jenkins AL, Jenkins DJ . Effect of rectal infusion of short chain fatty acids in human subjects. Am J Gastroenterology 1989; 84: 1027–1033.

    CAS  Google Scholar 

  60. Kimura I, Inoue D, Maeda T, Hara T, Ichimura A, Miyauchi S et al. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc Natl Acad Sci USA 2011; 108: 8030–8035.

    Article  CAS  Google Scholar 

  61. Mithieux G, Gautier-Stein A . Intestinal glucose metabolism revisited. Diabetes Res Clin Pract 2014; 105: 295–301.

    Article  CAS  Google Scholar 

  62. De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 2014; 156: 84–96.

    Article  CAS  Google Scholar 

  63. Rossi M, Corradini C, Amaretti A, Nicolini M, Pompei A, Zanoni S et al. Fermentation of fructooligosaccharides and inulin by bifidobacteria: a comparative study of pure and fecal cultures. Appl Environ Microbiol 2005; 71: 6150–6158.

    Article  CAS  Google Scholar 

  64. Trautwein EA, Rieckhoff D, Erbersdobler HF . Dietary inulin lowers plasma cholesterol and triacylglycerol and alters biliary bile acid profile in hamsters. J Nutr 1998; 128: 1937–1943.

    Article  CAS  Google Scholar 

  65. Creely SJ, McTernan PG, Kusminski CM, Fisher F, Da SN, Khanolkar M et al. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab 2007; 292: E740–E747.

    Article  CAS  Google Scholar 

  66. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007; 56: 1761–1772.

    Article  CAS  Google Scholar 

  67. Kalliomaki M, Collado MC, Salminen S, Isolauri E . Early differences in fecal microbiota composition in children may predict overweight. American J Clin Nutr 2008; 87: 534–538.

    Article  CAS  Google Scholar 

  68. Schwiertz A, Taras D, Schafer K, Beijer S, Bos NA, Donus C et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring) 2010; 18: 190–195.

    Article  Google Scholar 

  69. Cani PD, Neyrinck AM, Fava F, Knauf C, Burcelin RG, Tuohy KM et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 2007; 50: 2374–2383.

    Article  CAS  Google Scholar 

  70. Kolida S, Meyer D, Gibson GR . A double-blind placebo-controlled study to establish the bifidogenic dose of inulin in healthy humans. European J Clin Nutr 2007; 61: 1189–1195.

    Article  CAS  Google Scholar 

  71. Meyer D, Stasse-Wolthuis M . The bifidogenic effect of inulin and oligofructose and its consequences for gut health. Eur J Clin Nutr 2009; 63: 1277–1289.

    Article  CAS  Google Scholar 

  72. Cani PD, Daubioul CA, Reusens B, Remacle C, Catillon G, Delzenne NM . Involvement of endogenous glucagon-like peptide-1(7-36) amide on glycaemia-lowering effect of oligofructose in streptozotocin-treated rats. J Endocrinol 2005; 185: 457–465.

    Article  CAS  Google Scholar 

  73. Cani PD, Knauf C, Iglesias MA, Drucker DJ, Delzenne NM, Burcelin R . Improvement of glucose tolerance and hepatic insulin sensitivity by oligofructose requires a functional glucagon-like peptide 1 receptor. Diabetes 2006; 55: 1484–1490.

    Article  CAS  Google Scholar 

  74. Delmee E, Cani PD, Gual G, Knauf C, Burcelin R, Maton N et al. Relation between colonic proglucagon expression and metabolic response to oligofructose in high fat diet-fed mice. Life Sci 2006; 79: 1007–1013.

    Article  CAS  Google Scholar 

  75. Urias-Silvas JE, Cani PD, Delmee E, Neyrinck A, Lopez MG, Delzenne NM . Physiological effects of dietary fructans extracted from Agave tequilana Gto. and Dasylirion spp. Br J Nutr 2008; 99: 254–261.

    Article  CAS  Google Scholar 

  76. Delzenne NM, Cani PD, Daubioul C, Neyrinck AM . Impact of inulin and oligofructose on gastrointestinal peptides. Br J Nutr 2005; 93 (Suppl 1), S157–S161.

    Article  CAS  Google Scholar 

  77. Tarini J, Wolever TM . The fermentable fibre inulin increases postprandial serum short-chain fatty acids and reduces free-fatty acids and ghrelin in healthy subjects. Appl Physiol Nutr Metab 2010; 35: 9–16.

    Article  CAS  Google Scholar 

  78. Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 2012; 61: 364–371.

    Article  CAS  Google Scholar 

  79. Drucker DJ . The biology of incretin hormones. Cell Metab 2006; 3: 153–165.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This review was supported by the National Natural Science Foundation of China (NSFC313220143).

Author contributions

Feitong Liu and Hongwei Zhou designed the research; Feitong Liu, Prabhakar M and Jianqing Ju conducted the research; Feitong Liu and Haoyu Long conducted the quality assessment of the studies; Feitong Liu analysed the data and drafted the manuscript; and Feitong Liu and Prabhakar M finalized the manuscript. Feitong Liu had primary responsibility for the final content. All authors have read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H-W Zhou.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on European Journal of Clinical Nutrition website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Prabhakar, M., Ju, J. et al. Effect of inulin-type fructans on blood lipid profile and glucose level: a systematic review and meta-analysis of randomized controlled trials. Eur J Clin Nutr 71, 9–20 (2017). https://doi.org/10.1038/ejcn.2016.156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ejcn.2016.156

This article is cited by

Search

Quick links