Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The metabolic fate of doubly labelled lactose-[13C, 15N]ureide after pre-dosing with different ureides

Abstract

Background:

To date, the measurement of the orocaecal transit time (OCTT) with lactose-[13C]ureide usually requires a pre-dosing with the analogous substrate in its unlabelled form.

Objective:

In this study, the enzyme induction provoked by different unlabelled sugar ureides in OCTT measurements when using doubly labelled lactose-[13C, 15N]ureide (DLLU) was evaluated.

Methods:

Thirteen healthy adults (age: 22–58 years) received 500 mg DLLU together with a standardized breakfast. Expired air, urine and faeces were collected over a period of 14, 48 and 72 h, respectively. After 1 and 2 weeks, the test was repeated after pre-dosing of 3 × 120 mg glucose ureide (GU) and 3 × 200 mg cellobiose ureide (CU), respectively, on the day before study begin. The 13C- and 15N-enrichments were measured by isotope ratio mass spectrometry. The OCTT was calculated by the detection of a significant 13CO2 increase.

Results:

In comparison with the period without pre-dosing (7.8±2.2 h), the measured OCTT was significantly lowered either after GU pre-dosing (5.8±1.9 h, P=0.033) or CU pre-dosing (6.0±2.2 h, P=0.039). The respective renal 13C- and 15N-excretions amounted to 24.5 and 45.6, 24.7 and 54.0, and 22.5 and 50.1%, respectively, whereas the faecal 13C- and 15N-excretions amounted to 12.1 and 45.8, 4.8 and 21.5, and 9.6 and 39.8%, respectively.

Conclusions:

Pre-dosing with unlabelled GU and CU before the administration of DLLU led to an unequivocal induction of the enzyme activity and resulted in a definitive estimation of the OCTT, clearly demonstrating that glucose-[13C]ureide is the matrix of the bacterial degradation in the caecum.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Barrie A, Davies JE, Park AJ, Workmann CT (1989). Continuous-flow stable isotope analysis for biologists. Spectroscopy 4, 42–52.

    CAS  Google Scholar 

  • Berthold HK, Schober P, Scheurlen C, Marklein G, Horré R, Gouni-Berthold I et al. (2009). Use of the lactose-[13C]ureide breath test for diagnosis of small bowel bacterial overgrowth: comparison to the glucose hydrogen breath test. J Gastroenterol 44, 944–951.

    Article  CAS  PubMed  Google Scholar 

  • Christian M, Morrison D, Dodson B, Preston T, Amarri S, Franchini F et al. (2002). Measurement of oro-cecal transit time in young children using lactose [13C] ureide requires further validation. J Pediatr Gastroenterol Nutr 34, 570–571.

    Article  PubMed  Google Scholar 

  • De Preter V, Geboes K, Verbrugghe K, De Vuyst L, Vanhoutte T, Huys G et al. (2004). The in vivo use of the stable isotope-labelled biomarkers lactose-[15N]ureide and [2H4]tyrosine to assess the effects of pro- and prebiotics on the intestinal flora of healthy human volunteers. Br J Nutr 92, 439–446.

    Article  CAS  PubMed  Google Scholar 

  • De Preter V, Verbeke K (2006). Evaluation of the necessity of induction for lactose-[15N,15N]-ureide to study the colonic ammonia metabolism. Scand J Gastroenterol 41, 396–400.

    Article  CAS  PubMed  Google Scholar 

  • Geboes KP, De Preter V, Luypaerts A, Bammens B, Evenepoel P, Ghoos Y et al. (2005). Validation of lactose[15N,15N]ureide as a tool to study colonic nitrogen metabolism. Am J Physiol 288, G994–G999.

    CAS  Google Scholar 

  • Geypens B, Bennink R, Peeters M, Evenepoel P, Mortelmans L, Maes B et al. (1999). Validation of the lactose-[13C]ureide breath test for determination of orocecal transit time by scintigraphy. J Nucl Med 40, 1451–1455.

    CAS  PubMed  Google Scholar 

  • Heine WE, Berthold HK, Klein PD (1995). A novel stable isotope breath test: 13C-labelled glycosyl ureides used as noninvasive markers of intestinal transit time. Am J Gastroenterol 90, 93–98.

    CAS  PubMed  Google Scholar 

  • Jackson AA, Bundy R, Hounslow A, Murphy JL, Wootton SA (1999). Metabolism of lactose-[13C]ureide and lactose-[15N,15N]ureide in normal adults consuming a diet marginally adequate in protein. Clin Sci 97, 547–555.

    Article  CAS  Google Scholar 

  • Jackson AA, Gibson NR, Bundy R, Hounslow A, Millward DJ, Wootton SA (2004). Transfer of 15N from oral lactose-ureide to lysine in normal adults. Int J Food Sci Nutr 55, 455–462.

    Article  CAS  PubMed  Google Scholar 

  • Leitzmann P, Heine W, Wutzke KD, von Bismarck P, Dorlöchter L, Miera O et al. (1998). Blood glucose, gastric emptying, and oro-coecal transit time after a conventional breakfast vs a Kollath breakfast. Z Ernährungswiss 37, 31–37.

    Article  CAS  PubMed  Google Scholar 

  • Mohr C, Heine WE, Wutzke KD (1999). Clostridium innocuum: a glucose ureide splitting inhabitant of the human microbial flora. Biochim Biophys Acta 1472, 550–554.

    Article  CAS  PubMed  Google Scholar 

  • Morrison DJ, Zavoshy R, Edwards CA, Dodson B, Preston T, Weaver LT (1998). Lactose [13C]Ureide as a marker for colonic fermentation and the deconvolution of a complex 13CO2 breath test curve. Biochem Soc Trans 26, 184.

    Article  Google Scholar 

  • Morrison DJ, Dodson B, Preston T (1999). Measurement of urinary total 13C and 13C urea by isotope ratio mass spectrometry after administration of lactose [13C]-ureide. Rapid Commun Mass Spectrom 13, 1252–1256.

    Article  CAS  PubMed  Google Scholar 

  • Morrison DJ, Dodson B, Preston T, Weaver LT (2003). Gastrointestinal handling of glycosyl [13C]ureides. Eur J Clin Nutr 57, 1017–1024.

    Article  CAS  PubMed  Google Scholar 

  • Priebe MG, Wachters-Hagedoorn RE, Stellaard F, Heiner AM, Elzinga H, Vonk RJ (2004). Oro-cecal transit time: influence of a subsequent meal. Eur J Clin Invest 34, 417–421.

    Article  CAS  PubMed  Google Scholar 

  • Ruemmele FM, Heine WE, Keller KM, Lentze MJ (1997). Metabolism of glycosyl ureides by human intestinal brush border enzymes. Biochim Biophys Acta 1336, 275–280.

    Article  CAS  PubMed  Google Scholar 

  • Schneider AR, Jepp K, Murczynski L, Biniek U, Stein J (2007). The inulin hydrogen breath test accurately reflects orocaecal transit time. Eur J Clin Invest 37, 802–807.

    Article  CAS  PubMed  Google Scholar 

  • Schoeller DA, Klein PD, Watkins JB, Heim T, MacLean Jr WC (1980). 13C abundances of nutrients and the effect of variations in 13C isotopic abundances of test meals formulated for 13CO2 breath tests. Am J Clin Nutr 33, 2375–2385.

    Article  CAS  PubMed  Google Scholar 

  • Van den Driessche M, Van Malderen N, Geypens B, Ghoos Y, Veereman-Wauters G (2000). Lactose-[13C]ureide breath test: a new, noninvasive technique to determine orocecal transit time in children. J Pediatr Gastroenterol Nutr 31, 433–488.

    Article  CAS  PubMed  Google Scholar 

  • Wutzke KD, Heine WE, Plath C, Leitzmann P, Radke M, Mohr C et al. (1997). Evaluation of oro-coecal transit time: a comparison of the lactose-[13C, 15N]ureide 13CO2- and the lactulose H2- breath test. Eur J Clin Nutr 51, 11–19.

    Article  CAS  PubMed  Google Scholar 

  • Wutzke KD, Glasenapp B (2004). The use of 13C-labelled glycosyl ureides for evaluation of orocaecal transit time. Eur J Clin Nutr 58, 568–572.

    Article  CAS  PubMed  Google Scholar 

  • Wutzke KD, Sattinger V (2006). 15N-excretion of heat-killed Lactobacillus casei in humans. Eur J Clin Nutr 60, 847–852.

    Article  CAS  PubMed  Google Scholar 

  • Wutzke KD, Schütt M (2007). The duration of enzyme induction in orocaecal transit time measurements. Eur J Clin Nutr 61, 1162–1166.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Campro Scientific GmbH, Berlin, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K D Wutzke.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wutzke, K., Mix, J. The metabolic fate of doubly labelled lactose-[13C, 15N]ureide after pre-dosing with different ureides. Eur J Clin Nutr 64, 733–738 (2010). https://doi.org/10.1038/ejcn.2010.84

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ejcn.2010.84

Keywords

Search

Quick links