Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Global dynamic topography observations reveal limited influence of large-scale mantle flow

This article has been updated

Abstract

Convective circulation of the Earth’s mantle maintains some fraction of surface topography that varies with space and time. Most predictive models show that this dynamic topography has peak amplitudes of about ±2 km, dominated by wavelengths of 104 km. Here, we test these models against our comprehensive observational database of 2,120 spot measurements of dynamic topography that were determined by analysing oceanic seismic surveys. These accurate measurements have typical peak amplitudes of ±1 km and wavelengths of approximately 103 km, and are combined with limited continental constraints to generate a global spherical harmonic model, the robustness of which has been carefully tested and benchmarked. Our power spectral analysis reveals significant discrepancies between observed and predicted dynamic topography. At longer wavelengths (such as 104 km), observed dynamic topography has peak amplitudes of about ±500 m. At shorter wavelengths (such as 103 km), significant dynamic topography is still observed. We show that these discrepancies can be explained if short-wavelength dynamic topography is generated by temperature-driven density anomalies within a sub-plate asthenospheric channel. Stratigraphic observations from adjacent continental margins show that these dynamic topographic signals evolve quickly with time. More rapid temporal and spatial changes in vertical displacement of the Earth’s surface have direct consequences for fields as diverse as mantle flow, oceanic circulation and long-term climate change.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Maps of seismic and residual topographic databases.
Figure 2: Images of oceanic crust.
Figure 3: Transects along oldest oceanic crust of South Atlantic margins.
Figure 4: Observed dynamic topography.
Figure 5: Residual misfit and power spectra.
Figure 6: Viscosity, velocity and density structure of mantle.

Similar content being viewed by others

Change history

  • 13 May 2016

    In the version of the Article originally published, the link in the 'Data and code sources' section of the Methods was incorrect and should have been 'ftp://bullard.esc.cam.ac.uk/pub/incoming/mjh217'. This has been corrected in all versions of the Article.

  • 09 June 2016

    In the version of the Article corrected on 13 May 2016, the location of the data accessed via the link provided in the 'Data and code sources' section of the Methods proved unsuitable. The link has now been removed and the isostatic and spherical harmonic inversion codes are available on request from the corresponding authors. This information has been corrected in the online versions of the Article.

References

  1. Pekeris, C. L. Thermal convection in the interior of the Earth. Geophys. Suppl. Mon. Not. R. Astron. Soc. 3, 343–367 (1935).

    Article  Google Scholar 

  2. Turcotte, D. L. & Schubert, G. Geodynamics 2nd edn (Cambridge Univ. Press, 2002).

    Book  Google Scholar 

  3. Richards, M. A. & Hager, B. H. Geoid anomalies in a dynamic Earth. J. Geophys. Res. 89, 5987–6002 (1984).

    Article  Google Scholar 

  4. Hager, B. H., Clayton, R. W. & Richards, M. A. Lower mantle heterogeneity, dynamic topography and the geoid. Nature 313, 541–545 (1985).

    Article  Google Scholar 

  5. Schuberth, B. S. A. & Bunge, H. P. Tomographic filtering of high-resolution mantle circulation models: can seismic heterogeneity be explained by temperature alone? Geochem. Geophys. Geosyst. 10, Q05W03 (2009).

    Google Scholar 

  6. Davies, D. R. et al. Reconciling dynamic and seismic models of Earth’s lower mantle: the dominant role of thermal heterogeneity. Earth Planet. Sci. Lett. 353–354, 253–269 (2012).

    Article  Google Scholar 

  7. Steinberger, B. Effects of latent heat release at phase boundaries on flow in the Earth’s mantle, phase boundary topography and dynamic topography at the Earth’s surface. Phys. Earth Planet. Inter. 164, 2–20 (2007).

    Article  Google Scholar 

  8. Conrad, C. P. & Husson, L. Influence of dynamic topography on sea level and its rate of change. Lithosphere 1, 110–120 (2009).

    Article  Google Scholar 

  9. Ricard, Y., Richards, M. A., Lithgow-Bertelloni, C. & Le Stunff, Y. A geodynamic model of mantle density heterogeneity. J. Geophys. Res. 98, 21895–21909 (1993).

    Article  Google Scholar 

  10. Flament, N., Gurnis, M. & Müller, R. D. A review of observations and models of dynamic topography. Lithosphere 5, 189–210 (2013).

    Article  Google Scholar 

  11. Moucha, R. et al. Dynamic topography and long-term sea-level variations: there is no such thing as a stable continental platform. Earth Planet. Sci. Lett. 271, 101–108 (2008).

    Article  Google Scholar 

  12. Bunge, H. P., Hagelberg, C. R. & Travis, B. J. Mantle circulation models with variational data assimilation: inferring past mantle flow and structure from plate motion histories and seismic tomography. Geophys. J. Int. 152, 280–301 (2003).

    Article  Google Scholar 

  13. Spasojević, S. & Gurnis, M. Sea level and vertical motion of continents from dynamic earth models since the Late Cretaceous. AAPG Bull. 96, 2037–2064 (2012).

    Article  Google Scholar 

  14. Crosby, A. G., McKenzie, D. P. & Sclater, J. G. The relationship between depth, age and gravity in the oceans. Geophys. J. Int. 166, 553–573 (2006).

    Article  Google Scholar 

  15. Menard, H. W. Depth anomalies and the bobbing motion of drifting islands. J. Geophys. Res. 78, 5128–5137 (1973).

    Article  Google Scholar 

  16. Müller, R. D., Sdrolias, M., Gaina, C. & Roest, W. R. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochem. Geophys. Geosyst. 9, Q04006 (2008).

    Article  Google Scholar 

  17. White, R. S., McKenzie, D. P. & O’Nions, R. K. Oceanic crustal thickness from seismic measurements and rare earth element inversions. J. Geophys. Res. 97, 19683–19715 (1992).

    Article  Google Scholar 

  18. Winterbourne, J. R., Crosby, A. G. & White, N. J. Depth, age and dynamic topography of oceanic lithosphere beneath heavily sedimented Atlantic margins. Earth Planet. Sci. Lett. 287, 137–151 (2009).

    Article  Google Scholar 

  19. Czarnota, K., Hoggard, M. J., White, N. J. & Winterbourne, J. Spatial and temporal patterns of Cenozoic dynamic topography around Australia. Geochem. Geophys. Geosyst. 14, 634–658 (2013).

    Article  Google Scholar 

  20. Winterbourne, J. R., White, N. J. & Crosby, A. G. Accurate measurements of residual topography from the oceanic realm. Tectonics 33, 1–34 (2014).

    Article  Google Scholar 

  21. Crosby, A. G. & McKenzie, D. P. An analysis of young ocean depth, gravity and global residual topography. Geophys. J. Int. 178, 1198–1219 (2009).

    Article  Google Scholar 

  22. Hohertz, W. L. & Carlson, R. L. An independent test of thermal subsidence and asthenosphere flow beneath the Argentine Basin. Earth Planet. Sci. Lett. 161, 73–83 (1998).

    Article  Google Scholar 

  23. Jackson, M. P. A., Hudec, M. R. & Hegarty, K. A. The great West African Tertiary coastal uplift: fact or fiction? A perspective from the Angolan divergent margin. Tectonics 24, TC6014 (2005).

    Article  Google Scholar 

  24. Guiraud, M., Buta-Neto, A. & Quesne, D. Segmentation and differential post-rift uplift at the Angola margin as recorded by the transform-rifted Benguela and oblique-to-orthogonal-rifted Kwanza basins. Mar. Petrol. Geol. 27, 1040–1068 (2010).

    Article  Google Scholar 

  25. Roberts, G. G. & White, N. J. Estimating uplift rate histories from river profiles using African examples. J. Geophys. Res. 115, B02406 (2010).

    Google Scholar 

  26. Smith, W. H. F. & Sandwell, D. T. Global sea floor topography from satellite altimetry and ship depth soundings. Science 277, 1956–1962 (1997).

    Article  Google Scholar 

  27. Divins, D. L. Total Sediment Thickness of the World’s Oceans and Marginal Seas (NOAA National Geophysical Data Center, 2003).

    Google Scholar 

  28. Laske, G. & Masters, G. A global digital map of sediment thickness. EOS Trans. Am. Geophys. Union 78, F483 (1997).

    Google Scholar 

  29. Jordan, T. H. The continental tectosphere. Rev. Geophys. 13, 1–12 (1975).

    Article  Google Scholar 

  30. Tapley, B. et al. The GGM03 mean Earth gravity model from GRACE. Eos Trans. Am. Geophys. Union 88, abstr. G42A-03 (2007).

  31. McKenzie, D. P. The influence of dynamically supported topography on estimates of Te. Earth Planet. Sci. Lett. 295, 127–138 (2010).

    Article  Google Scholar 

  32. Colli, L., Ghelichkhan, S. & Bunge, H.-P. On the ratio of dynamic topography and gravity anomalies in a dynamic Earth. Geophys. Res. Lett. 43, 2510–2516 (2016).

    Article  Google Scholar 

  33. Wilson, J. W. P., Roberts, G. G., Hoggard, M. J. & White, N. J. Cenozoic epeirogeny of the Arabian Peninsula from drainage modeling. Geochem. Geophys. Geosyst. 15, 3723–3761 (2014).

    Article  Google Scholar 

  34. Stephenson, S. N., Roberts, G. G., Hoggard, M. J. & Whittaker, A. C. A Cenozoic uplift history of Mexico and its surroundings from longitudinal river profiles. Geochem. Geophys. Geosyst. 15, 4734–4758 (2014).

    Article  Google Scholar 

  35. Czarnota, K., Roberts, G. G., White, N. J. & Fishwick, S. Spatial and temporal patterns of Australian dynamic topography from river profile modeling. J. Geophys. Res. 119, 1384–1424 (2014).

    Article  Google Scholar 

  36. Hager, B. H. & Richards, M. A. Long-wavelength variations in Earth’s geoid: physical models and dynamical implications. Phil. Trans. R. Soc. Lond. A 328, 309–327 (1989).

    Article  Google Scholar 

  37. Steinberger, B., Werner, S. C. & Torsvik, T. H. Deep versus shallow origin of gravity anomalies, topography and volcanism on Earth, Venus and Mars. Icarus 207, 564–577 (2010).

    Article  Google Scholar 

  38. Forte, A. M. Constraints on seismic models from other disciplines—implications for mantle dynamics and composition. Treat. Geophys. 1, 805–858 (2007).

    Article  Google Scholar 

  39. Cazenave, A., Souriau, A. & Dominh, K. Global coupling of Earth surface topography with hotspots, geoid and mantle heterogeneities. Nature 340, 54–57 (1989).

    Article  Google Scholar 

  40. Wen, L. & Anderson, D. L. Layered mantle convection: a model for geoid and topography. Earth Planet. Sci. Lett. 146, 367–377 (1997).

    Article  Google Scholar 

  41. Delorey, A. A., Dunn, R. A. & Gaherty, J. B. Surface wave tomography of the upper mantle beneath the Reykjanes Ridge with implications for ridge hot spot interaction. J. Geophys. Res. 112, B08313 (2007).

    Article  Google Scholar 

  42. Rickers, F., Fichtner, A. & Trampert, J. The Iceland-Jan Mayen plume system and its impact on mantle dynamics in the North Atlantic region: evidence from full-waveform inversion. Earth Planet. Sci. Lett. 367, 39–51 (2013).

    Article  Google Scholar 

  43. Yale, M. M. & Morgan, J. P. Asthenosphere flow model of hotspot-ridge interactions: a comparison of Iceland and Kerguelen. Earth Planet. Sci. Lett. 161, 45–56 (1998).

    Article  Google Scholar 

  44. Hartley, R. A., Roberts, G. G., White, N. & Richardson, C. Transient convective uplift of an ancient buried landscape. Nature Geosci. 4, 562–565 (2011).

    Article  Google Scholar 

  45. Fichtner, A., Kennett, B. L. N., Igel, H. & Bunge, H.-P. Full seismic waveform tomography for upper-mantle structure in the Australasian region using adjoint methods. Geophys. J. Int. 179, 1703–1725 (2009).

    Article  Google Scholar 

  46. French, S., Lekic, V. & Romanowicz, B. Waveform tomography reveals channeled flow at the base of the oceanic asthenosphere. Science 342, 227–231 (2013).

    Article  Google Scholar 

  47. Dalton, C. A., Langmuir, C. H. & Gale, A. Geophysical and geochemical evidence for deep temperature variations beneath mid-ocean ridges. Science 344, 80–83 (2014).

    Article  Google Scholar 

  48. Buck, W. R., Small, C. & Ryan, W. B. F. Constraints on asthenospheric flow from the depths of oceanic spreading centers: the East Pacific Rise and the Australian-Antarctic discordance. Geochem. Geophys. Geosyst. 10, Q09007 (2009).

    Article  Google Scholar 

  49. Weismüller, J. et al. Fast asthenosphere motion in high-resolution global mantle flow models. Geophys. Res. Lett. 42, 7429–7435 (2015).

    Article  Google Scholar 

  50. Priestley, K. & McKenzie, D. P. The relationship between shear wave velocity, temperature, attenuation and viscosity in the shallow part of the mantle. Earth Planet. Sci. Lett. 381, 78–91 (2013).

    Article  Google Scholar 

  51. Ritsema, J., Deuss, A., van Heijst, H. J. & Woodhouse, J. H. S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys. J. Int. 184, 1223–1236 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by a BP-Cambridge collaboration. We are grateful to ION for permission to publish partial seismic reflection profiles shown in Fig. 2 from their IndiaSPAN and Greater BrasilSPAN data sets. We thank J. Austermann, P. Bellingham, J. Braun, R. Buck, A. Bump, H.-P. Bunge, R. Corfield, A. Crosby, K. Czarnota, M. Falder, A. Forte, I. Frame, S. Ghelichkhan, D. Glassey, T. Heyn, B. Horn, S. Kisin, D. Lyness, L. Mackay, K. McDermott, D. McKenzie, R. Parnell-Turner, F. Richards, G. Roberts, B. Schuberth, B. Steinberger, E. Stirling, M. Thompson, J. Weismüller, J. Wilson and J. Winterbourne for their help. Figures were prepared using Generic Mapping Tools and routines from the SHTOOLS package were used in the spherical harmonic analysis. Earth Sciences contribution esc.3605.

Author information

Authors and Affiliations

Authors

Contributions

This project was conceived and managed by N.W.; M.J.H. processed, interpreted and modelled the databases with guidance from N.W. and D.A.-A. The paper was written by all three authors.

Corresponding authors

Correspondence to M. J. Hoggard or N. White.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 23763 kb)

Supplementary Information

Supplementary Information (ZIP 2785 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoggard, M., White, N. & Al-Attar, D. Global dynamic topography observations reveal limited influence of large-scale mantle flow. Nature Geosci 9, 456–463 (2016). https://doi.org/10.1038/ngeo2709

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2709

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing