Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Predators help protect carbon stocks in blue carbon ecosystems

Abstract

Predators continue to be harvested unsustainably throughout most of the Earth's ecosystems. Recent research demonstrates that the functional loss of predators could have far-reaching consequences on carbon cycling and, by implication, our ability to ameliorate climate change impacts. Yet the influence of predators on carbon accumulation and preservation in vegetated coastal habitats (that is, salt marshes, seagrass meadows and mangroves) is poorly understood, despite these being some of the Earth's most vulnerable and carbon-rich ecosystems. Here we discuss potential pathways by which trophic downgrading affects carbon capture, accumulation and preservation in vegetated coastal habitats. We identify an urgent need for further research on the influence of predators on carbon cycling in vegetated coastal habitats, and ultimately the role that these systems play in climate change mitigation. There is, however, sufficient evidence to suggest that intact predator populations are critical to maintaining or growing reserves of 'blue carbon' (carbon stored in coastal or marine ecosystems), and policy and management need to be improved to reflect these realities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global distribution of vegetated coastal ecosystems and documented cases of overgrazing, defoliation, and extreme bioturbation events in these systems.
Figure 2: Indirect effects of reduced predation pressure on C sequestration rates in salt marshes and mangroves, and C stocks in seagrass ecosystems.
Figure 3: Different priorities.

Similar content being viewed by others

References

  1. Donato, D. C. et al. Mangroves among the most carbon-rich forests in the tropics. Nature Geosci. 4, 293–297 (2011).

    Article  CAS  Google Scholar 

  2. Mcleod, E. et al. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2 . Front. Ecol. Environ. 9, 552–560 (2011).

    Article  Google Scholar 

  3. Fourqurean, J. W. et al. Seagrass ecosystems as a globally significant carbon stock. Nature Geosci. 5, 505–509 (2012).

    Article  CAS  Google Scholar 

  4. Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I. & Marbà, N. The role of coastal plant communities for climate change mitigation and adaptation. Nature Clim. Change 3, 961–968 (2013).

    Article  CAS  Google Scholar 

  5. Macreadie, P. I., Baird, M. E., Trevathan-Tackett, S. M., Larkum, A. W. D. & Ralph, P. J. Quantifying and modelling the carbon sequestration capacity of seagrass meadows: A critical assessment. Mar. Pollut. Bull. 83, 430–439 (2014).

    Article  CAS  Google Scholar 

  6. Duarte, C. M., Middelburg, J. J. & Caraco, N. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 1, 1–8 (2005).

    Article  Google Scholar 

  7. Nelleman, C. et al. Blue Carbon: A Rapid Response Assessment. (GRID-Arendal: UN Environmental Programme, 2009).

    Google Scholar 

  8. Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).

    Article  CAS  Google Scholar 

  9. Wilmers, C. C., Estes, J. A., Edwards, M., Laidre, K. L. & Konar, B. Do trophic cascades affect the storage and flux of atmospheric carbon? An analysis of sea otters and kelp forests. Front. Ecol. Environ. 10, 409–415 (2012).

    Article  Google Scholar 

  10. Schmitz, O. J. et al. Animating the carbon cycle. Ecosystems 17, 344–359 (2014).

    Article  CAS  Google Scholar 

  11. Atwood, T. B. et al. Predator-induced reduction of freshwater carbon dioxide emissions. Nature Geosci. 6, 191–194 (2013).

    Article  CAS  Google Scholar 

  12. Atwood, T. B., Hammill, E. & Richardson, J. S. Trophic-level dependent effects on CO2 emissions from experimental stream ecosystems. Glob. Chang. Biol. 20, 3386–3396 (2014).

    Article  Google Scholar 

  13. Heithaus, M. R. et al. Seagrasses in the age of sea turtle conservation and shark overfishing. Front. Mar. Sci. 1, http://dx.doi.org/10.3389/fmars.2014.00028 (2014).

  14. Lavery, P. S., Mateo, M. A., Serrano, O. & Rozaimi, M. Variability in the carbon storage of seagrass habitats and its implications for global estimates of blue carbon ecosystem service. PLoS One 8, e73748 (2013).

    Article  CAS  Google Scholar 

  15. Duarte, C. M., Kennedy, H., Marbà, N. & Hendriks, I. Assessing the capacity of seagrass meadows for carbon burial: Current limitations and future strategies. Ocean Coast. Manag. 83, 32–38 (2013).

    Article  Google Scholar 

  16. Duarte, C. Seagrass nutrient content. Mar. Ecol. Prog. Ser. 67, 201–207 (1990).

    Article  Google Scholar 

  17. Fonseca, M. S. & Cahalan, J. A. A preliminary evaluation of wave attenuation by four species of seagrass. Estuar. Coast. Shelf Sci. 35, 565–576 (1992).

    Article  Google Scholar 

  18. Gacia, E. Sediment retention by a Mediterranean Posidonia oceanica meadow: The balance between deposition and resuspension. Estuar. Coast. Shelf Sci. 52, 505–514 (2001).

    Article  Google Scholar 

  19. Pülmanns, N., Diele, K., Mehlig, U. & Nordhaus, I. Burrows of the semi-terrestrial crab Ucides cordatus enhance CO2 release in a North Brazilian mangrove forest. PLoS One 9, e109532 (2014).

    Article  CAS  Google Scholar 

  20. Kristensen, E. et al. What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Mar. Ecol. Prog. Ser. 446, 285–302 (2012).

    Article  Google Scholar 

  21. Myers, R. A. & Worm, B. Rapid worldwide depletion of predatory fish communities. Nature 423, 280–283 (2003).

    Article  CAS  Google Scholar 

  22. Zedler, J. B. & Kercher, S. Wetland resources: Status, trends, ecosystem services, and restorability. Annu. Rev. Environ. Resour. 30, 39–74 (2005).

    Article  Google Scholar 

  23. Myers, R. A., Baum, J. K., Shepherd, T. D., Powers, S. P. & Peterson, C. H. Cascading effects of the loss of apex predatory sharks from a coastal ocean. Science 315, 1846–1850 (2007).

    Article  CAS  Google Scholar 

  24. Pendleton, L. et al. Estimating global 'blue carbon' emissions from conversion and degradation of vegetated coastal ecosystems. PLoS One 7, e43542 (2012).

    Article  CAS  Google Scholar 

  25. Lewis, L. S. & Anderson, T. W. Top-down control of epifauna by fishes enhances seagrass production. Ecology 93, 2746–2757 (2012).

    Article  Google Scholar 

  26. Heck, K. L. & Valentine, J. F. Plant–herbivore interactions in seagrass meadows. J. Exp. Mar. Bio. Ecol. 330, 420–436 (2006).

    Article  Google Scholar 

  27. Heithaus, M. R., Wirsing, A. J. & Dill, L. M. The ecological importance of intact top-predator populations: A synthesis of 15 years of research in a seagrass ecosystem. Mar. Freshwater Res. 63, 1039 (2012).

    Article  Google Scholar 

  28. Burkholder, D. A., Heithaus, M. R., Fourqurean, J. W., Wirsing, A. & Dill, L. M. Patterns of top-down control in a seagrass ecosystem: Could a roving apex predator induce a behaviour-mediated trophic cascade? J. Anim. Ecol. 82, 1192–202 (2013).

    Article  Google Scholar 

  29. Silliman, B. R. & Bertness, M. D. A trophic cascade regulates salt marsh primary production. Proc. Natl Acad. Sci. USA 99, 10500–10505 (2002).

    Article  CAS  Google Scholar 

  30. Silliman, B. R. et al. Drought, snails, and large-scale die-off of southern U.S. salt marshes. Science 310, 1803–1806 (2005).

    Article  CAS  Google Scholar 

  31. Altieri, A. H., Bertness, M. D., Coverdale, T. C., Herrmann, N. C. & Angelini, C. A trophic cascade triggers collapse of a salt-marsh ecosystem with intensive recreational fishing. Ecology 93, 1402–1410 (2012).

    Article  Google Scholar 

  32. Coverdale, T. C. et al. Indirect human impacts reverse centuries of carbon sequestration and salt marsh accretion. PLoS ONE 9, e93296 (2014).

    Article  CAS  Google Scholar 

  33. Heithaus, M. R., Frid, A., Wirsing, A. J. & Worm, B. Predicting ecological consequences of marine top predator declines. Trends Ecol. Evol. 23, 202–210 (2008).

    Article  Google Scholar 

  34. Connell, S. D., Russell, B. D. & Irving, A. D. Can strong consumer and producer effects be reconciled to better forecast 'catastrophic' phase-shifts in marine ecosystems? J. Exp. Mar. Bio. Ecol. 400, 296–301 (2011).

    Article  Google Scholar 

  35. Griffin, J. N. et al. Top predators suppress rather than facilitate plants in a trait-mediated tri-trophic cascade. Biol. Lett. 7, 710–713 (2011).

    Article  Google Scholar 

  36. Ley, J. A., Halliday, I. A., Tobin, A. J., Garrett, R. N. & Gribble, N. A. Ecosystem effects of fishing closures in mangrove estuaries of tropical Australia. Mar. Ecol. Prog. Ser. 245, 223–238 (2002).

    Article  Google Scholar 

  37. Offenberg, J., Macintosh, D. J. & Nielsen, M. G. Indirect ant-protection against crab herbivory: Damage-induced susceptibility to crab grazing may lead to its reduction on ant-colonized trees. Funct. Ecol. 20, 52–57 (2006).

    Article  Google Scholar 

  38. Buelow, C. & Sheaves, M. A birds-eye view of biological connectivity in mangrove systems. Estuar. Coast. Shelf Sci. 152, 33–43 (2015).

    Article  Google Scholar 

  39. Lindquist, E. S. et al. Land crabs as key drivers in tropical coastal forest recruitment. Biol. Rev. 84, 203–223 (2009).

    Article  Google Scholar 

  40. Lee, S. Y. Ecological role of grapsid crabs in mangrove ecosystems: A review. Mar. Freshwater Res. 335–343 (1998).

    Article  Google Scholar 

  41. Martínez, C. Food and niche overlap of the Scarlet Ibis and the Yellow Crowned Night Heron in a tropical mangrove swamp. Waterbirds 27, 1–8 (2004).

    Article  Google Scholar 

  42. Sheaves, M. J. & Molony, B. Short-circuit in the mangrove food chain. Mar. Ecol. 199, 97–109 (2000).

    Article  Google Scholar 

  43. Estes, J. A., Tinker, M. T., Williams, T. M. & Doak, D. F. Killer whale predation on sea otters linking oceanic and nearshore ecosystems. Science 282, 473–476 (1998).

    Article  CAS  Google Scholar 

  44. Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol. Monogr. 75, 30–35 (2005).

    Article  Google Scholar 

  45. Duffy, E. J., Richardson, J. P. & France, K. E. Ecosystem consequences of diversity depend on food chain length in estuarine vegetation. Ecol. Lett. 8, 301–309 (2005).

    Article  Google Scholar 

  46. Nifong, J. C. & Silliman, B. R. Impacts of a large-bodied, apex predator (Alligator mississippiensis Daudin 1801) on salt marsh food webs. J. Exp. Mar. Bio. Ecol. 440, 185–191 (2013).

    Article  Google Scholar 

  47. Hughes, B. B. et al. Recovery of a top predator mediates negative eutrophic effects on seagrass. Proc. Natl Acad. Sci. USA 110, 15313–15318 (2013).

    Article  Google Scholar 

  48. Baden, S., Emanuelsson, A., Pihl, L., Svensson, C. & Åberg, P. Shift in seagrass food web structure over decades is linked to overfishing. Mar. Ecol. Prog. Ser. 451, 61–73 (2012).

    Article  Google Scholar 

  49. Chmura, G. L., Anisfeld, S. C., Cahoon, D. R. & Lynch, J. C. Global carbon sequestration in tidal, saline wetland soils. Glob. Biogeochem. Cycles 17, http://dx.doi.org/10.1029/2002GB001917 (2003).

  50. Furukawa, K. & Wolanski, E. Sedimentation in mangrove forests. Mangroves Salt Marshes 1, 3–10 (1996).

    Article  Google Scholar 

  51. Kirwan, M. L. & Guntenspergen, G. R. Feedbacks between inundation, root production, and shoot growth in a rapidly submerging brackish marsh. J. Ecol. 100, 764–770 (2012).

    Article  Google Scholar 

  52. Mudd, S. M., Howell, S. M. & Morris, J. T. Impact of dynamic feedbacks between sedimentation, sea-level rise, and biomass production on near-surface marsh stratigraphy and carbon accumulation. Estuar. Coast. Shelf Sci. 82, 377–389 (2009).

    Article  CAS  Google Scholar 

  53. Peralta, G., van Duren, L., Morris, E. & Bouma, T. Consequences of shoot density and stiffness for ecosystem engineering by benthic macrophytes in flow dominated areas: A hydrodynamic flume study. Mar. Ecol. Prog. Ser. 368, 103–115 (2008).

    Article  Google Scholar 

  54. Hendriks, I., Sintes, T., Bouma, T. & Duarte, C. Experimental assessment and modeling evaluation of the effects of the seagrass Posidonia oceanica on flow and particle trapping. Mar. Ecol. Prog. Ser. 356, 163–173 (2008).

    Article  Google Scholar 

  55. Moodley, L., Middelburg, J. J., Herman, P. M. J., Soetaert, K. & de Lange, G. J. Oxygenation and organic-matter preservation in marine sediments: Direct experimental evidence from ancient organic carbon-rich deposits. Geology 33, 889–892 (2005).

    Article  CAS  Google Scholar 

  56. Kristensen, E., Ahmed, S. I. & Devol, A. H. Aerobic and anaerobic decomposition of organic matter in marine sediment: Which is fastest? Limnol. Oceanogr. 40, 1430–1437 (1995).

    Article  CAS  Google Scholar 

  57. Kelkar, N., Arthur, R., Marbà, N. & Alcoverro, T. Greener pastures? High-density feeding aggregations of green turtles precipitate species shifts in seagrass meadows. J. Ecol. 101, 1158–1168 (2013).

    Article  Google Scholar 

  58. Zimmerman, R. C., Steller, D. L., Kohrs, D. G. & Alberte, R. S. Top-down impact through a bottom-up mechanism. In situ effects of limpet grazing on growth, light requirements and survival of the eelgrass Zostera marina. Mar. Ecol. Prog. Ser. 218, 127–140 (2001).

    Article  Google Scholar 

  59. Christianen, M. J. A. et al. Habitat collapse due to overgrazing threatens turtle conservation in marine protected areas. Proc. R. Soc. B 281, 20132890 (2014).

    Article  Google Scholar 

  60. Lal, A., Arthur, R., Marbà, N., Lill, A. W. T. & Alcoverro, T. Implications of conserving an ecosystem modifier: Increasing green turtle (Chelonia mydas) densities substantially alters seagrass meadows. Biol. Conserv. 143, 2730–2738 (2010).

    Article  Google Scholar 

  61. Fourqurean, J., Manuel, S., Coates, K., Kenworthy, W. & Smith, S. Effects of excluding sea turtle herbivores from a seagrass bed: Overgrazing may have led to loss of seagrass meadows in Bermuda. Mar. Ecol. Prog. Ser. 419, 223–232 (2010).

    Article  Google Scholar 

  62. Mudd, S. M., D'Alpaos, A. & Morris, J. T. How does vegetation affect sedimentation on tidal marshes? Investigating particle capture and hydrodynamic controls on biologically mediated sedimentation. J. Geophys. Res. 115, F03029 (2010).

    Google Scholar 

  63. Baustian, J. J., Mendelssohn, I. A. & Hester, M. W. Vegetation's importance in regulating surface elevation in a coastal salt marsh facing elevated rates of sea level rise. Glob. Chang. Biol. 18, 3377–3382 (2012).

    Article  Google Scholar 

  64. Suchrow, S., Pohlmann, N., Stock, M. & Jensen, K. Long-term surface elevation changes in German North Sea salt marshes. Estuar. Coast. Shelf Sci. 98, 71–83 (2012).

    Article  Google Scholar 

  65. Elschot, K., Bouma, T. J., Temmerman, S. & Bakker, J. P. Effects of long-term grazing on sediment deposition and salt-marsh accretion rates. Estuar. Coast. Shelf Sci. 133, 109–115 (2013).

    Article  Google Scholar 

  66. Wirsing, A. J., Heithaus, M. R. & Dill, L. M. Can you dig it? Use of excavation, a risky foraging tactic, by dugongs is sensitive to predation danger. Anim. Behav. 74, 1085–1091 (2007).

    Article  Google Scholar 

  67. Wirsing, A. J., Heithaus, M. R. & Dill, L. M. Fear factor: Do dugongs (Dugong dugon) trade food for safety from tiger sharks (Galeocerdo cuvier)? Oecologia 153, 1031–1040 (2007).

    Article  Google Scholar 

  68. Gacia, E., Granata, T. C. & Duarte, C. M. An approach to measurement of particle flux and sediment retention within seagrass (Posidonia oceanica) meadows. Aquat. Bot. 65, 255–268 (1999).

    Article  Google Scholar 

  69. Wirsing, A. J., Heithaus, M. R., Frid, A. & Dill, L. M. Seascapes of fear: Evaluating sublethal predator effects experienced and generated by marine mammals. Mar. Mammal Sci. 24, 1–15 (2008).

    Article  Google Scholar 

  70. Preen, A. Impacts of dugong foraging on seagrass habitats: Observational and experimenta evidence for cultivation grazing. Mar. Ecol. Prog. Ser. 124, 201–213 (1995).

    Article  Google Scholar 

  71. Daleo, P., Alberti, J., Pascual, J., Canepuccia, A. & Iribarne, O. Herbivory affects salt marsh succession dynamics by suppressing the recovery of dominant species. Oecologia 175, 335–343 (2014).

    Article  Google Scholar 

  72. Kennedy, H. et al. Seagrass sediments as a global carbon sink: Isotopic constraints. Global Biogeochem. Cycles 24, http://dx.doi.org/10.1029/2010GB003848 (2010).

    Article  CAS  Google Scholar 

  73. McKee, K. L., Cahoon, D. R. & Feller, I. C. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Glob. Ecol. Biogeogr. 16, 545–556 (2007).

    Article  Google Scholar 

  74. Mateo, M. A., Romero, J., Pérez, M., Littler, M. M. & Littler, D. S. Dynamics of millenary organic deposits resulting from the growth of the Mediterranean seagrass Posidonia oceanica. Estuar. Coast. Shelf Sci. 44, 103–110 (1997).

    Article  Google Scholar 

  75. Krauss, K. W. et al. How mangrove forests adjust to rising sea level. New Phytol. 202, 19–34 (2014).

    Article  Google Scholar 

  76. Smith, J., Boto, K. G. & Giddins, L. Keystone species and mangrove forest dynamics: The influence of burrowing by crabs on soil nutrient status and forest productivity. Estuar. Coast. Shelf Sci. 33, 419–432 (1991).

    Article  CAS  Google Scholar 

  77. Strickland, M. S., Hawlena, D., Reese, A., Bradford, M. A. & Schmitz, O. J. Trophic cascade alters ecosystem carbon exchange. Proc. Natl Acad. Sci. USA 110, 11035–11038 (2013).

    Article  Google Scholar 

  78. Holland, J. N., Cheng, W. & Crossley, D. A. Herbivore-induced changes in plant carbon allocation: Assessment of below-ground C fluxes using carbon-14. Oecologia 107, 87–94 (1996).

    Article  Google Scholar 

  79. Feller, I. C., Chamberlain, A. H., Piou, C., Chapman, S. & Lovelock, C. E. Latitudinal patterns of herbivory in mangrove forests: Consequences of nutrient over-enrichment. Ecosystems 16, 1203–1215 (2013).

    Article  CAS  Google Scholar 

  80. Valentine, J. F. & Duffy, J. E. in Seagrasses: Biology, Ecology and Conservation 463–501 (Springer, 2006).

    Google Scholar 

  81. Miller, D. L. et al. Mid-Texas coastal marsh change (1939–1991) as influenced by lesser snow goose herbivory. J. Coast. Res. 12, 462–476 (1996).

    Google Scholar 

  82. Jefferies, R. L., Rockwell, R. F. & Abraham, K. F. Agricultural food subsidies, migratory connectivity and large-scale disturbance in arctic coastal systems: A case study. Integr. Comp. Biol. 44, 130–139 (2004).

    Article  CAS  Google Scholar 

  83. Gauthier, G., Bêty, J., Giroux, J.-F. & Rochefort, L. Trophic interactions in a high arctic snow goose colony. Integr. Comp. Biol. 44, 119–129 (2004).

    Article  Google Scholar 

  84. Anderson, C. & Lee, S. Y. Defoliation of the mangrove Avicennia marina in Hong Kong: Cause and consequences. Biotropica 27, 218–226 (1995).

    Article  Google Scholar 

  85. Rose, C. D. et al. Overgrazing of a large seagrass bed by the sea urchin Lytechinus variegatus in Outer Florida Bay. Mar. Ecol. Prog. Ser. 190, 211–222 (1999).

    Article  Google Scholar 

  86. Sousa, W. P., Quek, S. P. & Mitchell, B. J. Regeneration of Rhizophora mangle in a Caribbean mangrove forest: Interacting effects of canopy disturbance and a stem-boring beetle. Oecologia 137, 436–445 (2003).

    Article  Google Scholar 

  87. Robertson, A. A. I., Giddins, R., Smith, T. J. & Url, S. Seed predation by insects in tropical mangrove forests: Extent and effects on seed viability and the growth of seedlings. Oecologia 83, 213–219 (1990).

    Article  CAS  Google Scholar 

  88. Orth, R. J., Kendrick, G. A. & Marion, S. R. Posidonia australis seed predation in seagrass habitats of Two Peoples Bay, Western Australia. Aquat. Bot. 86, 83–85 (2007).

    Article  Google Scholar 

  89. Ungar, I. A. Are biotic factors significant in influencing the distribution of halophytes in saline habitats. Bot. Rev. 64, 176–199 (1998).

    Article  Google Scholar 

  90. Christensen, B., Vedel, A. & Kristensen, E. Carbon and nitrogen fluxes in sediment inhabited by suspension-feeding (Nereis diversicolor) and non-suspension-feeding (N. virens) polychaetes. Mar. Ecol. Prog. Ser. 192, 203–217 (2000).

    Article  Google Scholar 

  91. Kristensen, E., Andersen, F. Ø., Holmboe, N., Holmer, M. & Thongtham, N. Carbon and nitrogen mineralization in sediments of the Bangrong mangrove area, Phuket, Thailand. Aquat. Microb. Ecol. 22, 199–213 (2000).

    Article  Google Scholar 

  92. Papaspyrou, S., Gregersen, T., Cox, R., Thessalou-Legaki, M. & Kristensen, E. Sediment properties and bacterial community in burrows of the ghost shrimp Pestarella tyrrhena (Decapoda: Thalassinidea). Aquat. Microb. Ecol. 38, 181–190 (2005).

    Article  Google Scholar 

  93. Jackson, J. B. C. What was natural in the coastal oceans? Proc. Natl Acad. Sci. USA 98, 5411–5418 (2001).

    Article  CAS  Google Scholar 

  94. Wittmer, H. U., Sinclair, A. R. E. & McLellan, B. N. The role of predation in the decline and extirpation of woodland caribou. Oecologia 144, 257–267 (2005).

    Article  Google Scholar 

  95. Rooney, N., McCann, K., Gellner, G. & Moore, J. C. Structural asymmetry and the stability of diverse food webs. Nature 442, 265–269 (2006).

    Article  CAS  Google Scholar 

  96. Gittman, R. K. & Keller, D. A. Fiddler crabs facilitate Spartina alterniflora growth, mitigating periwinkle overgrazing of marsh habitat. Ecology 94, 2709–2718 (2013).

    Article  Google Scholar 

  97. Barnosky, A. D. et al. Has the Earth's sixth mass extinction already arrived? Nature 471, 51–57 (2011).

    Article  CAS  Google Scholar 

  98. Ripple, W. J. et al. Status and ecological effects of the world's largest carnivores. Science 343, http://dx.doi.org/10.1126/science.1241484 (2014).

    Article  CAS  Google Scholar 

  99. Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).

    Article  CAS  Google Scholar 

  100. Ward-Paige, C. A., Keith, D. M., Worm, B. & Lotze, H. K. Recovery potential and conservation options for elasmobranchs. J. Fish Biol. 80, 1844–1869 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a working group grant from the Centre for Integrative Ecology at Deakin University, the Climate Change Consortium for Wales (C3W), CSIRO Marine and Coastal Carbon Biogeochemistry Cluster, and an Australian Research Council DECRA Grant awarded to P.I.M. (DE130101084). This is contribution no. 735 from the Southeast Environmental Research Center at Florida International University. We thank E. Hammill and R. Tackett for assistance with figures.

Author information

Authors and Affiliations

Authors

Contributions

All authors helped to conceive the manuscript. T.B.A. led the writing with contributions from all authors. T.B.A., R.C., C.L. and J.F. contributed to data analyses.

Corresponding author

Correspondence to Trisha B. Atwood.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information (PDF 785 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atwood, T., Connolly, R., Ritchie, E. et al. Predators help protect carbon stocks in blue carbon ecosystems. Nature Clim Change 5, 1038–1045 (2015). https://doi.org/10.1038/nclimate2763

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2763

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology