Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neonatal gonadotropin therapy in male congenital hypogonadotropic hypogonadism

Abstract

Congenital hypogonadotropic hypogonadism (CHH) causes pubertal failure and infertility in both women and men due to partial or total secretory failure of the two pituitary gonadotropins lutropin (LH) and follitropin (FSH) during periods of physiological activation of the gonadotropic axis. Men and women with CHH frequently seek treatment for infertility after hypogonadism therapy. Some etiologies, such as autosomal dominant or X-linked Kallmann syndrome, raise the question of hereditary transmission, leading to increasing demands for genetic counseling and monitoring of medically assisted pregnancies. Diagnosis and treatment of newborn boys is, therefore, becoming an increasingly important issue. In male individuals with complete forms of CHH, the antenatal and neonatal gonadotropin deficit leads to formation of a micropenis and cryptorchidism, which could undermine future sexual and reproductive functions. Standard treatments, usually started after the age of puberty, often only partially correct the genital abnormalities and spermatogenesis. The aim of this Review is to examine the possible additional benefits of neonatal gonadotropin therapy in male patients with CHH. Encouraging results of neonatal therapy, together with a few reports of prepubertal treatment, support the use of this novel therapeutic strategy aimed at improving sexual and reproductive functions in adulthood.

Key Points

  • During fetal life, hypothalamic gonadotropin-releasing hormone (GnRH) and pituitary gonadotropins play a key part in the development and growth of the male external genitalia

  • Complete congenital hypogonadotropic hypogonadism (CHH) is associated with penile and testicular hypotrophy and, in many cases, with cryptorchidism

  • Conventional treatment of patients with CHH, with testosterone or gonadotropins, is inadequately effective in terms of adult sexuality and fertility when started after the age of puberty

  • Neonatal treatment corrects genital hypotrophy and improves testicular endocrine function, which might improve the response to treatments intended to induce postpubertal virilization and to restore fertility in men with CHH

  • Long-term studies are needed to assess the effect of this approach on sexuality and fertility before recommending its routine use

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the activation of the hypothalamic–pituitary–testicular axis during fetal and postnatal life in humans.
Figure 2: Genital aspect in a young man with Kallmann syndrome, surgically cured cryptorchidism and micropenis a | at presentation, when he was aged 18 years, then b | 6 months and c | 16 months after testosterone enanthate administration (250 mg every 3 weeks, intramuscularly).

Similar content being viewed by others

References

  1. Brioude, F. et al. Non-syndromic congenital hypogonadotropic hypogonadism: clinical presentation and genotype–phenotype relationships. Eur. J. Endocrinol. 162, 835–851 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Bianco, S. D. & Kaiser, U. B. The genetic and molecular basis of idiopathic hypogonadotropic hypogonadism. Nat. Rev. Endocrinol. 5, 569–576 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mitchell, A. L., Dwyer, A., Pitteloud, N. & Quinton, R. Genetic basis and variable phenotypic expression of Kallmann syndrome: towards a unifying theory. Trends Endocrinol. Metab. 22, 249–258 (2011).

    CAS  PubMed  Google Scholar 

  4. Dodé, C. & Hardelin, J. P. Kallmann syndrome. Eur. J. Hum. Genet. 17, 139–146 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Kim, H. G. et al. Mutations in CHD7, encoding a chromatin-remodeling protein, cause idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Am. J. Hum. Genet. 83, 511–519 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jongmans, M. C. et al. CHD7 mutations in patients initially diagnosed with Kallmann syndrome—the clinical overlap with CHARGE syndrome. Clin. Genet. 75, 65–71 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Sarfati, J., Dodé, C. & Young, J. Kallmann syndrome caused by mutations in the PROK2 and PROKR2 genes: pathophysiology and genotype–phenotype correlations. Front. Horm. Res. 39, 121–132 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Shoham, Z., Smith, H., Yeko, T., O'Brien, F., Hemsey, G. & O'Dea, L. Recombinant LH (lutropin alfa) for the treatment of hypogonadotrophic women with profound LH deficiency: a randomized, double-blind, placebo-controlled, proof-of-efficacy study. Clin. Endocrinol. (Oxf.) 69, 471–478 (2008).

    Article  CAS  Google Scholar 

  9. Scott, H. M., Mason, J. I. & Sharpe, R. M. Steroidogenesis in the fetal testis and its susceptibility to disruption by exogenous compounds. Endocr. Rev. 30, 883–925 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. O'Shaughnessy, P. J. & Fowler, P. A. Endocrinology of the mammalian fetal testis. Reproduction 141, 37–46 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Molsberry, R. L., Carr, B. R., Mendelson, C. R. & Simpson, E. R. Human chorionic gonadotropin binding to human fetal testes as a function of gestational age. J. Clin. Endocrinol. Metab. 55, 791–794 (1982).

    Article  CAS  PubMed  Google Scholar 

  12. Fowler, P. A., Bhattacharya, S., Gromoll, J., Monteiro, A. & O'Shaughnessy, P. J. Maternal smoking and developmental changes in luteinizing hormone (LH) and the LH receptor in the fetal testis. J. Clin. Endocrinol. Metab. 94, 4688–4695 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Latronico, A. C. & Arnhold, I. J. Inactivating mutations of LH and FSH receptors—from genotype to phenotype. Pediatr. Endocrinol. Rev. 4, 28–31 (2006).

    PubMed  Google Scholar 

  14. Mulchahey, J. J., Di Blasio, A. M., Martin, M. C., Blumenfeld, Z. & Jaffe, R. B. Hormone production and peptide regulation of the human fetal pituitary gland. Endocr. Rev. 8, 406–425 (1987).

    Article  CAS  PubMed  Google Scholar 

  15. Kletzky, O. A., Rossman, F., Bertolli, S. I., Platt, L. D. & Mishell, D. R. Jr. Dynamics of human chorionic gonadotropin, prolactin, and growth hormone in serum and amniotic fluid throughout normal human pregnancy. Am. J. Obstet. Gynecol. 151, 878–884 (1985).

    Article  CAS  PubMed  Google Scholar 

  16. Hutson, J. M. & Donahoe, P. K. The hormonal control of testicular descent. Endocr. Rev. 7, 270–283 (1986).

    Article  CAS  PubMed  Google Scholar 

  17. Foresta, C., Zuccarello, D., Garolla, A. & Ferlin, A. Role of hormones, genes, and environment in human cryptorchidism. Endocr. Rev. 29, 560–580 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Bay, K., Main, K. M., Toppari, J. & Skakkebæk, N. E. Testicular descent: INSL3, testosterone, genes and the intrauterine milieu. Nat. Rev. Urol. 8, 187–196 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Plant, T. M. & Marshall, G. R. The functional significance of FSH in spermatogenesis and the control of its secretion in male primates. Endocr. Rev. 22, 764–786 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Huhtaniemi, I. T., Yamamoto, M., Ranta, T., Jalkanen, J. & Jaffe, R. B. Follicle-stimulating hormone receptors appear earlier in the primate fetal testis than in the ovary. J. Clin. Endocrinol. Metab. 65, 1210–1214 (1987).

    Article  CAS  PubMed  Google Scholar 

  21. O'Shaughnessy, P. et al. Developmental changes in human fetal testicular cell numbers and messenger ribonucleic acid levels during the second trimester. J. Clin. Endocrinol. Metab. 92, 4792–4801 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Boukari, K. et al. Lack of androgen receptor expression in Sertoli cells accounts for the absence of anti-Mullerian hormone repression during early human testis development. J. Clin. Endocrinol. Metab. 94, 1818–1825 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Debieve, F., Beerlandt, S., Hubinont, C. & Thomas, K. Gonadotropins, prolactin, inhibin A, inhibin B, and activin A in human fetal serum from midpregnancy and term pregnancy. J. Clin. Endocrinol. Metab. 85, 270–274 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Mesiano, S., Hart, C. S., Heyer, B. W., Kaplan, S. L. & Grumbach, M. M. Hormone ontogeny in the ovine fetus. XXVI. A sex difference in the effect of castration on the hypothalamic–pituitary gonadotropin unit in the ovine fetus. Endocrinology. 129, 3073–3079 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Brandenberger, A. W., Tee, M. K., Lee, J. Y., Chao, V. & Jaffe, R. B. Tissue distribution of estrogen receptors α (ER-α) and β (ER-β) mRNA in the midgestational human fetus. J. Clin. Endocrinol. Metab. 82, 3509–3512 (1997).

    CAS  PubMed  Google Scholar 

  26. Wood, C. E. & Keller-Wood, M. Ontogeny of androgen receptor expression in the ovine fetal central nervous system and pituitary. Neurosci. Lett. 439, 153–156 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bouligand, J. et al. Genetics defects in GNRH1: a paradigm of hypothalamic congenital gonadotropin deficiency. Brain Res. 1364, 3–9 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Teixeira, L. et al. Defective migration of neuroendocrine GnRH cells in human arrhinencephalic conditions. J. Clin. Invest. 120, 3668–3672 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Grumbach, M. M. & Kaplan, S. L. in Control of the onset of puberty (eds Grumbach, M. M., Sizonenko, P. C., Aubert, M. L.) 1–68 (Williams & Wilkins, Baltimore, 1990).

    Google Scholar 

  30. Schwanzel-Fukuda, M. et al. Migration of luteinizing hormone-releasing hormone (LHRH) neurons in early human embryos. J. Comp. Neurol. 366, 547–557 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. González-Martínez, D., Hu, Y. & Bouloux, P. M. Ontogeny of GnRH and olfactory neuronal systems in man: novel insights from the investigation of inherited forms of Kallmann's syndrome. Front. Neuroendocrinol. 25, 108–130 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Clark, S. J. et al. Hormone ontogeny in the ovine fetus. XVII. Demonstration of pulsatile luteinizing hormone secretion by the fetal pituitary gland. Endocrinology 115, 1774–1779 (1984).

    Article  CAS  PubMed  Google Scholar 

  33. Liu, L. et al. Effects of pituitary-testicular axis suppression in utero and during the early neonatal period with a long-acting luteinizing hormone-releasing hormone analog on genital development, somatic growth, and bone density in male cynomolgus monkeys in the first 6 months of life. J. Clin. Endocrinol. Metab. 73, 1038–1043 (1991).

    Article  CAS  PubMed  Google Scholar 

  34. Thomas, G. B., McNeilly, A. S., Gibson, F. & Brooks, A. N. Effects of pituitary-gonadal suppression with a gonadotrophin-releasing hormone agonist on fetal gonadotrophin secretion, fetal gonadal development and maternal steroid secretion in the sheep. J. Endocrinol. 141, 317–324 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Husmann, D. A. Micropenis: an animal model and its human correlates. Adv. Exp. Med. Biol. 511, 41–54 (2002).

    Article  PubMed  Google Scholar 

  36. Baker, T. G. & Scrimgeour, J. B. Development of the gonad in normal and anencephalic human fetuses. J. Reprod. Fertil. 60, 193–199 (1980).

    Article  CAS  PubMed  Google Scholar 

  37. Cavallo, L. et al. Endocrine function in four anencephalic infants. Horm. Res. 15, 159–166 (1981).

    Article  CAS  PubMed  Google Scholar 

  38. Bouligand, J. et al. Isolated familial hypogonadotropic hypogonadism and a GNRH1 mutation. N. Eng. J. Med. 360, 2742–2748 (2009).

    Article  CAS  Google Scholar 

  39. Chan, Y. M. et al. GNRH1 mutations in patients with idiopathic hypogonadotropic hypogonadism. Proc. Natl Acad. Sci. USA 106, 11703–11708 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  40. de Roux, N. et al. A family with hypogonadotropic hypogonadism and mutations in the gonadotropin-releasing hormone receptor. N. Eng. J. Med. 337, 1597–602 (1997).

    Article  CAS  Google Scholar 

  41. Caron, P. et al. Resistance of hypogonadic patients with mutated GnRH receptor genes to pulsatile GnRH administration. J. Clin. Endocrinol. Metab. 84, 990–996 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Pralong, F. P. et al. Complete hypogonadotropic hypogonadism associated with a novel inactivating mutation of the gonadotropin-releasing hormone receptor. J. Clin. Endocrinol. Metab. 84, 3811–3816 (1999).

    CAS  PubMed  Google Scholar 

  43. Söderlund, D., Canto, P., de la Chesnaye, E., Ulloa-Aguirre, A. & Méndez, J. P. A novel homozygous mutation in the second transmembrane domain of the gonadotrophin releasing hormone receptor gene. Clin. Endocrinol. (Oxf.) 54, 493–498 (2001).

    Article  Google Scholar 

  44. Costa, E. M. et al. Two novel mutations in the gonadotropin-releasing hormone receptor gene in Brazilian patients with hypogonadotropic hypogonadism and normal olfaction. J. Clin. Endocrinol. Metab. 86, 2680–2686 (2001).

    CAS  PubMed  Google Scholar 

  45. Layman, L. C., Cohen, D. P., Xie, J. & Smith, G. D. Clinical phenotype and infertility treatment in a male with hypogonadotropic hypogonadism due to mutations Ala129Asp/Arg262Gln of the gonadotropin-releasing hormone receptor. Fertil. Steril. 78, 1317–1320 (2002).

    Article  PubMed  Google Scholar 

  46. Wolczynski, S. et al. A case of complete hypogonadotropic hypogonadism with a mutation in the gonadotropin-releasing hormone receptor gene. Fertil. Steril. 79, 442–444 (2003).

    Article  PubMed  Google Scholar 

  47. Karges, B. et al. Mutation Ala(171)Thr stabilizes the gonadotropin-releasing hormone receptor in its inactive conformation, causing familial hypogonadotropic hypogonadism. J. Clin. Endocrinol. Metab. 88, 1873–1879 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Semple, R. K. et al. Two novel missense mutations in g protein-coupled receptor 54 in a patient with hypogonadotropic hypogonadism. J. Clin. Endocrinol. Metab. 90, 1849–1855 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Lanfranco, F. et al. Role of sequence variations of the GnRH receptor and G protein-coupled receptor 54 gene in male idiopathic hypogonadotropic hypogonadism. Eur. J. Endocrinol. 153, 845–852 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Tenenbaum-Rakover, Y. et al. Neuroendocrine phenotype analysis in five patients with isolated hypogonadotropic hypogonadism due to a L102P inactivating mutation of GPR54. J. Clin. Endocrinol. Metab. 92, 1137–1144 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Teles, M. G. et al. A novel homozygous splice acceptor site mutation of KISS1R in two siblings with normosmic isolated hypogonadotropic hypogonadism. Eur. J. Endocrinol. 163, 29–34 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Nimri, R. et al. A novel loss-of-function mutation in GPR54/KISS1R leads to hypogonadotropic hypogonadism in a highly consanguineous family. J. Clin. Endocrinol. Metab. 96, E536–E545 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Topaloglu, A. K. et al. TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction. Nat. Genet. 41, 354–358 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Guran, T. et al. Hypogonadotropic hypogonadism due to a novel missense mutation in the first extracellular loop of the neurokinin B receptor. J. Clin. Endocrinol. Metab. 94, 3633–3639 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Young, J. et al. TAC3 and TACR3 defects cause hypothalamic congenital hypogonadotropic hypogonadism in humans. J. Clin. Endocrinol. Metab. 95, 2287–2295 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Pitteloud, N. et al. Mutations in fibroblast growth factor receptor 1 cause Kallmann syndrome with a wide spectrum of reproductive phenotypes. Mol. Cell. Endocrinol. 254–255, 60–69 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Salenave, S. et al. Kallmann's syndrome: a comparison of the reproductive phenotypes in men carrying KAL1 and FGFR1/KAL2 mutations. J. Clin. Endocrinol. Metab. 3, 758–763 (2008).

    Article  CAS  Google Scholar 

  58. Gianetti, E. et al. TAC3/TACR3 mutations reveal preferential activation of gonadotropin-releasing hormone release by neurokinin B in neonatal life followed by reversal in adulthood. J. Clin. Endocrinol. Metab. 95, 2857–2867 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hardelin, J. P. et al. Xp22.3 deletions in isolated familial Kallmann's syndrome. J. Clin. Endocrinol. Metab. 76, 827–831 (1993).

    CAS  PubMed  Google Scholar 

  60. Hardelin, J. P. et al. X chromosome-linked Kallmann syndrome: stop mutations validate the candidate gene. Proc. Natl Acad. Sci. USA 89, 8190–8194 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Meindl, A. et al. Analysis of a terminal Xp22.3 deletion in a patient with six monogenic disorders: implications for the mapping of X linked ocular albinism. J. Med. Genet. 30, 838–842 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gu, W. X., Colquhoun-Kerr, J. S., Kopp, P., Bode, H. H. & Jameson, J. L. A novel aminoterminal mutation in the KAL-1 gene in a large pedigree with X-linked Kallmann syndrome. Mol. Genet. Metab. 65, 59–61 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Weissörtel, R., Strom, T. M., Dörr, H.G., Rauch, A. & Meitinger, T. Analysis of an interstitial deletion in a patient with Kallmann syndrome, X-linked ichthyosis and mental retardation. Clin. Genet. 54, 45–51 (1998).

    Article  PubMed  Google Scholar 

  64. Nagata, K. et al. A novel interstitial deletion of KAL1 in a Japanese family with Kallmann syndrome. J. Hum. Genet. 45, 237–240 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Quinton, R. et al. Idiopathic gonadotrophin deficiency: genetic questions addressed through phenotypic characterization. Clin. Endocrinol. (Oxf.) 55, 163–174 (2001).

    Article  CAS  Google Scholar 

  66. Oliveira, L. M. et al. The importance of autosomal genes in Kallmann syndrome: genotype–phenotype correlations and neuroendocrine characteristics. J. Clin. Endocrinol. Metab. 86, 1532–1538 (2001).

    CAS  PubMed  Google Scholar 

  67. Söderlund, D., Canto, P., Méndez, J. P. Identification of three novel mutations in the KAL1 gene in patients with Kallmann syndrome. J. Clin. Endocrinol. Metab. 87, 2589–2592 (2002).

    Article  PubMed  Google Scholar 

  68. Massin, N. et al. X chromosome-linked Kallmann syndrome: clinical heterogeneity in three siblings carrying an intragenic deletion of the KAL-1 gene. J. Clin. Endocrinol. Metab. 88, 2003–2008 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Sato, N. et al. Clinical assessment and mutation analysis of Kallmann syndrome 1 (KAL1) and fibroblast growth factor receptor 1 (FGFR1, or KAL2) in five families and 18 sporadic patients. J. Clin. Endocrinol. Metab. 89, 1079–1088 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Sato, N. et al. Gonadotrophin therapy in Kallmann syndrome caused by heterozygous mutations of the gene for fibroblast growth factor receptor 1: report of three families: case report. Hum. Reprod. 20, 2173–2178 (2005).

    Article  PubMed  Google Scholar 

  71. Zenaty, D. et al. Paediatric phenotype of Kallmann syndrome due to mutations of fibroblast growth factor receptor 1 (FGFR1). Mol. Cell. Endocrinol. 254–255, 78–83 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Pitteloud, N. et al. Mutations in fibroblast growth factor receptor 1 cause both Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism. Proc. Natl Acad. Sci. USA 103, 6281–6286 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sato, N., Ohyama, K., Fukami, M., Okada, M. & Ogata, T. Kallmann syndrome: somatic and germline mutations of the fibroblast growth factor receptor 1 gene in a mother and the son. J. Clin. Endocrinol. Metab. 91, 1415–1418 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Pitteloud, N. et al. Digenic mutations account for variable phenotypes in idiopathic hypogonadotropic hypogonadism. J. Clin. Invest. 2, 457–463 (2007).

    Article  CAS  Google Scholar 

  75. Xu, N. et al. A mutation in the fibroblast growth factor receptor 1 gene causes fully penetrant normosmic isolated hypogonadotropic hypogonadism. J. Clin. Endocrinol. Metab. 92, 1155–1158 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Falardeau, J. et al. Decreased FGF8 signaling causes deficiency of gonadotropin-releasing hormone in humans and mice. J. Clin. Invest. 118, 2822–2831 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Trarbach, E. B. et al. Nonsense mutations in FGF8 gene causing different degrees of human gonadotropin-releasing deficiency. J. Clin. Endocrinol. Metab. 95, 3491–3496 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pitteloud, N. et al. Loss-of-function mutation in the prokineticin 2 gene causes Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism. Proc. Natl Acad. Sci. USA 104, 17447–17452 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Cole, L. W. et al. Mutations in prokineticin 2 and prokineticin receptor 2 genes in human gonadotrophin-releasing hormone deficiency: molecular genetics and clinical spectrum. J. Clin. Endocrinol. Metab. 93, 3551–3559 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Leroy, C. et al. Biallelic mutations in the prokineticin-2 gene in two sporadic cases of Kallmann syndrome. Eur. J. Hum. Genet. 16, 865–868 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Abreu, A. P. et al. Loss-of-function mutations in the genes encoding prokineticin-2 or prokineticin receptor-2 cause autosomal recessive Kallmann syndrome. J. Clin. Endocrinol. Metab. 93, 4113–4118 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Sarfati, J. et al. A comparative phenotypic study of kallmann syndrome patients carrying monoallelic and biallelic mutations in the prokineticin 2 or prokineticin receptor 2 genes. J. Clin. Endocrinol. Metab. 95, 659–669 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Kim, H. G. et al. WDR11, a WD protein that interacts with transcription factor EMX1, is mutated in idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Am. J. Hum. Genet. 87, 465–479 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Xu, N. et al. Nasal embryonic LHRH factor (NELF) mutations in patients with normosmic hypogonadotropic hypogonadism and Kallmann syndrome. Fertil. Steril. 95, 1613–1620.e1–e7 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Reynaud, R. et al. An uncommon phenotype with familial central hypogonadism caused by a novel PROP1 gene mutant truncated in the transactivation domain. J. Clin. Endocrinol. Metab. 90, 4880–4887 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Weiss, J. et al. Hypogonadism caused by a single amino acid substitution in the β subunit of luteinizing hormone. N. Eng. J. Med. 326, 179–183 (1992).

    Article  CAS  Google Scholar 

  87. Valdes-Socin, H. et al. Hypogonadism in a patient with a mutation in the luteinizing hormone β-subunit gene. N. Eng. J. Med. 351, 2619–2625 (2004).

    Article  CAS  Google Scholar 

  88. Lofrano-Porto, A. et al. Luteinizing hormone β mutation and hypogonadism in men and women. N. Eng. J. Med. 357, 897–904 (2007).

    Article  CAS  Google Scholar 

  89. Bay, K. et al. Insulin-like factor 3 serum levels in 135 normal men and 85 men with testicular disorders: relationship to the luteinizing hormone-testosterone axis. J. Clin. Endocrinol. Metab. 90, 3410–3418 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Bay, K. et al. Insulin-like factor 3 levels in cord blood and serum from children: effects of age, postnatal hypothalamic-pituitary-gonadal axis activation, and cryptorchidism. J. Clin. Endocrinol. Metab. 92, 4020–4027 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Young, J. et al. Effects of human recombinant luteinizing hormone and follicle-stimulating hormone in patients with acquired hypogonadotropic hypogonadism: study of Sertoli and Leydig cell secretions and interactions. J. Clin. Endocrinol. Metab. 85, 3239–3244 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Young, J. et al. Testicular anti-mullerian hormone secretion is stimulated by recombinant human FSH in patients with congenital hypogonadotropic hypogonadism. J. Clin. Endocrinol. Metab. 90, 724–728 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Tapanainen, J. S., Aittomäki, K., Min, J., Vaskivuo, T. & Huhtaniemi, I. T. Men homozygous for an inactivating mutation of the follicle-stimulating hormone (FSH) receptor gene present variable suppression of spermatogenesis and fertility. Nat. Genet. 15, 205–206 (1997).

    Article  CAS  PubMed  Google Scholar 

  94. Lindstedt, G. et al. Follitropin (FSH) deficiency in an infertile male due to FSH beta gene mutation. A syndrome of normal puberty and virilization but underdeveloped testicles with azoospermia, low FSH but high lutropin and normal serum testosterone concentrations. Clin. Chem. Lab. Med. 36, 663–665 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Layman, L. C. et al. FSH beta gene mutations in a female with partial breast development and a male sibling with normal puberty and azoospermia. J. Clin. Endocrinol. Metab. 87, 3702–3707 (2002).

    CAS  PubMed  Google Scholar 

  96. Winter, J. S., Faiman, C., Hobson, W. C., Prasad, A. V. & Reyes, F. I. Pituitary–gonadal relations in infancy. I. Patterns of serum gonadotropin concentrations from birth to four years of age in man and chimpanzee. J. Clin. Endocrinol. Metab. 40, 545–551 (1975).

    Article  CAS  PubMed  Google Scholar 

  97. Waldhauser, F., Weibenssacher, G., Frisch, H. & Pollak, A. Pulsatile secretion of gonadotropins in early infancy. Eur. J. Pediatr. 137, 71–74 (1981).

    Article  CAS  PubMed  Google Scholar 

  98. Müller, J. & Skakkebaek, N. E. Quantification of germ cells and seminiferous tubules by stereological examination of testicles from 50 boys who suffered from sudden death. Int. J. Androl. 6, 143–156 (1983).

    Article  PubMed  Google Scholar 

  99. Boas, M. et al. Postnatal penile length and growth rate correlate to serum testosterone levels: a longitudinal study of 1,962 normal boys. Eur. J. Endocrinol. 154, 125–129 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Andersson, A. et al. Longitudinal reproductive hormone profiles in infants: peak of inhibin B levels in infant boys exceeds levels in adult men. J. Clin. Endocrinol. Metab. 83, 675–681 (1998).

    CAS  PubMed  Google Scholar 

  101. Grumbach, M. M. A window of opportunity: the diagnosis of gonadotropin deficiency in the male infant. J. Clin. Endocrinol. Metab. 90, 3122–3127 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Bergadá, I. et al. Time course of the serum gonadotropin surge, inhibins, and anti-Müllerian hormone in normal newborn males during the first month of life. J. Clin. Endocrinol. Metab. 91, 4092–4098 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Cortes, D., Müller, J. & Skakkebaeck, N. E. Proliferation of Sertoli cells during development of the human testis assessed by stereological methods. Int. J. Androl. 10, 589–596 (1987).

    Article  CAS  PubMed  Google Scholar 

  104. Sharpe, R. M. et al. Role of the neonatal period of pituitary-testicular activity in germ cell proliferation and differentiation in the primate testis. Hum. Reprod. 18, 2110–2117 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Berensztein, E. B., Sciara, M. I., Rivarola, M. A. & Belgorosky, A. Apoptosis and proliferation of human testicular somatic and germ cells during prepuberty: high rate of testicular growth in newborns mediated by decreased apoptosis. J. Clin. Endocrinol. Metab. 87, 5113–5118 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Rey, R. A., Musse, M., Venara, M. & Chemes, H. E. Ontogeny of the androgen receptor expression in the fetal and postnatal testis: its relevance on Sertoli cell maturation and the onset of adult spermatogenesis. Microsc. Res. Tech. 72, 787–795 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Evain-Brion, D., Gendrel, D., Bozzola, M., Chaussain, J. L. & Job, J. C. Diagnosis of Kallmann's syndrome in early infancy. Acta Paediatr. Scand. 71, 937–940 (1982).

    Article  CAS  PubMed  Google Scholar 

  108. Kaplan, J. D., Bernstein, J. A., Kwan, A. & Hudgins, L. Clues to an early diagnosis of Kallmann syndrome. Am. J. Med. Genet. A 152A, 2796–2801 (2010).

    Article  PubMed  Google Scholar 

  109. Pitteloud, N. et al. Predictors of outcome of long-term GnRH therapy in men with idiopathic hypogonadotropic hypogonadism. J. Clin. Endocrinol. Metab. 87, 4128–4136 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Coutant, R. et al. Baseline inhibin B and anti-Mullerian hormone measurements for diagnosis of hypogonadotropic hypogonadism (HH) in boys with delayed puberty. J. Clin. Endocrinol. Metab. 95, 5225–5232 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Delemarre-van de Waal, H. A. Application of gonadotropin releasing hormone in hypogonadotropic hypogonadism-diagnostic and therapeutic aspects. Eur. J. Endocrinol. 151 (Suppl. 3), U89–U94 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Delemarre, E. M., Felius, B. & Delemarre-van de Waal, H. A. Inducing puberty. Eur. J. Endocrinol. 159 (Suppl. 1), S9–S15 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Richmond, E. J. & Rogol, A. D. Male pubertal development and the role of androgen therapy. Nat. Clin. Pract. Endocrinol. Metab. 3, 338–344 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Trabado, S. et al. Estradiol levels in men with congenital hypogonadotropic hypogonadism and the effects of different modalities of hormonal treatment. Fertil. Steril. 95, 2324–2329.e1–e3 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Cunningham, G. R. & Toma, S. M. Clinical review: Why is androgen replacement in males controversial? J. Clin. Endocrinol. Metab. 96, 38–52 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Bin-Abbas, B., Conte, F. A., Grumbach, M. M. & Kaplan, S. L. Congenital hypogonadotropic hypogonadism and micropenis: effect of testosterone treatment on adult penile size why sex reversal is not indicated. J. Pediatr. 134, 579–583 (1999).

    Article  CAS  PubMed  Google Scholar 

  117. Bouvattier, C., Mignot, B., Lefèvre, H., Morel, Y. & Bougnères, P. Impaired sexual activity in male adults with partial androgen insensitivity. J. Clin. Endocrinol. Metab. 91, 3310–3315 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Schaison, G., Young, J., Pholsena, M., Nahoul, K. & Couzinet, B. Failure of combined follicle-stimulating hormone-testosterone administration to initiate and/or maintain spermatogenesis in men with hypogonadotropic hypogonadism. J. Clin. Endocrinol. Metab. 77, 1545–1549 (1993).

    CAS  PubMed  Google Scholar 

  119. Sinisi, A. A. et al. Efficacy of recombinant human follicle stimulating hormone at low doses in inducing spermatogenesis and fertility in hypogonadotropic hypogonadism. J. Endocrinol. Invest. 33, 618–623 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Matsumoto, A. M. Hormonal therapy of male hypogonadism. Endocrinol. Metab. Clin. North Am. 23, 857–875 (1994).

    Article  CAS  PubMed  Google Scholar 

  121. Finkel, D. M., Phillips, J. L. & Snyder, P. J. Stimulation of spermatogenesis by gonadotropins in men with hypogonadotropic hypogonadism. N. Eng. J. Med. 313, 651–655 (1985).

    Article  CAS  Google Scholar 

  122. Burqués, S. & Calderòn, M. D. Subcutaneous self-administration of highly purified follicle stimulating hormone and human chorionic gonadotrophin for the treatment of male hypogonadotrophic hypogonadism. Spanish Collaborative Group on Male Hypogonadotropic Hypogonadism. Hum. Reprod. 12, 980–986 (1997).

    Article  Google Scholar 

  123. Burris, A. S., Clark, R. V., Vantman, D. J. & Sherins, R. J. A low sperm concentration does not preclude fertility in men with isolated hypogonadotropic hypogonadism after gonadotropin therapy. Fertil. Steril. 50, 343–347 (1988).

    Article  CAS  PubMed  Google Scholar 

  124. Büchter, D., Behre, H. M., Kliesch, S. & Nieschlag, E. Pulsatile GnRH or human chorionic gonadotropin/human menopausal gonadotropin as effective treatment for men with hypogonadotropic hypogonadism: a review of 42 cases. Eur. J. Endocrinol. 139, 298–303 (1998).

    Article  PubMed  Google Scholar 

  125. Saal, W., Happ, J., Cordes, U., Baum, R. P. & Schmidt, M. Subcutaneous gonadotropin therapy in male patients with hypogonadotropic hypogonadism. Fertil. Steril. 56, 319–324 (1991).

    Article  CAS  PubMed  Google Scholar 

  126. Kung, A. W., Zhong, Y. Y., Lam, K. S. & Wang, C. Induction of spermatogenesis with gonadotrophins in Chinese men with hypogonadotrophic hypogonadism. Int. J. Androl 17, 241–247 (1994).

    Article  CAS  PubMed  Google Scholar 

  127. Liu, P. Y. et al. Efficacy and safety of recombinant human follicle stimulating hormone (Gonal-F) with urinary human chorionic gonadotrophin for induction of spermatogenesis and fertility in gonadotrophin-deficient men. Hum. Reprod. 14, 1540–1545 (1999).

    Article  CAS  PubMed  Google Scholar 

  128. Liu, P. Y. et al. Predicting pregnancy and spermatogenesis by survival analysis during gonadotrophin treatment of gonadotrophin-deficient infertile men. Hum. Reprod. 17, 625–633 (2002).

    Article  PubMed  Google Scholar 

  129. Burger, H. G. & Baker, H. W. Therapeutic considerations and results of gonadotropin treatment in male hypogonadotropic hypogonadism. Ann. NY Acad. Sci. 438, 447–453 (1984).

    Article  CAS  PubMed  Google Scholar 

  130. Hayes, F. J., Seminara, S. B. & Crowley, W. F. Jr. Hypogonadotropic hypogonadism. Endocrinol. Metab. Clin. North Am. 27, 739–763 (1998).

    Article  CAS  PubMed  Google Scholar 

  131. Vicari, E. et al. Therapy with human chorionic gonadotropin alone induces spermatogenesis in men with isolated hypogonadotrophic hypogonadism-long-term follow-up. Int. J. Androl. 15, 320–329 (1992).

    Article  CAS  PubMed  Google Scholar 

  132. Matsumoto, A. M., Karpas, A. E. & Bremner, W. J. Chronic human chorionic gonadotropin administration in normal men: evidence that follicle-stimulating hormone is necessary for the maintenance of quantitatively normal spermatogenesis in man. J. Clin. Endocrinol. Metab. 62, 1184–1192 (1986).

    Article  CAS  PubMed  Google Scholar 

  133. Okuyama, A. et al. Testicular responsiveness to long-term administration of hCG and hMG in patients with hypogonadotropic hypogonadism. Horm. Res. 23, 21–30 (1986).

    Article  CAS  PubMed  Google Scholar 

  134. Kirk, J. M., Savage, M. O., Grant, D. B., Bouloux, P. M. & Besser, G. M. Gonadal function and response to human chorionic and menopausal gonadotrophic therapy in male patients with idiopathic hypogonadotrophic hypogonadism. Clin. Endocrinol. (Oxf.) 41, 57–63 (1994).

    Article  CAS  Google Scholar 

  135. [No authors listed] Efficacy and safety of highly purified urinary follicle-stimulating hormone with human chorionic gonadotropin for treating men with isolated hypogonadotropic hypogonadism. European Metrodin HP Study Group. Fertil. Steril. 70, 256–262 (1998).

  136. Schopohl, J., Mehltretter, G., von Zumbusch, R., Eversmann, T. & von Werder, K. Comparison of gonadotropin-releasing hormone and gonadotropin therapy in male patients with idiopathic hypothalamic hypogonadism. Fertil. Steril. 56, 1143–1150 (1991).

    Article  CAS  PubMed  Google Scholar 

  137. Kliesch, S., Behre, H. M. & Nieschlag, E. Recombinant human follicle-stimulating hormone and human chorionic gonadotropin for induction of spermatogenesis in a hypogonadotropic male. Fertil. Steril. 63, 1326–1328 (1995).

    Article  CAS  PubMed  Google Scholar 

  138. Bouloux, P., Warne, D. W. & Loumaye, E. Efficacy and safety of recombinant human follicle-stimulating hormone in men with isolated hypogonadotropic hypogonadism. Fertil. Steril. 77, 270–273 (2002).

    Article  PubMed  Google Scholar 

  139. Bouloux, P. M. et al. Induction of spermatogenesis by recombinant follicle-stimulating hormone (puregon) in hypogonadotropic azoospermic men who failed to respond to human chorionic gonadotropin alone. J. Androl. 24, 604–611 (2003).

    Article  CAS  PubMed  Google Scholar 

  140. Warne, D. W. et al. A combined analysis of data to identify predictive factors for spermatogenesis in men with hypogonadotropic hypogonadism treated with recombinant human follicle-stimulating hormone and human chorionic gonadotropin. Fertil. Steril. 2, 594–604 (2009).

    Article  CAS  Google Scholar 

  141. Liu, P. Y. et al. Induction of spermatogenesis and fertility during gonadotropin treatment of gonadotropin-deficient infertile men: predictors of fertility outcome. J. Clin. Endocrinol. Metab. 94, 801–808 (2009).

    Article  CAS  PubMed  Google Scholar 

  142. Oldereid, N. B., Abyholm, T. & Tanbo, T. G. Spermatogenesis and fertility outcome in male hypogonadotrophic hypogonadism. Hum. Fertil. (Camb.) 13, 83–89 (2010).

    Article  Google Scholar 

  143. Nane, I. et al. Primary gonadotropin releasing hormone and adjunctive human chorionic gonadotropin treatment in cryptorchidism: a clinical trial. Urology 49, 108–111 (1997).

    Article  CAS  PubMed  Google Scholar 

  144. Ritzén, E. M. Undescended testes: a consensus on management. Eur. J. Endocrinol. 159 (Suppl. 1), S87–S90 (2008).

    Article  CAS  PubMed  Google Scholar 

  145. Aksglaede, L. et al. Natural history of seminiferous tubule degeneration in Klinefelter syndrome. Hum. Reprod. Update. 12, 39–48 (2006).

    Article  PubMed  Google Scholar 

  146. Resorlu, B., Abdulmajed, M. I., Kara, C., Unsal, A. & Aydos, K. Is intracytoplasmic sperm injection essential for the treatment of hypogonadotrophic hypogonadism? A comparison between idiopathic and secondary hypogonadotrophic hypogonadism. Hum. Fertil. (Camb.) 12, 204–208 (2009).

    Article  CAS  Google Scholar 

  147. Frapsauce, C. et al. Birth after TESE-ICSI in a man with hypogonadotropic hypogonadism and congenital adrenal hypoplasia linked to a DAX-1 (NR0B1) mutation. Hum. Reprod. 26, 724–728 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Raivio, T., Toppari, J., Perheentupa, A., McNeilly, A. S. & Dunkel, L. Treatment of prepubertal gonadotrophin-deficient boys with recombinant human follicle-stimulating hormone. Lancet 350, 263–264 (1997).

    Article  CAS  PubMed  Google Scholar 

  149. Bouvattier, C., Tauber, M., Jouret, B., Chaussain, J. L. & Rochiccioli, P. Gonadotropin treatment of hypogonadotropic hypogonadal adolescents. J. Pediatr. Endocrinol. Metab. 12, 339–344 (1999).

    PubMed  Google Scholar 

  150. Raivio, T. Wikström, A. M. & Dunkel, L. Treatment of gonadotropin-deficient boys with recombinant human FSH: long-term observation and outcome. Eur. J. Endocrinol. 156, 105–111 (2007).

    Article  CAS  PubMed  Google Scholar 

  151. Main, K. M., Schmidt, I. M., Toppari, J. & Skakkebaek, N. E. Early postnatal treatment of hypogonadotropic hypogonadism with recombinant human FSH and LH. Eur. J. Endocrinol. 146, 75–79 (2002).

    Article  CAS  PubMed  Google Scholar 

  152. Main, K. M., Schmidt, I. M. & Skakkebaek, N. E. A possible role for reproductive hormones in newborn boys: progressive hypogonadism without the postnatal testosterone peak. J. Clin. Endocrinol. Metab. 85, 4905–4907 (2000).

    Article  CAS  PubMed  Google Scholar 

  153. Bougnères, P. et al. Effects of an early postnatal treatment of hypogonadotropic hypogonadism with a continuous subcutaneous infusion of recombinant follicle-stimulating hormone and luteinizing hormone. J. Clin. Endocrinol. Metab. 93, 2202–2205 (2008).

    Article  CAS  PubMed  Google Scholar 

  154. Christiansen, P. et al. Treatment of cryptorchidism with human chorionic gonadotropin or gonadotropin releasing hormone. A double-blind controlled study of 243 boys. Horm. Res. 30, 187–192 (1988).

    Article  CAS  PubMed  Google Scholar 

  155. Dunkel, L., Taskinen, S., Hovatta, O., Tilly, J. L. & Wikström, S. Germ cell apoptosis after treatment of cryptorchidism with human chorionic gonadotropin is associated with impaired reproductive function in the adult. J. Clin. Invest. 100, 2341–2346 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Kaleva, M. & Toppari, J. Cryptorchidism: an indicator of testicular dysgenesis? Cell Tissue Res. 322, 167–172 (2005).

    Article  PubMed  Google Scholar 

  157. Ramaswamy, S., Plant, T. M. & Marshall, G. R. Pulsatile stimulation with recombinant single chain human luteinizing hormone elicits precocious sertoli cell proliferation in the juvenile male rhesus monkey (Macaca mulatta). Biol. Reprod. 63, 82–88 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Université Paris-Sud (Bonus Qualité Recherche), Institut National de la Santé et de la Recherche Médicale (INSERM), Agence Nationale de la Recherche Genopath (ANR KALGENOPATH), Fondation pour la Recherche Médicale (FRM), Programme Hospitalier de Recherche Clinique (PHRC National: Hypo-Protéo) and Agence Française de Lutte contre le Dopage (AFLD).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article and provided a substantial contribution to discussions of the content. C. Bouvattier, L. Maione and J. Young contributed equally to writing the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Jacques Young.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouvattier, C., Maione, L., Bouligand, J. et al. Neonatal gonadotropin therapy in male congenital hypogonadotropic hypogonadism. Nat Rev Endocrinol 8, 172–182 (2012). https://doi.org/10.1038/nrendo.2011.164

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2011.164

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing