Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hereditary hemochromatosis and diabetes mellitus: implications for clinical practice

Abstract

Hereditary hemochromatosis (HH) is a genetic condition that can lead to unregulated absorption of iron from the gut with resultant iron overload. The most common form of HH is caused by mutations in the HFE gene, with most cases of HH presenting in patients who are homozygous for the Cys282Tyr mutation. The prevalence of HFE gene mutations in persons of Northern European ancestry is fairly high (0.3–0.7% homozygous and 9–14% heterozygous for the Cys282Tyr mutation), but the penetrance of the disease is considered fairly low and is quite variable. While routine screening of the general population is not recommended, a targeted approach to screening in symptomatic patients and in those with a family member with iron overload is warranted. Untreated, iron overload can lead to considerable morbidity including liver cirrhosis, arthritis and diabetes mellitus, and increased mortality. The pathophysiology of diabetes mellitus in HH is thought to be due primarily to defects in the early insulin response to glucose. An Hfe−/− mouse model of HH has demonstrated defects in β-cell function and β-cell apoptosis that may be mediated by increased oxidative stress. Fortunately, these defects seem to be reversible if phlebotomy treatment is initiated before the development of cirrhosis or diabetes mellitus in patients. Further research into the long-term effects of treatment on prevention of diabetes mellitus in HH is needed.

Key Points

  • Most cases of hereditary hemochromatosis (HH) result from mutations in the HFE gene, consequential low hepcidin levels and continued iron absorption from the gut despite high iron levels

  • Homozygosity for the Cys282Tyr HFE gene mutation occurs in 0.3–0.7% of people with North European ancestry, but clinical disease occurs in only a small percentage of these

  • Pathophysiology of diabetes mellitus in iron overload is thought to be a result of β-cell dysfunction that leads to inadequate insulin secretion for the prevailing degree of insulin sensitivity

  • Increased oxidative stress may be one mechanism whereby iron overload causes β-cell dysfunction and β-cell apoptosis

  • Early identification and treatment with phlebotomy before the onset of diabetes mellitus and cirrhosis can prevent the increased morbidity and mortality associated with HH

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulation of iron metabolism: a simplified overview of the upstream pathways involved in hepcidin regulation.
Figure 2: Algorithm for the diagnosis of hereditary hemochromatosis in patients with a | signs or symptoms or b | in those with a family history of iron overload.

Similar content being viewed by others

References

  1. Nemeth, E. et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306, 2090–2093 (2004).

    Article  CAS  Google Scholar 

  2. Adams, P. C. & Barton, J. C. Haemochromatosis. Lancet 370, 1855–1860 (2007).

    Article  CAS  Google Scholar 

  3. Pietrangelo, A. Hemochromatosis: an endocrine liver disease. Hepatology 46, 1291–1301 (2007).

    Article  CAS  Google Scholar 

  4. Bridle, K. R. et al. Disrupted hepcidin regulation in HFE-associated haemochromatosis and the liver as a regulator of body iron homeostasis. Lancet 361, 669–673 (2003).

    Article  CAS  Google Scholar 

  5. Morrison, E. D. et al. Serum ferritin level predicts advanced hepatic fibrosis among U. S. patients with phenotypic hemochromatosis. Ann. Intern. Med. 138, 627–633 (2003).

    Article  CAS  Google Scholar 

  6. Mura, C., Raguenes, O. & Férec, C. HFE mutations analysis in 711 hemochromatosis probands: evidence for S65C implication in mild form of hemochromatosis. Blood 93, 2502–2505 (1999).

    CAS  PubMed  Google Scholar 

  7. Papanikolaou, G. et al. Mutations in HFE2 cause iron overload in chromosome 1q-linked juvenile hemochromatosis. Nat. Genet. 36, 77–82 (2004).

    Article  CAS  Google Scholar 

  8. Lee, P. L., Beutler, E., Rao, S. V. & Barton, J. C. Genetic abnormalities and juvenile hemochromatosis: mutations of the HJV gene encoding hemojuvelin. Blood 103, 4669–4671 (2004).

    Article  CAS  Google Scholar 

  9. Roetto, A. et al. Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis. Nat. Genet. 33, 21–22 (2003).

    Article  CAS  Google Scholar 

  10. Camaschella, C. et al. The gene TFR2 is mutated in a new type of haemochromatosis mapping to 7q22. Nat. Genet. 25, 14–15 (2000).

    Article  CAS  Google Scholar 

  11. Njajou, O. T. et al. A mutation in SLC11A3 is associated with autosomal dominant hemochromatosis. Nat. Genet. 28, 213–214 (2001).

    Article  CAS  Google Scholar 

  12. Andersen, R. V., Tybjaerg-Hansen, A., Appleyard, M., Birgens, H. & Nordestgaard, B. G. Hemochromatosis mutations in the general population: iron overload progression rate. Blood 103, 2914–2919 (2004).

    Article  CAS  Google Scholar 

  13. Asberg, A. et al. Screening for hemochromatosis: high prevalence and low morbidity in an unselected population of 65,238 persons. Scand. J. Gastroenterol. 36, 1108–1115 (2001).

    Article  CAS  Google Scholar 

  14. Olynyk, J. K. et al. A population-based study of the clinical expression of the hemochromatosis gene. N. Engl. J. Med. 341, 718–724 (1999).

    Article  CAS  Google Scholar 

  15. Deugnier, Y. et al. Gender-specific phenotypic expression and screening strategies in C282Y-linked haemochromatosis: a study of 9396 French people. Br. J. Haematol. 118, 1170–1178 (2002).

    Article  CAS  Google Scholar 

  16. Beutler, E., Felitti, V. J., Koziol, J. A., Ho, N. J. & Gelbart, T. Penetrance of 845G--> A (C282Y) HFE hereditary haemochromatosis mutation in the U. S. A. Lancet 359, 211–218 (2002).

    Article  Google Scholar 

  17. Allen, K. J. et al. Iron-overload-related disease in HFE hereditary hemochromatosis. N. Engl. J. Med. 358, 221–230 (2008).

    Article  CAS  Google Scholar 

  18. Gordeuk, V. R. et al. Serum ferritin concentrations and body iron stores in a multicenter, multiethnic primary-care population. Am. J. Hematol. 83, 618–626 (2008).

    Article  CAS  Google Scholar 

  19. Gurrin, L. C. et al. The natural history of serum iron indices for HFE C282Y homozygosity associated with hereditary hemochromatosis. Gastroenterology 135, 1945–1952 (2008).

    Article  CAS  Google Scholar 

  20. Gurrin, L. C. et al. HFE C282Y/H263D compound heterozygotes are at low risk of hemochromatosis-related morbidity. Hepatology 50, 94–101 (2009).

    Article  CAS  Google Scholar 

  21. Niederau, C. et al. Survival and causes of death in cirrhotic and in noncirrhotic patients with primary hemochromatosis. N. Engl. J. Med. 313, 1256–1262 (1985).

    Article  CAS  Google Scholar 

  22. Whitlock, E. P., Garlitz, B. A., Harris, E. L., Beil, T. L. & Smith, P. R. Screening for hereditary hemochromatosis: a systematic review for the U. S. Preventive Services Task Force. Ann. Intern. Med. 145, 209–223 (2006).

    Article  Google Scholar 

  23. Powell, L. W. et al. Screening for hemochromatosis in asymptomatic subjects with or without a family history. Arch. Intern. Med. 166, 294–301 (2006).

    Article  Google Scholar 

  24. Olynyk, J. K., Hagan, S. E., Cullen, D. J., Beilby, J. & Whittall, D. E. Evolution of untreated hereditary hemochromatosis in the Busselton population: a 17-year study. Mayo Clin. Proc. 79, 309–313 (2004).

    Article  Google Scholar 

  25. Williams, R., Smith, P. M., Spicer, E. J., Barry, M. & Sherlock, S. Venesection therapy in idiopathic haemochromatosis. An analysis of 40 treated and 18 untreated patients. Q. J. Med. 38, 1–16 (1969).

    CAS  PubMed  Google Scholar 

  26. Adams, P. C., Kertesz, A. E. & Valberg, L. S. Clinical presentation of hemochromatosis: a changing scene. Am. J. Med. 90, 445–449 (1991).

    Article  CAS  Google Scholar 

  27. Bacon, B. R. & Sadiq, S. A. Hereditary hemochromatosis: presentation and diagnosis in the 1990s. Am. J. Gastroenterol. 92, 784–789 (1997).

    CAS  PubMed  Google Scholar 

  28. Bulaj, Z. J. et al. Disease-related conditions in relatives of patients with hemochromatosis. N. Engl. J. Med. 343, 1529–1535 (2000).

    Article  CAS  Google Scholar 

  29. Swinkels, D. W., Jorna, A. T. & Raymakers, R. A. Synopsis of the Dutch multidisciplinary guideline for the diagnosis and treatment of hereditary haemochromatosis. Neth. J. Med. 65, 452–455 (2007).

    CAS  PubMed  Google Scholar 

  30. Olynyk, J. K., Gan, E. & Tan, T. Predicting iron overload in hyperferritinemia. Clin. Gastroenterol. Hepatol. 7, 359–362 (2009).

    Article  CAS  Google Scholar 

  31. St Pierre, T. G., Clark, P. R. & Chua-Anusorn, W. Measurement and mapping of liver iron concentrations using magnetic resonance imaging. Ann. NY Acad. Sci. 1054, 379–385 (2005).

    Article  Google Scholar 

  32. Burke, W., Reyes, M. & Imperatore, G. Hereditary haemochromatosis: a realistic approach to prevention of iron overload disease in the population. Best Prac. & Res. Clin. Haematol. 15, 315–328 (2002).

    Article  Google Scholar 

  33. Bradley, L. A., Haddow, J. E. & Palomaki, G. E. Population screening for haemochromatosis: a unifying analysis of published intervention trials. J. Med. Screen. 3, 178–184 (1996).

    Article  CAS  Google Scholar 

  34. U. S. Preventative Services Task Force. Screening for hemochromatosis: recommendation statement. Ann. Intern. Med. 145, 204–208 (2006).

  35. Phatak, P. D., Bonkovsky, H. L. & Kowdley, K. V. Hereditary hemochromatosis: time for targeted screening. Ann. Intern. Med. 149, 270–272 (2008).

    Article  Google Scholar 

  36. Cadet, E. et al. A targeted approach significantly increases the identification rate of patients with undiagnosed haemochromatosis. J. Intern. Med. 253, 217–224 (2003).

    Article  CAS  Google Scholar 

  37. Tavill, A. S. Diagnosis and management of hemochromatosis. Hepatology 33, 1321–1328 (2001).

    Article  CAS  Google Scholar 

  38. Worwood, M. Inherited iron loading: genetic testing in diagnosis and management. Blood Reviews 19, 69–88 (2005).

    Article  CAS  Google Scholar 

  39. Niederau, C. et al. Long-term survival in patients with hereditary hemochromatosis. Gastroenterology 110, 1107–1119 (1996).

    Article  CAS  Google Scholar 

  40. Fargion, S. et al. Survival and prognostic factors in 212 Italian patients with genetic hemochromatosis. Hepatology 15, 655–659 (1992).

    Article  CAS  Google Scholar 

  41. Adams, P. C., Speechley, M. & Kertesz, A. E. Long-term survival analysis in hereditary hemochromatosis. Gastroenterology 101, 368–372 (1991).

    Article  CAS  Google Scholar 

  42. McClain, D. A. et al. High prevalence of abnormal glucose homeostasis secondary to decreased insulin secretion in individuals with hereditary haemochromatosis. Diabetologia 49, 1661–1669 (2006).

    Article  CAS  Google Scholar 

  43. Dymock, I. W., Cassar, J., Pyke, D. A., Oakley, W. G. & Williams, R. Observations on the pathogenesis, complications and treatment of diabetes in 115 cases of haemochromatosis. Am. J. Med. 52, 203–210 (1972).

    Article  CAS  Google Scholar 

  44. O'Sullivan, E. P., McDermott, J. H., Murphy, M. S., Sen, S. & Walsh, C. H. Declining prevalence of diabetes mellitus in hereditary haemochromatosis--the result of earlier diagnosis. Diabetes Res. Clin. Prac. 81, 316–320 (2008).

    Article  CAS  Google Scholar 

  45. Davis, T. M. et al. Prevalence, characteristics, and prognostic significance of HFE gene mutations in type 2 diabetes: the Fremantle Diabetes Study. Diabetes Care 31, 1795–1801 (2008).

    Article  Google Scholar 

  46. Ellervik, C. et al. Prevalence of hereditary haemochromatosis in late-onset type 1 diabetes mellitus: a retrospective study. Lancet 358, 1405–1409 (2001).

    Article  CAS  Google Scholar 

  47. Salonen, J. T., Tuomainen, T. P. & Kontula, K. Role of C282Y mutation in haemochromatosis gene in development of type 2 diabetes in healthy men: prospective cohort study. BMJ 320, 1706–1707 (2000).

    Article  CAS  Google Scholar 

  48. Halsall, D. J., McFarlane, I., Luan, J., Cox, T. M. & Wareham, N. J. Typical type 2 diabetes mellitus and HFE gene mutations: a population-based case–control study. Hum. Mol. Genet. 12, 1361–1365 (2003).

    Article  CAS  Google Scholar 

  49. Cavallo-Perin, P. et al. Insulin resistance and hyperinsulinemia in homozygous beta-thalassemia. Metabolism 44, 281–286 (1995).

    Article  CAS  Google Scholar 

  50. Merkel, P. A. et al. Insulin resistance and hyperinsulinemia in patients with thalassemia major treated by hypertransfusion. N. Engl. J. Med. 318, 809–814 (1988).

    Article  CAS  Google Scholar 

  51. Dmochowski, K., Finegood, D. T., Francombe, W., Tyler, B. & Zinman, B. Factors determining glucose tolerance in patients with thalassemia major. J. Clin. Endocrinol. Metab. 77, 478–483 (1993).

    CAS  PubMed  Google Scholar 

  52. Hramiak, I. M., Finegood, D. T. & Adams, P. C. Factors affecting glucose tolerance in hereditary hemochromatosis. Clin. Invest. Med. 20, 110–118 (1997).

    CAS  PubMed  Google Scholar 

  53. Cooksey, R. C. et al. Oxidative stress, beta-cell apoptosis, and decreased insulin secretory capacity in mouse models of hemochromatosis. Endocrinology 145, 5305–5312 (2004).

    Article  CAS  Google Scholar 

  54. Cighetti, G. et al. Oxidative status and malondialdehyde in beta-thalassaemia patients. Eur. J. Clin. Invest. 32 (Suppl. 1), 55–60 (2002).

    Article  CAS  Google Scholar 

  55. Gutteridge, J. M., Rowley, D. A., Griffiths, E. & Halliwell, B. Low-molecular-weight iron complexes and oxygen radical reactions in idiopathic haemochromatosis. Clin. Sci. (Lond.) 68, 463–467 (1985).

    Article  CAS  Google Scholar 

  56. Jouihan, H. A. et al. Iron-mediated inhibition of mitochondrial manganese uptake mediates mitochondrial dysfunction in a mouse model of hemochromatosis. Mol. Med. 14, 98–108 (2008).

    Article  CAS  Google Scholar 

  57. Abraham, D., Rogers, J., Gault, P., Kushner, J. P. & McClain, D. A. Increased insulin secretory capacity but decreased insulin sensitivity after correction of iron overload by phlebotomy in hereditary haemochromatosis. Diabetologia 49, 2546–2551 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the VA Puget Sound Health Care System, Seattle, WA and the Department of Veterans Affairs (to K. M. U.) and NIH Grant DK02957 (to K. V. K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristina M. Utzschneider.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Utzschneider, K., Kowdley, K. Hereditary hemochromatosis and diabetes mellitus: implications for clinical practice. Nat Rev Endocrinol 6, 26–33 (2010). https://doi.org/10.1038/nrendo.2009.241

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2009.241

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing