Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Syndecans: proteoglycan regulators of cell-surface microdomains?

Key Points

  • Syndecans are a small family of transmembrane proteoglycans that are widespread in invertebrates and vertebrates. They have an ability to interact with a variety of ligands through their core proteins and heparan-sulphate chains.

  • Recent data indicate that the conserved cytoplasmic domains of syndecans can interact with PDZ (Psd95, Discs large, Zona occludens 1) proteins, signalling molecules and cytoskeletal proteins, strongly indicating that these molecules are more than just co-receptors.

  • These cytoplasmic domains have a unique structural organization that probably facilitates dimer and oligomer formation and is essential for signalling.

  • Examples including dendritic spines, focal adhesions and association with lipid rafts indicate that syndecans might regulate cellular responses in membrane microdomains.

  • While information from invertebrates is still to come, syndecan-knockout mice show deficits not in development, but in tissue repair and response to injury.

  • Syndecan-specific functions will be further uncovered by a combination of structural, glycomic, genetic and cellular biological approaches.

Abstract

Syndecans function as membrane receptors for a bewildering array of ligands through their glycosaminoglycan chains but their precise roles have been hard to pin down. Syndecans have previously been considered as ligand gatherers, working as co-receptors in collaboration with signalling receptors, but their potential to signal independently is now clear. New structural features of syndecan cytoplasmic domains have been described, together with new insights into signalling across the cell membrane that might involve the concentration of ligands in membrane microdomains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Syndecan core-domain structure and potential interactions.
Figure 2: Syndecan-4 cytoplasmic domain and its interaction with PtdIns(4,5)P2.
Figure 3: Phosphorylation of syndecan 2.
Figure 4: Syndecan 2, EphB2 receptors and dendritic-spine maturation.
Figure 5: Left–right asymmetery in Xenopus.
Figure 6: A ternary complex of PtdIns(4,5)P2, syndecan 4 and protein kinase Cα.

Similar content being viewed by others

References

  1. Selleck, S. B. Proteoglycans and pattern formation. Sugar biochemistry meets developmental genetics. Trends Genet. 16, 206–212 (2000).

    CAS  PubMed  Google Scholar 

  2. Perrimon, N. & Bernfield, M. Specificities of heparan sulphate proteoglycans in developmental processes. Nature 404, 725–728 (2000).

    CAS  PubMed  Google Scholar 

  3. Park, P. W., Reizes, O. & Bernfield, M. Cell surface heparan sulfate proteoglycans: selective regulators of ligand–receptor encounters. J. Biol. Chem. 275, 29923–29926 (2000).

    CAS  PubMed  Google Scholar 

  4. Filmus, J. Glypicans in growth and cancer. Glycobiology 11, 19R–23R (2001).

    CAS  PubMed  Google Scholar 

  5. Bernfield, M. et al. Functions of cell surface heparan sulfate proteoglycans. Annu. Rev. Biochem. 68, 729–777 (1999).

    CAS  PubMed  Google Scholar 

  6. Rapraeger, A. C. Molecular interactions of syndecans during development. Semin. Cell Dev. Biol. 12, 107–116 (2001).

    CAS  PubMed  Google Scholar 

  7. Couchman, J. R., Chen, L. & Woods, A. Syndecans and cell adhesion. Int. Rev. Cytol. 207, 113–150 (2001).

    CAS  PubMed  Google Scholar 

  8. Saunders, S., Jalkanen, M., O'Farrell, S. & Bernfield, M. Molecular cloning of syndecan, an integral membrane proteoglycan. J. Cell Biol. 108, 1547–1556 (1989).

    CAS  PubMed  Google Scholar 

  9. Bernfield, M. et al. Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. Annu. Rev. Cell Biol. 8, 365–393 (1992).

    CAS  PubMed  Google Scholar 

  10. David, G., Van der Schueren, B., Marynen, P., Cassiman, J. -J. & Van den Berghe, H. Molecular cloning of amphiglycan, a novel integral membrane heparan sulfate proteoglycan expressed by epithelial and fibroblastic cells. J. Cell Biol. 118, 961–969 (1992).

    CAS  PubMed  Google Scholar 

  11. McFall, A. J. & Rapraeger, A. C. Identification of an adhesion site within the syndecan-4 extracellular protein domain. J. Biol. Chem. 272, 12901–12904 (1997).

    CAS  PubMed  Google Scholar 

  12. McFall, A. J. & Rapraeger, A. C. Characterization of the high affinity cell-binding domain in the cell surface proteoglycan syndecan-4. J. Biol. Chem. 273, 28270–28276 (1998).

    CAS  PubMed  Google Scholar 

  13. Liu, W. et al. Heparan sulfate proteoglycans as adhesive and anti-invasive molecules. Syndecans and glypican have distinct functions. J. Biol. Chem. 273, 22825–22832 (1998).

    CAS  PubMed  Google Scholar 

  14. Carey, D. J. Syndecans: multifunctional cell-surface co-receptors. Biochem. J. 327, 1–16 (1997).

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Oh, E. -S., Woods, A. & Couchman, J. R. Multimerization of the cytoplasmic domain of syndecan-4 is required for its ability to activate protein kinase C. J. Biol. Chem. 272, 11805–11811 (1997).

    CAS  PubMed  Google Scholar 

  16. Lee, D., Oh, E. -S., Woods, A., Couchman, J. R. & Lee, W. Solution structure of a syndecan-4 cytoplasmic domain and its interaction with phosphatidylinositol 4,5-bisphosphate. J. Biol. Chem. 273, 13022–13029 (1998).

    CAS  PubMed  Google Scholar 

  17. Shin, J. et al. Solution structure of the dimeric cytoplasmic domain of syndecan-4. Biochemistry 40, 8471–8478 (2001). This and the preceding paper provide the only structural data on a syndecan cytoplasmic domain.

    CAS  PubMed  Google Scholar 

  18. Lories, V., Cassiman, J. J., Van den Berghe, H. & David, G. Multiple distinct membrane heparan sulfate proteoglycans in human lung fibroblasts. J. Biol. Chem. 264, 7009–7016 (1989).

    CAS  PubMed  Google Scholar 

  19. Baciu, P. C. et al. Syndesmos, a protein that interacts with the cytoplasmic domain of syndecan-4, mediates cell spreading and actin cytoskeletal organization. J. Cell Sci. 113, 315–324 (2000).

    CAS  PubMed  Google Scholar 

  20. Filmus, J. & Selleck, S. B. Glypicans: proteoglycans with a surprise. J. Clin. Invest. 108, 497–501 (2001).

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Kato, M., Saunders, S., Nguyen, H. & Bernfield, M. Loss of cell surface syndecan-1 causes epithelia to transform into anchorage-independent mesenchyme-like cells. Mol. Biol. Cell 6, 559–576 (1995).

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Anttonnen, A., Kajanti, M., Heikkila, P., Jalkanen, M. & Joensuu, H. Syndecan-1 expression has prognostic significance in head and neck carcinoma. Br. J. Cancer 79, 558–564 (1999).

    Google Scholar 

  23. Rintala, M., Inki, P., Klemi, P., Jalkanen, M. & Grenman, S. Association of syndecan-1 with tumor grade and histology in primary invasive cervical carcinoma. Gynecol. Oncol. 75, 372–378 (1999).

    CAS  PubMed  Google Scholar 

  24. Leppa, S., Vleminckx, K., Van Roy, F. & Jalkanen, M. Syndecan-1 expression in mammary epithelial tumor cells is E-cadherin-dependent. J. Cell Sci. 109, 1393–1403 (1996).

    CAS  PubMed  Google Scholar 

  25. Berx, G. & Van Roy, F. The E-cadherin/catenin complex: an important gatekeeper in breast cancer tumorigenesis and malignant progression. Breast Cancer Res. 3, 289–293 (2001).

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Carey, D. J., Stahl, R. C., Tucker, B., Bendt, K. A. & Cizmeci-Smith, G. Aggregation-induced association of syndecan-1 with microfilaments mediated by the cytoplasmic domain. Exp. Cell Res. 214, 12–21 (1994).

    CAS  PubMed  Google Scholar 

  27. Miettinen, H. & Jalkanen, M. The cytoplasmic domain of syndecan-1 is not required for association with Triton-X-100-insoluble material. J. Cell Sci. 107, 1571–1581 (1994).

    CAS  PubMed  Google Scholar 

  28. Kinnunen, T. et al. Cortactin-Src kinase signaling pathway is involved in N-syndecan-dependent neurite outgrowth. J. Biol. Chem. 273, 10702–10708 (1998).

    CAS  PubMed  Google Scholar 

  29. Adams, J. C., Kureishy, N. & Taylor, A. L. A role for syndecan-1 in coupling fascin spike formation by thrombospondin-1. J. Cell Biol. 152, 1169–1182 (2001). A specific system for analysing the signalling pathway from syndecan 1 to the actin cytoskeleton and the role of GTPases.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Dhodapkar, M. V. & Sanderson, R. D. Syndecan-1 (CD138) in myeloma and lymphoid malignancies: a multifunctional regulator of cell behavior within the tumor microenvironment. Leuk. Lymphoma 34, 35–43 (1999).

    CAS  PubMed  Google Scholar 

  31. Dhodapkar, M. V. et al. Elevated levels of shed syndecan-1 correlate with tumour mass and decreased matrix metalloproteinase-9 activity in the serum of patients with multiple myeloma. Br. J. Haematol. 99, 368–371 (1997).

    CAS  PubMed  Google Scholar 

  32. Yang, Y., Borset, M., Langford, J. K. & Sanderson, R. D. Heparan sulfate regulates targeting of syndecan-1 to a functional domain on the cell surface. J. Biol. Chem. 278, 12888–12893 (2003).

    CAS  PubMed  Google Scholar 

  33. Kainulainen, V., Wang, H., Schick, C. & Bernfield, M. Syndecans, heparan sulfate proteoglycans, maintain the proteolytic balance of acute wound fluid. J. Biol. Chem. 273, 11563–11569 (1998).

    CAS  PubMed  Google Scholar 

  34. Fitzgerald, M. L., Wang, Z., Park, P. W., Murphy, G. & Bernfield, M. Shedding of syndecan-1 and-4 ectodomains is regulated by multiple signaling pathways and mediated by a TIMP-3-sensitive metalloproteinase. J. Cell Biol. 148, 811–824 (2000).

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Dhodapkar, M. V. et al. Syndecan-1 is a multifunctional regulator of myeloma pathobiology: control of tumor cell survival, growth, and bone cell differentiation. Blood 91, 2679–2688 (1998).

    CAS  PubMed  Google Scholar 

  36. Kato, M. et al. Physiological degradation converts the soluble syndecan-1 ectodomain from an inhibitor to a potent activator of FGF-2. Nature Med. 4, 691–697 (1998).

    CAS  PubMed  Google Scholar 

  37. Li, Q., Park, P. W., Wilson, C. L. & Parks, W. C. Matrilysin shedding of syndecan-1 regulates chemokines mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell 111, 635–646 (2002). Elegant demonstration of how syndecan that is shed from the cell surface is functional in localizing an inflammatory response.

    CAS  PubMed  Google Scholar 

  38. Ethell, I. M. & Yamaguchi, Y. Cell surface heparan sulfate proteoglycan syndecan-2 induces the maturation of dendritic spines in rat hippocampal neurons. J. Cell Biol. 144, 575–586 (1999).

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Ethell, I. M. et al. EphB/syndecan-2 signaling in dendritic spine morphogenesis. Neuron 31, 1001–1013 (2001). Lateral association of syndecan 2 with the Eph receptor tyrosine kinase provides a basis for syndecan phosphorylation and clustering associated with dendritic maturation.

    CAS  PubMed  Google Scholar 

  40. Ethell, I. M., Hagihara, K., Miura, Y., Irie, F. & Yamaguchi, Y. Synbindin, a novel syndecan-2-binding protein in neuronal dendritic spines. J. Cell Biol. 151, 53–67 (2000).

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Cohen, A. R. et al. Human CASK/LIN-2 binds syndecan-2 and protein 4.1 and localizes to the basolateral membrane of epithelial cells. J. Cell Biol. 142, 129–138 (1998).

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Hsueh, Y. -P. & Sheng, M. Regulated expression and subcellular localization of syndecan heparan sulfate proteoglycans and the syndecan-binding protein CASK/LIN-2 during rat brain development. J. Neurosci. 19, 7415–7425 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Irie, F. & Yamaguchi, Y. EphB receptors regulate dendritic spine development via intersectin, Cdc42 and N-WASP. Nature Neurosci. 5, 1117–1118 (2002).

    CAS  PubMed  Google Scholar 

  44. Klass, C. M., Couchman, J. R. & Woods, A. Control of extracellular matrix assembly by syndecan-2 proteoglycan. J. Cell Sci. 113, 493–506 (2000).

    CAS  PubMed  Google Scholar 

  45. Cukierman, E., Pankov, R., Stevens, D. R. & Yamada, K. M. Taking cell-matrix adhesions to the third dimension. Science 294, 1661–1663 (2001).

    Google Scholar 

  46. Granés, F., Ureña, J. M., Rocamora, N. & Vilaró, S. Ezrin links syndecan-2 to the cytoskeleton. J. Cell Sci. 113, 1267–1276 (2000).

    PubMed  Google Scholar 

  47. Granés, F. et al. Syndecan-2 induces filopodia by active cdc42Hs. Exp. Cell Res. 248, 439–456 (1999).

    PubMed  Google Scholar 

  48. Kusano, Y. et al. Participation of syndecan 2 in the induction of stress fiber formation in cooperation with integrin α5β1: structural characteristics of heparan sulfate chains with avidity to COOH-terminal heparin-binding domain of fibronectin. Exp. Cell Res. 256, 434–444 (2000).

    CAS  PubMed  Google Scholar 

  49. Munesue, S. et al. The role of syndecan-2 in regulation of actin-cytoskeletal organization of Lewis lung carcinoma-derived metastatic clones. Biochem. J. 363, 201–209 (2002).

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Woods, A & Couchman, J. R. Syndecan-4 and focal adhesion function. Curr. Opin. Cell Biol. 13, 578–583 (2001).

    CAS  PubMed  Google Scholar 

  51. Kramer, K. L. & Yost, H. J. Ectodermal syndecan-2 mediates left-right axis formation in migrating mesoderm as a cell-nonautonomous Vg1 cofactor. Dev. Cell 2, 115–124 (2002).

    CAS  PubMed  Google Scholar 

  52. Kramer, K. L., Barnette, J. E. & Yost, H. J. PKCγ regulates syndecan-2 inside-out signaling during Xenopus left-right development. Cell 111, 981–990 (2002). References 51 and 52 provide not only evidence for the role of syndecan 2 in early vertebrate development, but also a molecular basis for the signalling process.

    CAS  PubMed  Google Scholar 

  53. Tumova, S., Woods, A. & Couchman, J. R. Heparan sulfate chains from glypican and syndecans bind Hep II domain of fibronectin similarly despite minor structural differences. J. Biol. Chem. 275, 9410–9417 (2000).

    CAS  PubMed  Google Scholar 

  54. Zako, M. et al. Syndecan-1 and -4 synthesized simultaneously by mouse mammary gland epithelial cells bear heparan sulfate chains that are apparently structurally indistinguishable. J. Biol. Chem. 278, 13561–13569 (2003).

    CAS  PubMed  Google Scholar 

  55. Calderwood, D. A. Shattil, S. J. & Ginsberg, M. H. Integrins and actin filaments: reciprocal regulation of cell adhesion and signaling. J. Biol. Chem. 275, 22607–22610 (2000).

    CAS  PubMed  Google Scholar 

  56. Oh, E. -S., Couchman, J. R. & Woods, A. Serine phosphorylation of syndecan-2 proteoglycan cytoplasmic domain. Arch. Biochem. Biophys. 344, 67–74 (1997).

    CAS  PubMed  Google Scholar 

  57. Woods, A. & Couchman, J. R. Syndecan 4 heparan sulfate proteoglycan is a selectively enriched and widespread focal adhesion component. Mol. Biol. Cell 5, 183–192 (1994).

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Baciu, P. C. & Goetinck, P. F. Protein kinase C regulates the recruitment of syndecan-4 into focal contacts. Mol. Biol. Cell 6, 1503–1513 (1995).

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Longley, R. L. et al. Control of morphology, cytoskeleton and migration by syndecan-4. J. Cell Sci. 112, 3421–3431 (1999).

    CAS  PubMed  Google Scholar 

  60. Oh, E. -S., Woods, A., Lim, S. -T., Theibert, A. W. & Couchman, J. R. Syndecan-4 proteoglycan cytoplasmic domain and phosphatidylinositol 4,5-bisphosphate co-ordinately regulate protein kinase C activity. J. Biol. Chem. 273, 10624–10629.

  61. Horowitz, A., Murakami, M., Gao, Y. & Simons, M. Phosphatidylinositol-4,5-bisphosphate mediates the interaction of syndecan-4 with protein kinase C. Biochemistry 38, 15871–15877 (1999).

    CAS  PubMed  Google Scholar 

  62. Couchman, J. R. et al. Regulation of inositol phospholipid binding and signaling through syndecan-4. J. Biol. Chem. 277, 49296–49303 (2002).

    CAS  PubMed  Google Scholar 

  63. Oh, E. -S., Woods, A. & Couchman, J. R. Syndecan-4 proteoglycan regulates the distribution and activity of protein kinase C. J. Biol. Chem. 272, 8133–8136 (1997).

    CAS  PubMed  Google Scholar 

  64. Horowitz, A. & Simons, M. Phosphorylation of the cytoplasmic tail of syndecan-4 regulates activation of protein kinase Cα. J. Biol. Chem. 273, 25548–25551 (1998).

    CAS  PubMed  Google Scholar 

  65. Lim, S. -T., Longley, R. L., Couchman, J. R. & Woods, A. Direct binding of syndecan-4 cytoplasmic domain to the catalytic domain of PKCα increases focal adhesion localization of PKCα. J. Biol. Chem. 278, 13795–13802 (2003). This brings together evidence for a role for syndecan 4 in focal-adhesion formation and the localization of PKCα.

    CAS  PubMed  Google Scholar 

  66. Corbal´n-Garc'a, S., Garc'a-Garc'a, J., Rodr'guez-Alfaro, J. A. & Gómez-Fernández, J. C. A new phosphatidylinositol 4,5-bisphoshate-binding site located in the C2 domain of protein kinase Cα. J. Biol. Chem. 278, 4972–4980 (2003).

    Google Scholar 

  67. Woods, A. & Couchman, J. R. Integrin modulation by lateral association. J. Biol. Chem. 275, 24233–24236 (2000).

    CAS  PubMed  Google Scholar 

  68. Bass, M. D., & Humphries, M. J. Cytoplasmic interactions of Syndecan-4 orchestrate adhesion receptor and growth factor receptor signalling. Biochem. J. 368, 1–15 (2002).

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Bhatt, A., Kaverina, I., Otey, C. & Huttenlocher, A. Regulation of focal complex composition and disassembly by the calcium-dependent calpain. J. Cell Sci. 115, 3415–3425 (2002).

    CAS  PubMed  Google Scholar 

  70. Horowitz, A. & Simons, M. Regulation of syndecan-4 phosphorylation in vivo. J. Biol. Chem. 273, 10914–10918 (1998).

    CAS  PubMed  Google Scholar 

  71. Murakami, M., Horowitz, A., Tang, S., Ware, J. A. & Simons, M. Protein kinase C (PKC)δ regulates PKCα activity in a syndecan-4-dependent manner. J. Biol. Chem. 277, 20367–20371 (2002).

    CAS  PubMed  Google Scholar 

  72. Denhez, F. et al. Syndesmos, a syndecan-4 cytoplasmic domain interactor, binds to the focal adhesion adaptor proteins paxillin and Hic-5. J. Biol. Chem. 277, 12270–12274 (2002).

    CAS  PubMed  Google Scholar 

  73. Greene, D. K., Tumova, S., Couchman, J. R. & Woods, A. Syndecan-4 associates with α-actinin. J. Biol. Chem. 278, 7617–7623 (2003).

    CAS  PubMed  Google Scholar 

  74. Critchley, D. R. Focal adhesions — the cytoskeletal connection. Curr. Opin. Cell Biol. 12, 133–139 (2000).

    CAS  PubMed  Google Scholar 

  75. Saoncella, S. et al. Syndecan-4 signals cooperatively with integrins in a Rho-dependent manner in the assembly of focal adhesions and actin stress fibers. Proc. Natl Acad. Sci. USA 96, 2805–2810 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Bishop, A. & Hall, A. Rho GTPases and their effector proteins. Biochem. J. 348, 241–255 (2000).

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Slater, S. J., Seiz, J. L., Stagliano, B. A. & Stubbs, C. D. Interaction of protein kinase C isozymes with Rho GTPases. Biochemistry 40, 4437–4445 (2001).

    CAS  PubMed  Google Scholar 

  78. Defilippi, P. et al. Dissection of pathways implicated in integrin-mediated actin cytoskeleton assembly. Involvement of protein kinase C, Rho GTPase, and tyrosine phosphorylation. J. Biol. Chem. 272, 21726–21734 (1997).

    CAS  PubMed  Google Scholar 

  79. Thodeti, C. K. et al. ADAM12/syndecan-4 signaling promotes β1 integrin-dependent cell spreading through PKCα and Rho A. J. Biol. Chem. 278, 9576–9584 (2003).

    CAS  PubMed  Google Scholar 

  80. Fukata, Y., Amano, M. & Kaibuchi, K. Rho-Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends Pharmacol. Sci. 22, 32–39 (2001).

    CAS  PubMed  Google Scholar 

  81. Watanabe, N. et al. p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO J. 16, 3044–3056 (1997).

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Stanley, M. J., Liebersbach, B. F., Liu, W., Anhalt, D. J. & Sanderson, R. D. Heparan sulfate-mediated cell aggregation. Syndecans-1 and-4 mediate intercellular adhesion following their transfection into human B lymphoid cells. J. Biol. Chem. 270, 5077–5083 (1995).

    CAS  PubMed  Google Scholar 

  83. Fuki I. V. et al. The syndecan family of proteoglycans. Novel receptors mediating internalization of atherogenic lipoproteins in vitro. J. Clin. Invest. 100, 1611–1622 (1997).

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Fuki, I. V., Meyer, M. E. & Williams, K. J. Transmembrane and cytoplasmic domains of syndecan mediate a multi-step endocytic pathway involving detergent-insoluble membrane rafts. Biochem. J. 351, 607–612 (2000). The importance of syndecan clustering and translocation to a membrane domain following ligand binding is illustrated.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Tkachenko, E. & Simons, M. Clustering induces redistribution of syndecan-4 core protein into raft membrane domains. J. Biol. Chem. 277, 19946–19951 (2002).

    CAS  PubMed  Google Scholar 

  86. Grootjans, J. J. et al. Syntenin, a PDZ protein that binds syndecan cytoplasmic domains. Proc. Natl Acad. Sci. USA 94, 13683–13688 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Gao, Y., Li, M., Chen, W. & Simons, M. Synectin, syndecan-4 cytoplasmic domain binding PDZ protein, inhibits cell migration. J. Cell Physiol. 184, 373–379 (2000).

    CAS  PubMed  Google Scholar 

  88. Hung, A. Y. & Sheng, M. PDZ domains: structural modules for protein complex assembly. J. Biol. Chem. 277, 5699–5702 (2002).

    CAS  PubMed  Google Scholar 

  89. Zimmermann, P. et al. Characterization of syntenin, a syndecan-binding PDZ protein, as a component of cell adhesion sites and microfilaments. Mol. Biol. Cell 12, 339–350 (2001).

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Fialka, I. et al. Identification of syntenin as a protein of the apical early endocytic compartment in Madin–Darby canine kidney cells. J. Biol. Chem. 274, 26233–26239 (1999).

    CAS  PubMed  Google Scholar 

  91. Lin, D., Gish, G. D., Songyang, Z. & Pawson, T. The carboxyl terminus of B class ephrins constitutes a PDZ domain binding motif. J. Biol. Chem. 274, 3726–3733 (1999).

    CAS  PubMed  Google Scholar 

  92. El Mourabit, H. et al. The PDZ domain of TIP-2/GIPC interacts with the C-terminus of the integrin α5 and α6 subunits. Matrix Biol. 21, 207–214 (2002).

    CAS  PubMed  Google Scholar 

  93. Stepp, M. A. et al. Defects in keratinocyte activation during wound healing in the syndecan-1-deficient mouse. J. Cell Sci. 115, 4517–4531 (2002).

    CAS  PubMed  Google Scholar 

  94. Götte, M. et al. Role of syndecan-1 in leukocyte-endothelial interactions in the ocular vasculature. Invest. Ophthalmol. Vis. Sci. 34, 1135–1141 (2002).

    Google Scholar 

  95. Alexander, C. M., Hinkes, M. T. & Bernfield, M. Syndecan-1 is required for Wnt-1-induced tumorigenesis but not for morphogenesis of mouse mammary epithelia. Nature Genet. 25, 329–332 (2000).

    CAS  PubMed  Google Scholar 

  96. Stanley, M. J., Stanley, M. W., Sanderson, R. D. & Zera, R. Syndecan-1 expression is induced in the stroma of infiltrating breast carcinoma. Am. J. Clin. Pathol. 112, 377–383 (1999).

    CAS  PubMed  Google Scholar 

  97. Echtermeyer, F. et al. Delayed wound repair and impaired angiogenesis in mice lacking syndecan-4. J. Clin. Invest. 107, R9–R14 (2001).

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Ishiguro, K. et al. Syndecan-4 deficiency impairs focal adhesion formation only under restricted conditions. J. Biol. Chem. 275, 5249–5252 (2000).

    CAS  PubMed  Google Scholar 

  99. Ishiguro, K. et al. Syndecan-4 deficiency leads to high mortality of lipopolysaccharide-injected mice. J. Biol. Chem. 276, 47483–47488 (2001).

    CAS  PubMed  Google Scholar 

  100. Ishiguro, K. et al. Syndecan-4 deficiency increases susceptibility to κ-carrageenan-induced renal damage. Lab. Invest. 81, 509–516 (2001).

    CAS  PubMed  Google Scholar 

  101. Yung, S. et al. Syndecan-4 up-regulation in proliferative renal disease is related to microfilament organization. FASEB J. 15, 1631–1633 (2001).

    CAS  PubMed  Google Scholar 

  102. Zhang, Y., Pasparakis, M., Kollias, G. & Simons, M. Myocyte-dependent regulation of endothelial cell syndecan-4 expression. Role of TNF-α. J. Biol. Chem. 274, 14786–14796 (1999).

    CAS  PubMed  Google Scholar 

  103. Cizmeci-Smith, G., Langan, E., Youkey, J., Showalter, L. J. & Carey, D. J. Syndecan-4 is a primary-response gene induced by basic fibroblast growth factor and arterial injury in vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 17, 172–180 (1997).

    CAS  PubMed  Google Scholar 

  104. Lindahl, U., Kusche-Gullberg, M. & Kjellén, L. Regulated diversity of heparan sulfate. J. Biol. Chem. 273, 24979–24982 (1998).

    CAS  PubMed  Google Scholar 

  105. Esko, J. D. & Lindahl, U. Molecular diversity of heparan sulfate. J. Clin. Invest. 108, 169–173 (2001).

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Esko, J. D. & Selleck, S. B. Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu. Rev. Biochem. 71, 435–471 (2002).

    CAS  PubMed  Google Scholar 

  107. Van Kuppevelt, T. H., Dennissen, M. A., van Venrooij, W. J. Hoet, R. M. & Veerkamp, J. H. Generation and application of type-specific anti-heparan sulfate antibodies using phage display technology. Further evidence for heparan sulfate heterogeneity in the kidney. J. Biol. Chem. 273, 12960–12966 (1998).

    CAS  PubMed  Google Scholar 

  108. Gallagher, J. T. Heparan sulfate: growth control with a restricted sequence menu. J. Clin. Invest. 108, 357–361 (2001).

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Lander, A. D. Proteoglycans: master regulators of molecular encounter? Matrix Biol. 17, 465–472 (1998).

    CAS  PubMed  Google Scholar 

  110. Fanning, A. S. & Anderson, J. M. PDZ domains: fundamental building blocks in the organization of protein complexes at the plasma membrane. J. Clin. Invest. 103, 767–772 (1999).

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Zimmermann, P. et al. PIP2–PDZ domain binding controls the association of syntenin with the plasma membrane. Mol. Cell 9, 1215–1225 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author is supported by a Wellcome Trust Programme Grant.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

LocusLink

Dia

Swiss-Prot

CASK

caveolin 1

Cdc42

cortactin

E-cadherin

EphB2

ezrin

fascin

FGF2

Lin2

matrilysin

paxillin

PKCα

PKCδ

PKCγ

RhoA

Src

synbindin

syndecan 1

syndecan 2

syndecan 3

syndecan 4

syntenin

TIMP3

TSP1

Glossary

GLYCOSAMINOGLYCAN

A heteropolysaccharide that contains an N-acetylated hexosamine in a characteristic repeating disaccharide unit. The repeating structure of each disaccharide involves alternate 1,4- and 1,3-linkages that consist of either N-acetylglucosamine or N-acetylgalactosamine.

EXTRACELLULAR MATRIX

(ECM). A complex, three-dimensional network of very large macromolecules that provides contextual information and an architectural scaffold for cellular adhesion and migration.

GLYCOSYLPHOSPHATIDYL- INOSITOL (GPI)-ANCHOR

Proteins that are anchored to the non-cytoplasmic part of the membrane bilayer solely by a single molecule of glycosylphosphatidylinositol, which is covalently linked to a lipid anchor that is added to the carboxyl terminus in the endoplasmic reticulum.

FOCAL ADHESIONS

Signalling organelles and sites of strong adhesion between cells and their extracellular matrix. They are characterized by integrin–receptor linkages between the actin cytoskeleton and the matrix, and are frequently located at the termini of microfilament bundles.

EPIMERASE

Any enzyme that catalyses the process of converting an epimer into its diastereoisomer by altering the configuration at the epimeric chiral centre.

TYPE-1 MEMBRANE PROTEIN

A single membrane-spanning protein in which the amino terminus is extracellular and the carboxyl terminus is cytoplasmic.

OUTER PLASMA-MEMBRANE LEAFLET

A lipid layer that faces the outside of the cell.

INNER LEAFLET

A lipid layer that faces the inside of the cell.

EPITHELIAL–MESENCHYMAL TRANSITION

The transformation of an epithelial cell into a mesenchymal cell with migratory and invasive properties.

MICROSPIKES

Actin-rich filamentous protrusions from the cell surface that are similar to filopodia.

COS CELLS

Cells from the monkey CV1 cell line that have an integrated SV40 genome lacking an origin of replication. Plasmids with an SV40 origin of replication are replicated to a high copy number when transfected.

GLYCANATION

Covalent substitution of a core protein with one or more glycosaminoglycan chains as part of the biosynthetic process.

DENDRITIC SPINES

Protrusions from neuronal dendrites that form the main postsynaptic compartment for excitatory input.

SH2 DOMAIN

(Src-homology-2 domain). A protein motif that recognizes and binds tyrosine-phosphorylated sequences, and thereby has a key role in relaying cascades of signal transduction.

GASTRULATION

The morphogenetic movements of the early embryo that lead to the generation of the third embryonic layer — the mesoderm.

DOMINANT-NEGATIVE

A defective protein that retains interaction abilities and so distorts or competes with normal proteins.

ECTODERM

The outer of the three embryonic germ layers, which gives rise to epidermis and neural tissue.

PHORBOL ESTERS

Polycyclic esters that are isolated from croton oil. The most common is phorbol myristoyl acetate (PMA, also known as 12,13-tetradecanoyl phorbol acetate or TPA). They are potent co-carcinogens or tumour promoters because they mimic diacylglycerol, thereby irreversibly activating protein kinase C.

VANADATE

An inorganic phosphatase inhibitor.

LYSOPHOSPHATIDIC ACID

(LPA). Any phosphatidic acid that is deacylated at positions 1 or 2. LPA binds to a G-protein-coupled receptor, which results in the activation of the GTPase Rho and the induction of stress fibres.

CAVEOLA

A specialized raft that contains the protein caveolin and forms a flask-shaped, cholesterol-rich invagination of the plasma membrane that might mediate the uptake of extracellular materials. Caveolae are probably involved in cell signalling.

PDZ DOMAIN

Protein-interaction domain that often occurs in scaffolding proteins and is named after the founding members of this protein family (PSD95 (postsynaptic-density protein of 95kDa), Discs large, Zona occludens 1).

GRANULATION TISSUE

A contractile, myofibroblast-containing tissue formed in wounds.

LIPOPOLYSACCHARIDE

(LPS). A component of the outer membrane of Gram-negative bacteria that is made of a lipid, a core oligosaccharide and an O-linked-sugar side chain.

MACROPHAGE

Cell of the mononuclear phagocyte system that can phagocytose foreign particulate material. Macrophages are present in many tissues and are important for nonspecific immune reactions.

CARRAGEENAN

An inflammatory agent extracted from seaweed that induces localized swelling and pain which peaks three hours after injection. It is used to model inflammatory pain states observed in the clinic.

HYPOXIA

The presence of less-than-normal amounts of dioxygen in a vertebrate or in its blood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Couchman, J. Syndecans: proteoglycan regulators of cell-surface microdomains?. Nat Rev Mol Cell Biol 4, 926–938 (2003). https://doi.org/10.1038/nrm1257

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1257

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing