Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Constitutively activating mutation in WASP causes X-linked severe congenital neutropenia

Abstract

The Wiskott-Aldrich syndrome protein (WASP; encoded by the gene WAS) and its homologs are important regulators of the actin cytoskeleton, mediating communication between Rho-family GTPases and the actin nucleation/crosslinking factor, the Arp2/3 complex1. Many WAS mutations impair cytoskeletal control in hematopoietic tissues, resulting in functional and developmental defects that define the X-linked Wiskott-Aldrich syndrome (WAS) and the related X-linked thrombocytopenia2 (XLT). These diseases seem to result from reduced WASP signaling, often through decreased transcription or translation of the gene3,4,5,6,7,8. Here we describe a new disease, X-linked severe congenital neutropenia (XLN), caused by a novel L270P mutation in the region of WAS encoding the conserved GTPase binding domain (GBD). In vitro, the mutant protein is constitutively activated through disruption of an autoinhibitory domain in the wild-type protein, indicating that loss of WASP autoinhibition is a key event in XLN. Our findings highlight the importance of precise regulation of WASP in hematopoietic development and function, as impairment versus enhancement of its activity give rise to distinct spectra of cellular defects and clinical phenotypes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: L270P WASP mutation in XLN.
Figure 2: Ribbons30 depiction of the GBD4-C structure, showing sidechain of L270.
Figure 3: WASP L270P proteins are unfolded and constitutively active.

Similar content being viewed by others

References

  1. Machesky, L.M. & Insall, R.H. Signaling to actin dynamics. J. Cell Biol. 146, 267–272 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Snapper, S.B. & Rosen, F.S. The Wiskott-Aldrich syndrome protein (WASP): roles in signaling and cytoskeletal organization. Annu. Rev. Immunol. 17, 905–929 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Kolluri, R., Tolias, K.F., Carpenter, C.L., Rosen, F.S. & Kirchhausen, T. Direct interaction of the Wiskott-Aldrich syndrome protein with the GTPase Cdc42. Proc. Natl. Acad. Sci. USA 93, 5615–5618 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stewart, D.M. et al. Studies of the expression of the Wiskott-Aldrich syndrome protein. J. Clin. Invest. 97, 2627–2634 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhu, Q. et al. Wiskott-Aldrich syndrome/X-linked thrombocytopenia: WASP gene mutations, protein expression, and phenotype. Blood 90, 2680–2689 (1997).

    CAS  PubMed  Google Scholar 

  6. MacCarthy-Morrogh, L. et al. Absence of expression of the Wiskott-Aldrich syndrome protein in peripheral blood cells of Wiskott-Aldrich syndrome patients. Clin. Immunol. Immunopathol. 88, 22–27 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Shcherbina, A., Rosen, F.S. & Remold-O'Donnell, E. WASP levels in platelets and lymphocytes of Wiskott-Aldrich syndrome patients correlate with cell dysfunction. J. Immunol. 163, 6314–6320 (1999).

    CAS  PubMed  Google Scholar 

  8. Lemahieu, V., Gastier, J.M. & Francke, U. Novel mutations in the Wiskott-Aldrich syndrome protein gene and their effects on transcriptional, translational, and clinical phenotypes. Hum. Mutat. 14, 54–66 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Dale, D.C. et al. Mutations in the gene encoding neutrophil elastase in congenital and cyclic neutropenia. Blood 96, 2317–2322 (2000).

    CAS  PubMed  Google Scholar 

  10. Parolini, O. et al. Expression of Wiskott-Aldrich syndrome protein (WASP) gene during hematopoietic differentiation. Blood 90, 70–75 (1997).

    CAS  PubMed  Google Scholar 

  11. Facchetti, F. et al. Defective actin polymerization in EBV-transformed B-cell lines from patients with the Wiskott-Aldrich syndrome. J. Pathol. 185, 99–107 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Miki, H., Sasaki, T., Takai, Y. & Takenawa, T. Induction of filopodium formation by a WASP-related actin-depolymerizing protein N-WASP. Nature 391, 93–96 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Kim, A.S., Kakalis, L.T., Abdul-Manan, N., Liu, G.A. & Rosen, M.K. Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome protein. Nature 404, 151–158 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Higgs, H.N. & Pollard, T.D. Activation by Cdc42 and PIP(2) of Wiskott-Aldrich syndrome protein (WASp) stimulates actin nucleation by Arp2/3 complex. J. Cell Biol. 150, 1311–1320 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rohatgi, R., Ho, H.Y. & Kirschner, M.W. Mechanism of N-WASP activation by CDC42 and phosphatidylinositol 4, 5-bisphosphate. J. Cell Biol. 150, 1299–1310 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Prehoda, K.E., Scott, J.A., Dyche Mullins, R. & Lim, W.A. Integration of multiple signals through cooperative regulation of the N-WASP-Arp2/3 complex. Science 290, 801–806 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Rudolph, M. et al. The Cdc42/Rac interactive binding region motif of the Wiskott Aldrich syndrome protein (WASP) is necessary but not sufficient for tight binding to Cdc42 and structure formation. J. Biol. Chem. 273, 18067–18076 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Abdul-Manan, N. et al. Structure of Cdc42 in complex with the GTPase binding domain of the Wiskott-Aldrich syndrome protein. Nature 399, 379–383 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Mullins, R.D., Heuser, J.A. & Pollard, T.D. The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc. Natl. Acad. Sci. USA 95, 6181–6186 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Elsner, J., Roesler, L., Emmendoerffer, A., Lohmann-Matthes, M.-L. & Welte, K. Abnormal regulation in the signal transduction in neutrophils from patients with severe congenital neutropenia: relation of impaired mobilization of cytosolic free calcium to altered chemotaxis, superoxide anion generation and F-actin content. Exp. Hematol. 21, 38–46 (1993).

    CAS  PubMed  Google Scholar 

  21. Dustin, M.L. & Cooper, J.A. The immunological synapse and the actin cytoskeleton: molecular hardware for T cell signaling. Nature Immunol. 1, 23–29 (2000).

    Article  CAS  Google Scholar 

  22. Coakley, G., Iqbal, M., Brooks, D., Panayi, G.S. & Lanchbury, J.S. CD8+, CD57+ T cells from healthy elderly subjects suppress neutrophil development in vitro: implications for the neutropenia of Felty's and large granular lymphocyte syndromes. Arthritis Rheum. 43, 834–843 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Geller, D.S. et al. Activating mineralocorticoid receptor mutation in hypertension exacerbated by pregnancy. Science 289, 119–123 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Lathrop, G.M. & Lalouel, G.M. Easy calculations of LOD scores and genetic risks on small computers. Am. J. Hum. Genet. 36, 460–465 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Cottingham, R.W., Idury, R.M. & Schäffer, A.A. Faster sequential genetic linkage computations. Am. J. Hum. Genet. 53, 252–263 (1993).

    PubMed  PubMed Central  Google Scholar 

  26. Dib, C. et al. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature 380, 152–154 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Schwartz, M. et al. Mutation spectrum in patients with Wiskott-Aldrich syndrome and X-linked thrombocytopenia: identification of twelve different mutations in the WASP gene. Thromb. Haemost. 75, 546–550 (1996).

    CAS  PubMed  Google Scholar 

  28. Devriendt, K. et al. Skewed X-chromosome inactivation in female carriers of dyskeratosis congenita. Am. J. Hum. Genet. 60, 581–587 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Egile, C. et al. Activation of the Cdc42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. J. Cell Biol. 146, 1319–1332 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Carson, M.J. Ribbons 2.0. J. Appl. Crystallogr. 24, 958–961 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Y. Benoit, E. Baeten, F. Van Aelst and M. Holvoet for patient materials; R. Rohatgi and J. Peterson for discussions; D. Nelson for the anti-WASP antibody; and L. Notarangelo for the XLT cell line; and K. Vanstraelen and X. Bossuyt for help. K.D. and P.V. are Senior Clinical Investigators of the Fund for Scientific Research–Flanders (Belgium) (FWO-Vlaanderen). A.S.K. is supported by a fellowship from the Damon Runyon-Walter Winchell Foundation. M.K.R. acknowledges support from the National Institutes of Health (PECASE program), Arnold and Mabel Beckman Foundation and Sidney Kimmel Foundation for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael K. Rosen or Peter Vandenberghe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devriendt, K., Kim, A., Mathijs, G. et al. Constitutively activating mutation in WASP causes X-linked severe congenital neutropenia. Nat Genet 27, 313–317 (2001). https://doi.org/10.1038/85886

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/85886

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing