Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A Flp-nick system to study repair of a single protein-bound nick in vivo

Abstract

We present the Flp-nick system, which allows introduction of a protein-bound nick at a single genomic site in Saccharomyces cerevisiae and thus mimics a stabilized topoisomerase I–DNA cleavage complex. We took advantage of a mutant Flp recombinase that can introduce a nick at a specific Flp recombinase recognition target site that has been integrated in the yeast genome. The genetic requirement for cells to cope with this insult is the same as for cells treated with camptothecin, which traps topoisomerase I–DNA cleavage complexes genome-wide. Hence, a single protein-bound nick is enough to kill cells if functional repair pathways are lacking. The Flp-nick system can be used to dissect repair, checkpoint and replication fork management pathways activated by a single genomic insult, and it allows the study of events at the damage site, which so far has been impossible to address.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FlpH305L was recruited to and cleaved at the ectopic FRT site.
Figure 2: S phase–specific histone H2A phosphorylation at the FRT site and co-localization of Rad52 foci with the FRT site in S/G2 cells.

Similar content being viewed by others

References

  1. Bjergbaek, L., Cobb, J.A., Tsai-Pflugfelder, M. & Gasser, S.M. Mechanistically distinct roles for Sgs1p in checkpoint activation and replication fork maintenance. EMBO J. 24, 405–417 (2005).

    Article  CAS  Google Scholar 

  2. Cobb, J.A. et al. Replisome instability, fork collapse, and gross chromosomal rearrangements arise synergistically from Mec1 kinase and RecQ helicase mutations. Genes Dev. 19, 3055–3069 (2005).

    Article  CAS  Google Scholar 

  3. Lopes, M., Foiani, M. & Sogo, J.M. Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol. Cell 21, 15–27 (2006).

    Article  CAS  Google Scholar 

  4. Lucca, C. et al. Checkpoint-mediated control of replisome-fork association and signalling in response to replication pausing. Oncogene 23, 1206–1213 (2004).

    Article  CAS  Google Scholar 

  5. Ahn, J.S., Osman, F. & Whitby, M.C. Replication fork blockage by RTS1 at an ectopic site promotes recombination in fission yeast. EMBO J. 24, 2011–2023 (2005).

    Article  CAS  Google Scholar 

  6. Calzada, A., Hodgson, B., Kanemaki, M., Bueno, A. & Labib, K. Molecular anatomy and regulation of a stable replisome at a paused eukaryotic DNA replication fork. Genes Dev. 19, 1905–1919 (2005).

    Article  CAS  Google Scholar 

  7. Lambert, S., Watson, A., Sheedy, D.M., Martin, B. & Carr, A.M. Gross chromosomal rearrangements and elevated recombination at an inducible site-specific replication fork barrier. Cell 121, 689–702 (2005).

    Article  CAS  Google Scholar 

  8. Kramer, K.M., Brock, J.A., Bloom, K., Moore, J.K. & Haber, J.E. Two different types of double-strand breaks in Saccharomyces cerevisiae are repaired by similar RAD52-independent, nonhomologous recombination events. Mol. Cell. Biol. 14, 1293–1301 (1994).

    Article  CAS  Google Scholar 

  9. Lee, J. & Jayaram, M. A tetramer of the Flp recombinase silences the trimers within it during resolution of a Holliday junction substrate. Genes Dev. 11, 2438–2447 (1997).

    Article  CAS  Google Scholar 

  10. Wang, J.C. Cellular roles of DNA topoisomerases: a molecular perspective. Nat. Rev. Mol. Cell Biol. 3, 430–440 (2002).

    Article  CAS  Google Scholar 

  11. Lee, J., Jayaram, M. & Grainge, I. Wild-type Flp recombinase cleaves DNA in trans. EMBO J. 18, 784–791 (1999).

    Article  CAS  Google Scholar 

  12. Lee, J., Whang, I. & Jayaram, M. Assembly and orientation of Flp recombinase active sites on two-, three- and four-armed DNA substrates: implications for a recombination mechanism. J. Mol. Biol. 257, 532–549 (1996).

    Article  CAS  Google Scholar 

  13. Voziyanov, Y., Lee, J., Whang, I., Lee, J. & Jayaram, M. Analyses of the first chemical step in Flp site-specific recombination: synapsis may not be a pre-requisite for strand cleavage. J. Mol. Biol. 256, 720–735 (1996).

    Article  CAS  Google Scholar 

  14. Parsons, R.L., Prasad, P.V., Harshey, R.M. & Jayaram, M. Step-arrest mutants of FLP recombinase: implications for the catalytic mechanism of DNA recombination. Mol. Cell. Biol. 8, 3303–3310 (1988).

    Article  CAS  Google Scholar 

  15. Nitiss, J. & Wang, J.C. DNA topoisomerase-targeting antitumor drugs can be studied in yeast. Proc. Natl. Acad. Sci. USA 85, 7501–7505 (1988).

    Article  CAS  Google Scholar 

  16. Downs, J.A., Lowndes, N.F. & Jackson, S.P. A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature 408, 1001–1004 (2000).

    Article  CAS  Google Scholar 

  17. Pouliot, J.J., Yao, K.C., Robertson, C.A. & Nash, H.A. Yeast gene for a Tyr-DNA phosphodiesterase that repairs topoisomerase I complexes. Science 286, 552–555 (1999).

    Article  CAS  Google Scholar 

  18. Yang, S.W. et al. A eukaryotic enzyme that can disjoin dead-end covalent complexes between DNA and type I topoisomerases. Proc. Natl. Acad. Sci. USA 93, 11534–11539 (1996).

    Article  CAS  Google Scholar 

  19. Bastin-Shanower, S.A., Fricke, W.M., Mullen, J.R. & Brill, S.J. The mechanism of Mus81-Mms4 cleavage site selection distinguishes it from the homologous endonuclease Rad1-Rad10. Mol. Cell. Biol. 23, 3487–3496 (2003).

    Article  CAS  Google Scholar 

  20. Doe, C.L., Ahn, J.S., Dixon, J. & Whitby, M.C. Mus81-Eme1 and Rqh1 involvement in processing stalled and collapsed replication forks. J. Biol. Chem. 277, 32753–32759 (2002).

    Article  CAS  Google Scholar 

  21. Vance, J.R. & Wilson, T.E. Yeast Tdp1 and Rad1-Rad10 function as redundant pathways for repairing Top1 replicative damage. Proc. Natl. Acad. Sci. USA 99, 13669–13674 (2002).

    Article  CAS  Google Scholar 

  22. Davies, D.R., Interthal, H., Champoux, J.J. & Hol, W.G. Crystal structure of a transition state mimic for Tdp1 assembled from vanadate, DNA, and a topoisomerase I-derived peptide. Chem. Biol. 10, 139–147 (2003).

    Article  CAS  Google Scholar 

  23. Koster, D.A., Palle, K., Bot, E.S., Bjornsti, M.A. & Dekker, N.H. Antitumour drugs impede DNA uncoiling by topoisomerase I. Nature 448, 213–217 (2007).

    Article  CAS  Google Scholar 

  24. Longtine, M.S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961 (1998).

    Article  CAS  Google Scholar 

  25. Torres-Rosell, J. et al. The Smc5-Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. Nat. Cell Biol. 9, 923–931 (2007).

    Article  CAS  Google Scholar 

  26. Strahl-Bolsinger, S., Hecht, A., Luo, K. & Grunstein, M. SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast. Genes Dev. 11, 83–93 (1997).

    Article  CAS  Google Scholar 

  27. Frei, C. & Gasser, S.M. The yeast Sgs1p helicase acts upstream of Rad53p in the DNA replication checkpoint and colocalizes with Rad53p in S-phase-specific foci. Genes Dev. 14, 81–96 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sugawara, N. & Haber, J.E. Repair of DNA double strand breaks: in vivo biochemistry. Methods Enzymol. 408, 416–429 (2006).

    Article  CAS  Google Scholar 

  29. Lisby, M., Rothstein, R. & Mortensen, U.H. Rad52 forms DNA repair and recombination centers during S phase. Proc. Natl. Acad. Sci. USA 98, 8276–8282 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Gartenberg (Robert Wood Johnson Medical School) for plasmids pFV17D-H305L and pFV17D and yeast strain ELT3; and M. Schmid (University of Aarhus) for comments on the manuscript. This work was supported by grants from the Danish Research Council (FNU 21-04-0354 and FNU 272-07-0366), Novo Nordisk Foundation, Aase and Einar Danielsens Foundation and Augustinus Foundation to L.B.; I.N. is supported by The Danish Cancer Society (DS07014); I.B.B. is supported by the Lundbeck Foundation (53/06) and M.L. is supported by The Danish Agency for Science, Technology and Innovation and the Villum Kann Rasmussen Foundation.

Author information

Authors and Affiliations

Authors

Contributions

I.N., I.B.B., M.L., S.H., K.M. and L.B. carried out experiments. L.B. and A.H.A. designed the system. L.B. wrote the manuscript.

Corresponding author

Correspondence to Lotte Bjergbaek.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Tables 1–2 and Supplementary Protocol (PDF 642 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nielsen, I., Bentsen, I., Lisby, M. et al. A Flp-nick system to study repair of a single protein-bound nick in vivo. Nat Methods 6, 753–757 (2009). https://doi.org/10.1038/nmeth.1372

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1372

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing