Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Genome-wide genetic changes during modern breeding of maize

A Corrigendum to this article was published on 01 September 2014

A Corrigendum to this article was published on 01 September 2014

This article has been updated

Abstract

The success of modern maize breeding has been demonstrated by remarkable increases in productivity over the last four decades. However, the underlying genetic changes correlated with these gains remain largely unknown. We report here the sequencing of 278 temperate maize inbred lines from different stages of breeding history, including deep resequencing of 4 lines with known pedigree information. The results show that modern breeding has introduced highly dynamic genetic changes into the maize genome. Artificial selection has affected thousands of targets, including genes and non-genic regions, leading to a reduction in nucleotide diversity and an increase in the proportion of rare alleles. Genetic changes during breeding happen rapidly, with extensive variation (SNPs, indels and copy-number variants (CNVs)) occurring, even within identity-by-descent regions. Our genome-wide assessment of genetic changes during modern maize breeding provides new strategies as well as practical targets for future crop breeding and biotechnology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GWAS results for cob color.
Figure 2: Neighbor-joining tree of the 126 US maize inbred lines.
Figure 3: CLR and genetic diversity of chromosome 1 in public US, Ex-PVP and elite Chinese maize groups.
Figure 4: The percentage of rare alleles in four related inbred lines.

Similar content being viewed by others

Accession codes

Primary accessions

NCBI Reference Sequence

Sequence Read Archive

Change history

  • 27 August 2014

    In the version of this article initially published, Figure 2 and related results were flawed because of errors in the analysis that incorrectly assigned the B73 reference genotype to non–overlapping SNP sites, resulting in SNPs being inappropriately combined. In addition, the authors have revised identity–by–descent (IBD) region identification using a 50–SNP sliding window with a step size of 5 SNPs and excluded regions with genetic distance of ≤0.05 cM. As a result of these changes, the authors have provided a corrected version of the paper to be appended to the original publication (the Online Methods, Figs. 1–4 and their legends, and Table 1 and its legend were revised). Minor revisions have also been made in the main text to reflect changes to calculations resulting from the above corrections (changes are made in paragraphs 2 and 3 of original page 812, paragraphs 1 and 2 of original page 813, and paragraphs 1–6 of original page 814). In addition, corrected versions of Supplementary Tables 2–6 and 11 and Supplementary Figures 1, 2, 5 and 6, and two new supplementary figures and one new supplementary table have been added. The main conclusions of the paper were not affected by the corrections.

  • 27 August 2014

    Nat. Genet. 44, 812–815 (2012); published online 3 June 2012; corrected after print 27 August 2014 In the version of this article initially published, Figure 2 and related results were flawed because of errors in the analysis that incorrectly assigned the B73 reference genotype to non-overlapping SNP sites, resulting in SNPs being inappropriately combined.

References

  1. Doebley, J. The genetics of maize evolution. Annu. Rev. Genet. 38, 37–59 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Duvick, D.N. The contribution of breeding to yield advances in maize (Zea mays L.). Adv. Agron. 86, 83–145 (2005).

    Article  Google Scholar 

  3. Duvick, D.N. Commercial strategies for exploitation of heterosis. in The Genetics and Exploitation of Heterosis in Crops (eds. Coors, J.G. & Pandey, S.) 295–304 Misc: (ASA-CSSA-SSSA Publication, Madison, Wisconsin, 1999).

  4. Liu, K. et al. Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics 165, 2117–2128 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Gore, M.A. et al. A first-generation haplotype map of maize. Science 326, 1115–1117 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Lai, J. et al. Genome-wide patterns of genetic variation among elite maize inbred lines. Nat. Genet. 42, 1027–1030 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Grotewold, E., Athma, P. & Peterson, T. A possible hot spot for Ac insertion in the maize P gene. Mol. Gen. Genet. 230, 329–331 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Tian, F. et al. Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat. Genet. 43, 159–162 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Scanlon, M.J., Stinard, P.S., James, M.G., Myers, A.M. & Robertson, D.S. Genetic analysis of 63 mutations affecting maize kernel development isolated from Mutator stocks. Genetics 136, 281–294 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Salvi, S. et al. Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc. Natl. Acad. Sci. USA 104, 11376–11381 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nielsen, R. et al. Genomic scans for selective sweeps using SNP data. Genome Res. 15, 1566–1575 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yamasaki, M. et al. A large-scale screen for artificial selection in maize identifies candidate agronomic loci for domestication and crop improvement. Plant Cell 17, 2859–2872 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wright, S.I. et al. The effects of artificial selection on the maize genome. Science 308, 1310–1314 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Pickrell, J.K. et al. Signals of recent positive selection in a worldwide sample of human populations. Genome Res. 19, 826–837 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Song, X.J., Huang, W., Shi, M., Zhu, M.Z. & Lin, H.X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat. Genet. 39, 623–630 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Weng, J. et al. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res. 18, 1199–1209 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Shomura, A. et al. Deletion in a gene associated with grain size increased yields during rice domestication. Nat. Genet. 40, 1023–1028 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Fan, C. et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor. Appl. Genet. 112, 1164–1171 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Wang, E. et al. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat. Genet. 40, 1370–1374 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Schnable, P.S. et al. The B73 maize genome: complexity, diversity, and dynamics. Science 326, 1112–1115 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Palmer, L.E. et al. Maize genome sequencing by methylation filtration. Science 302, 2115–2117 (2003).

    Article  PubMed  Google Scholar 

  22. Clark, R.M., Tavare, S. & Doebley, J. Estimating a nucleotide substitution rate for maize from polymorphism at a major domestication locus. Mol. Biol. Evol. 22, 2304–2312 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Roach, J.C. et al. Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science 328, 636–639 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ossowski, S. et al. The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327, 92–94 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Denver, D.R. et al. A genome-wide view of Caenorhabditis elegans base-substitution mutation processes. Proc. Natl. Acad. Sci. USA 106, 16310–16314 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. You, Y.H., Li, C. & Pfeifer, G.P. Involvement of 5-methylcytosine in sunlight-induced mutagenesis. J. Mol. Biol. 293, 493–503 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Itsara, A. et al. De novo rates and selection of large copy number variation. Genome Res. 20, 1469–1481 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tian, Z. et al. Artificial selection for determinate growth habit in soybean. Proc. Natl. Acad. Sci. USA 107, 8563–8568 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zheng, P. et al. A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat. Genet. 40, 367–372 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Uauy, C., Distelfeld, A., Fahima, T., Blechl, A. & Dubcovsky, J. A NAC Gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314, 1298–1301 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Poland, J.A., Bradbury, P.J., Buckler, E.S. & Nelson, R.J. Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc. Natl. Acad. Sci. USA 108, 6893–6898 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kump, K.L. et al. Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat. Genet. 43, 163–168 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Tester, M. & Langridge, P. Breeding technologies to increase crop production in a changing world. Science 327, 818–822 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Moose, S.P. & Mumm, R.H. Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol. 147, 969–977 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  37. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yoon, S., Xuan, Z., Makarov, V., Ye, K. & Sebat, J. Sensitive and accurate detection of copy number variants using read depth of coverage. Genome Res. 19, 1586–1592 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Browning, B.L. & Browning, S.R. A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am. J. Hum. Genet. 84, 210–223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stephens, M. & Scheet, P. Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am. J. Hum. Genet. 76, 449–462 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Roberts, A. et al. Inferring missing genotypes in large SNP panels using fast nearest-neighbor searches over sliding windows. Bioinformatics 23, i401–i407 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Yang, J., Lee, S.H., Goddard, M.E. & Visscher, P.M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang, Z. et al. Mixed linear model approach adapted for genome-wide association studies. Nat. Genet. 42, 355–360 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schneeberger, K. et al. Reference-guided assembly of four diverse Arabidopsis thaliana genomes. Proc. Natl. Acad. Sci. USA 108, 10249–10254 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Huang, X. & Madan, A. CAP3: a DNA sequence assembly program. Genome Res. 9, 868–877 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Boetzer, M., Henkel, C.V., Jansen, H.J., Butler, D. & Pirovano, W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27, 578–579 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Felsenstein, J. PHYLIP: phylogeny inference package (version 3.2). Cladistics 5, 164–166 (1989).

    Google Scholar 

  48. Tajima, F. Evolutionary relationship of DNA sequences in finite populations. Genetics 105, 437–460 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Hudson, R.R., Boos, D.D. & Kaplan, N.L. A statistical test for detecting geographic subdivision. Mol. Biol. Evol. 9, 138–151 (1992).

    CAS  PubMed  Google Scholar 

  51. Thornton, K. Libsequence: a C++ class library for evolutionary genetic analysis. Bioinformatics 19, 2325–2327 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Huang, X. et al. High-throughput genotyping by whole-genome resequencing. Genome Res. 19, 1068–1076 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank E.S. Buckler and J. Ross-Ibarra for helpful discussions, E.S. Buckler, T.R. Rocheford, M. Bohn and P. Becraft for assistance in making some of the Ex-PVP lines available and J. Dai, S. Wang and T. Wang for sharing Chinese germplasm. Research is supported by the National Basic Research Program (973 program) (2009CB118400).

Author information

Authors and Affiliations

Authors

Contributions

J.L. designed the project. J.L., Y.J. and H.Z. wrote the manuscript. Y.J., H.Z., L.R., B.Z. and S.X. performed most data analyses. W.S., J.G., B.W., Z.L., J.C., W.L. and M.Z. collected the inbred lines and prepared DNA samples for sequencing.

Corresponding author

Correspondence to Jinsheng Lai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–4 and 6–11 and Supplementary Figures 1–8 (PDF 918 kb)

Supplementary Table 5

The list of selective regions and genes (XLSX 524 kb)

Supplementary Table 12

Three subgroups of the 278 inbred lines (XLSX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiao, Y., Zhao, H., Ren, L. et al. Genome-wide genetic changes during modern breeding of maize. Nat Genet 44, 812–815 (2012). https://doi.org/10.1038/ng.2312

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2312

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing