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Bone is the one of the most common sites of distant metastasis of solid tumors. Secreted proteins are known to 
influence pathological interactions between metastatic cancer cells and the bone stroma. To comprehensively profile 
secreted proteins associated with bone metastasis, we used quantitative and non-quantitative mass spectrometry to 
globally analyze the secretomes of nine cell lines of varying bone metastatic ability from multiple species and cancer 
types. By comparing the secretomes of parental cells and their bone metastatic derivatives, we identified the secreted 
proteins that were uniquely associated with bone metastasis in these cell lines. We then incorporated bioinformatic 
analyses of large clinical metastasis datasets to obtain a list of candidate novel bone metastasis proteins of several 
functional classes that were strongly associated with both clinical and experimental bone metastasis. Functional vali-
dation of selected proteins indicated that in vivo bone metastasis can be promoted by high expression of (1) the sali-
vary cystatins CST1, CST2, and CST4; (2) the plasminogen activators PLAT and PLAU; or (3) the collagen function-
ality proteins PLOD2 and COL6A1. Overall, our study has uncovered several new secreted mediators of bone metas-
tasis and therefore demonstrated that secretome analysis is a powerful method for identification of novel biomarkers 
and candidate therapeutic targets.
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Introduction

Bone metastasis is a common and devastating step in 
the progression of breast, lung, prostate, bladder, thyroid, 
and other cancers. In particular, more than 70% of meta-
static breast cancer patients suffer from bone metastasis 
and must endure debilitating bone fractures, severe pain, 
and hypercalcemia [1, 2]. While treatment for cancer-
induced bone complications does exist and improves 
the quality of life, the efficacy is limited and often does 

not extend the survival of patients with bone metastasis. 
Therefore, the discovery of novel biomarkers and poten-
tial new therapeutic targets for bone metastasis is highly 
desirable. 

Osteolytic bone metastasis has been described as be-
ing driven by a “vicious cycle” of tumor-stroma interac-
tions [2]. Upon reaching the bone microenvironment, 
cancer cells activate the differentiation of bone-degrading 
osteoclasts either directly or indirectly by promoting the 
increased production of osteoclastogenesis cytokines by 
osteoblasts [2]. Differentiated osteoclasts dissolve miner-
alized bone, leading to the release of a large compendium 
of growth factors and cytokines, such as PDGF, FGF, and 
IGFs and TGF-β [2-4], from the bone matrix, which in 
turn promote the growth of and continued pro-osteolytic 
signaling by cancer cells [5]. Notably, communication 
between cancer cells and bone stromal cells is typically 
mediated via secreted proteins. Accordingly, the majority 
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of current bone metastasis therapeutic targets in use or 
in development – such as TGF-β, Cathepsin K, RANKL, 
and DKK1 – are secreted proteins. 

While the importance of secreted proteins in bone me-
tastasis has long been appreciated, only via recent tech-
nological advances in mass spectrometry have global, 
proteome-scale secreted protein profiling experiments 
become possible. Analyses of the complete set of secret-
ed proteins – otherwise known as the “secretome” – have 
been reported in various organisms, cell types, and pa-
thologies, and are quickly gaining popularity [6, 7]. Not 
surprisingly, several studies have focused on analyses of 
cancer- or metastasis-specific changes in secretome pro-
files [8-22]. However, none of the studies to date has fo-
cused on secretomes relevant to the bone metastasis phe-
notype. Moreover, the majority of cancer and metastasis 
secretome studies have focused on mass spectrometry-
based identification and cataloguing of secretomes, and 
none has included experimental, in vivo validation of the 
functional importance of identified novel mediators of 
cancer or metastasis. 

Here we present a comprehensive analysis of the bone 
metastasis secretome, integrating both non-quantitative 
and quantitative, SILAC-based mass spectrometry analy-
ses of the secretomes of three families of cell lines with 
relevance to bone metastasis. Specifically, we profiled 
parental and highly or lowly bone metastatic deriva-
tives of the MDA-MB-231 (human breast cancer), 4T1 
(mouse breast cancer), and TSU (human bladder cancer) 
cell lines, so as to help elucidate which secreted proteins 
are universally required for bone metastasis and which 
may depend on contexts such as species or cancer type. 
Following the identification of secreted, novel candidate 
bone metastasis proteins that are highly overrepresented 
in aggressively bone metastatic cell lines, we then ana-
lyzed the functional role of several proteins spanning 
multiple functional classes in promoting bone metastasis 
in vivo. Our analysis has functionally validated the novel 
role of several groups of clinically-important secreted 
proteins in promoting bone metastasis, including Cathe-
psin inhibitors (CST1, CST2, and CST4), collagen func-
tionality proteins (PLOD2 and COL6A1), and plasmino-
gen activators (PLAT and PLAU). These proteins may 
become potential biomarkers for the detection of bone 
metastasis, as well as therapeutic targets for treatment of 
bone metastasis.

Results

Non-quantitative bone metastasis secretome analysis
For initial investigations into the bone metastasis 

secretome, we chose to profile secreted proteins in the 

conditioned media (CM) from three families of cell 
lines of relevance to bone metastasis. Specifically, we 
analyzed (1) the MDA-MB-231 (human breast cancer)- 
derived sublines SCP4 and SCP6 (weakly bone meta-
static), and SCP2 and 1833 (strongly bone metastatic) 
[23]; (2) the 4T1 (mouse breast cancer) family cell lines 
4T1 and 4T1.2 (weakly and strongly bone metastatic, 
respectively) [24], and (3) the TSU-Pr1 (human bladder 
cancer) family of cell lines TSU-Pr1 and TSU-Pr1-B2 
(weakly and strongly bone metastatic, respectively) [25]. 
Thus, our initial secretomic analysis spanned eight cell 
lines from two species and two cancer types, allowing 
for cross-species and cross-cancer type comparisons of 
secreted proteins from matched weakly and strongly 
bone metastatic derivative cell lines. To comprehensively 
determine the secreted proteins found in these eight cell 
lines, we harvested conditioned serum-free media from 
each cell line, separated the proteins via SDS-PAGE, and 
subjected in-gel trypsin-digested peptides to liquid chro-
matography tandem mass spectrometry (LC-MS/MS) 
analysis (Figure 1A). Peptides were searched against the 
Sequest database and 1 458 total unique proteins were 
identified across the eight cell lines, with the number of 
proteins identified per cell line varying from 103 to 722. 
Many proteins identified by this method are expected to 
be intracellular contaminants derived from the basal rates 
of apoptotic cells present in normal culturing conditions. 
To filter out likely intracellular contaminants and retain 
proteins most likely to be secreted by live cells, we used 
the SignalP [26, 27] and Gene Ontology (GO) [28, 29] 
databases to retain only proteins either experimentally 
observed to be extracellular or otherwise containing 
predicted cleavable signal peptides targeting them to the 
secretory pathway. This analysis yielded a total of 298 
unique, secretory-predicted proteins across the eight cell 
lines, which is in line with previous quantities and per-
centages of secreted proteins found in comparable secre-
tome analyses [8, 30-40].

To determine the secreted proteins most likely to be 
essential for bone metastasis, we looked at which of 
these proteins, within a given cell family, were identified 
in conditioned media from the bone metastatic derivative 
cell line(s) and not identified in the corresponding weak-
ly bone-metastatic subline(s) (Figure 2A). These three 
“bone metastasis secretome signatures” (BMSSs) con-
sisted of 33, 28, and 27 proteins from the MDA-MB-231 
(hereafter MDA231), TSU-Pr1 (hereafter TSU), and 4T1 
cell line families (Supplementary information, Tables S1, 
S2, and S3). Manual inspection of these signatures re-
vealed several proteins known to be of high importance 
in bone metastasis and bone biology, such as MMP1 and 
CTGF (MDA231 BMSS), OGN (4T1 BMSS) and DKK3 
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(TSU BMSS). For unbiased initial validation of the 
BMSSs, we performed GO analysis. GO cellular compo-
nent analysis indicated that, in each BMSS, the most sig-
nificantly overrepresented localization was “extracellular 
region” (P = 9.1E-12, 7.9E-7, and 1.4E-7 for MDA231, 
TSU, and 4T1 BMSSs, respectively), confirming the ef-
ficacy of the experimental and bioinformatic approaches 
employed to identify secreted proteins (Supplementary 
information, Figure S1). Furthermore, GO molecular 
function (MF) analysis confirmed that ontologies perti-
nent to tumorigenesis and metastasis, such as “growth 
factor binding” and, more specifically, “insulin-like 
growth factor binding” were enriched in multiple BMSSs 
(Figure 2C and Supplementary information, Table S7). 
Interestingly, more than half (4 of 7) of the significantly 
overrepresented MDA231 BMSS MFs were related to 
peptidase/enzyme inhibition. Notably, one MF ontology 
was significantly overrepresented in all three BMSSs – 
“calcium ion binding” (28.1 % (P = 5.3E-4), 25% (P = 
0.006), and 22.2% (P = 0.013) of MDA231, TSU, and 

4T1 BMSS proteins, respectively), which suggests the 
involvement of BMSS proteins in bone metastasis and 
bone biology (Figure 2C and Supplementary informa-
tion, Table S7). While significant overlap was observed 
between the BMSSs in terms of categories of overrepre-
sented proteins, especially between the two breast cancer 
(MDA231 and 4T1) BMSSs, less overlap was observed 
for individual proteins. However, one protein was present 
in all three BMSSs – Procollagen-lysine 2-oxoglutarate 
5-dioxygenase 2 (PLOD2) (Figure 2B). PLOD2 catalyz-
es the hydroxylation of lysine residues on collagen-like 
peptides, enhancing their crosslinking potential. Notably, 
PLOD2 mutations are associated with osteogenesis im-
perfecta (bone fragility) in humans [41].

Quantitative, SILAC-based bone metastasis secretome 
analysis

To complement our non-quantitative secretome analy-
sis, we next extended our investigation to SILAC-based, 
quantitative proteomic approaches. Here we performed 

Figure 1 Schematic overview of (A) non-quantitative and (B) quantitative secretome analysis approaches.
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three pair-wise secretome comparisons: MDA231 (pa-
rental) vs. 1833, TSU vs. TSU-B2, and 4T1 vs. 4T1.2. As 
we only included one highly and one lowly bone meta-
static MDA231 family cell line in this case, we chose to 
use the heterogeneous parental MDA231 cell line, rather 
than SCP4 or SCP6, as the representative weakly bone 
metastatic cell line so as to avoid biases associated with 
using a single clonally-derived cell line. We employed 
a different methodology for SILAC-based proteomics 
(Figure 1B), including trypsinization prior to fraction-
ation and fractionation of tryptic peptides via strong cat-
ion exchange (SCX) chromatography. Here, we observed 
increases in total number of proteins identified (ranging 
from 2 013 to 3 426 per cell line), with the percentage of 
secretory-predicted proteins being roughly the same (384 
to 742 per cell line). To examine the quality of SILAC 
peptide identification and quantification, we correlated 
log2 SILAC ratios, heavy (H) vs. light (L), observed 
from independent measurements of two distinct tryptic 

peptides, peptide 1 and peptide 2, from the same protein. 
In general, these ratios were highly correlated, indicating 
accurate protein expression measurements were derived 
from our analysis of the mass spectra collected by LC-
MS/MS (Figure 3A). Quantitative proteomics allows for 
the comparison of gene expression to protein abundance. 
While overall correlation is expected between RNA and 
protein levels, the secreted protein fraction in particular 
is expected to have a significant degree of regulation at 
the post-transcriptional level, due to the possibility of 
differential protein expression, processing and secretion. 
Accordingly, while we observed a significant positive 
correlation between secreted protein abundance and 
RNA expression in MDA231 and 1833 cells (r = 0.18, P 
= 0.004; Figure 3B), clearly secreted protein abundance 
and RNA expression often do not correspond, underscor-
ing the importance of proteomics-level investigations of 
the tumor cell secretome. 

To generate BMSSs based on quantitative protein 

Figure 2 Non-quantitative secretome analysis. (A) Overview of cell lines used for the three bone metastasis secretome sig-
natures (BMSS). (B) Overlap of non-quantitative BMSSs. (C) Non-quantitative BMSSs were searched via the Gene Ontology 
(GO) database for significantly overrepresented Molecular Functions (MFs). The dashed line indicates significance cutoff (P 
= 0.05); green text indicates MFs significantly overrepresented in two of three BMSSs, and red text indicates overrepresenta-
tion in all three BMSSs. 
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abundance data, we considered secretory-predicted pro-
teins upregulated at least 1.5-fold in bone-metastatic 
variants as compared to their matched, parental/non-bone 
metastatic cell lines. This analysis yielded quantitative 
BMSSs consisting of 68, 74, and 187 proteins for the 
MDA231, TSU, and 4T1 family comparisons, respec-
tively (Supplementary information, Tables S4, S5, and 
S6). As with the non-quantitative secretome approach, 
BMSS overlap between the families of cell lines was 
large in terms of overrepresented pathways and catego-
ries of proteins. Again, “extracellular region” was the 
most highly overrepresented localization (Supplementary 
information, Figure S1B) and “calcium ion binding” 
proteins were significantly enriched in all three quantita-
tive BMSSs (Figure 3C and Supplementary information, 

Table S8). Other cancer/metastasis-related GO MFs or 
biological processes (BPs) enriched in all three quanti-
tative BMSSs included “wound response,” “cell adhe-
sion,” “cell proliferation,” and “growth factor binding” 
(Figure 3C and Supplementary information, Tables S8 
and S9). With quantitative, fold-change BMSS data, we 
were able to further investigate and compare globally en-
riched BMSS pathways via Ingenuity Pathway Analysis 
(IPA). IPA also confirmed the biological relevance of all 
three quantitative BMSSs, with canonical pathways such 
as “osteoblasts, osteoclasts, and chondrocytes,” “IGF-
1 signaling,” “tissue factor in cancer,” and “Oncostatin 
M,” each found to be significantly enriched in all three 
BMSSs (Figure 3D and Supplementary information, Ta-
ble S10). BMSS IPA networks were found to be densely 

Figure 3 Quantitative secretome analysis. (A) log2 SILAC heavy (H) vs. light (L) ratios were compared for two distinct tryptic 
peptides, peptide 1 and peptide 2, from the same protein. (B) log2 secreted protein and mRNA abundance ratios were com-
pared for 1833 and MDA-231 cells. (C-E) MDA231, TSU, and 4T1 BMSSs were subjected to GO database searching (C) and 
Ingenuity Pathway Analysis (IPA) (D-E). The dashed lines indicate significance cutoffs (P = 0.05) for GO Molecular and Bio-
logical functions and IPA Canonical Pathways. The most significant IPA networks are shown for each BMSS, with the “collagen” 
connectivity node being shaded in each case (E). (F) Overlap of quantitative BMSSs.
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interconnected, with each containing a “collagen” node 
consisting of 7, 9, and 5 connections in the MDA231, 
TSU, and 4T1 quantitative BMSSs, respectively (Figure 
3E). Accordingly, one protein was present on all three 
BMSSs – Collagen 6A1 (COL6A1) (Figure 3F). Taken 
together, GO enrichment analyses and IPA strongly sug-
gest that the three quantitative BMSSs do indeed consist 
of a high percentage of secreted proteins involved in can-
cer generally and bone metastasis/bone biology specifi-
cally.

Validation of BMSSs in experimental and clinical bone 
metastasis datasets

To further validate the BMSSs, we investigated to 
what extent transcriptomic overexpression of genes en-
coding BMSS proteins was observed in experimental 
and clinical bone metastasis microarray datasets. Despite 
the only moderate correlation between secreted protein 
abundance and mRNA expression, we reasoned that 
Gene Set Enrichment Analysis (GSEA) [42, 43] would 
potentially be robust enough to indicate whether BMSS 
gene sets are globally upregulated in bone metastasis mi-
croarray data, as GSEA is sensitive for detecting overall 
regulatory patterns while allowing moderate amounts of 
noise or even discordance in the analysis. For the first 
GSEA, we investigated whether the MDA231 BMSSs 
(both quantitative and non-quantitative) were enriched 
in microarray data from the Kang et al. study [23] com-
paring in vivo-derived highly and lowly bone metastatic 
sublines of MDA231 cells. Indeed, both MDA231 
BMSSs were found to be significantly enriched in the list 
of genes ranked according to their degree of overexpres-
sion in highly vs. lowly bone metastatic cell lines (Fig-
ure 4A). We next expanded our GSEA validation of the 
BMSSs to clinical breast cancer patient datasets. Here 
we interrogated the MSK82 dataset [44], which contains 
microarray data from primary tumors of breast cancer 
patients with known metastatic outcome, including site 
of metastasis. We tested all BMSSs for enrichment in the 
list of genes ranked by their degree of overexpression 
in patients who suffered bone metastasis as compared 
to those who remained disease-free. Despite the small 
sample size of the bone metastatic patient group (n = 14 
for bone metastasis vs. n = 55 for no metastasis) and the 
inherent noise in clinical primary tumor microarrays, all 
six BMSSs (three quantitative and three non-quantita-
tive) were enriched, to varying degrees of significance, 
in the bone metastatic patient phenotype (Figure 4B and 
data not shown). Focusing on the quantitative BMSSs, 
as they provide larger gene sets more suitable in size for 
GSEA, enrichment of both breast cancer BMSSs was 
highly significant (P = 0.009 and P < 0.001 for MDA231 

and 4T1 BMSSs, respectively), whereas the TSU (blad-
der cancer) BMSS showed a trend toward enrichment 
in the bone metastasis patient phenotype that fell short 
of statistical significance (P = 0.147, Figure 4B). This 
latter result was not unexpected given the cancer type 
difference. Thus, in line with and adding to IPA and GO 
analyses, experimental and clinical dataset GSEAs have 
globally validated the biological and clinical relevance of 
the BMSSs to the bone metastasis phenotype.

Functional analysis of selected secreted proteins in me-
diating experimental bone metastasis

Using our mass spectrometry-based secretome data, 
we next aimed to identify novel secreted mediators of 
bone metastasis via functional, in vivo experimental 
bone metastasis approaches. While we had a large list 
of candidate bone metastasis proteins, we focused on 
functionally intriguing proteins with gene expression 
patterns associated with either clinical bone metastasis 
or general metastasis. These candidate proteins spanned 
several functional classes. First, we considered the col-
lagen functionality proteins PLOD2 and COL6A1, as 
they were the sole proteins on all the BMSSs from the 
non-quantitative and quantitative analyses, respectively. 
We also considered the plasminogen activators PLAT 
and PLAU, as each quantitative BMSS contained either 
PLAT or PLAU. The salivary cystatin family of proteins, 
CST1, CST2, and CST4, were also selected as they 
were strongly represented on both the non-quantitative 
(CST1, CST2, and CST4) and quantitative (CST1 and 
CST4) MDA231 BMSSs. Finally, we considered the 
secretory granule scaffold protein SRGN, as it was on 
both MDA231 BMSSs, showing a ~20-fold upregula-
tion in 1833 as compared to parental (MDA231) cells, 
and is universally upregulated at the RNA level in bone 
metastatic variants of the MDA231 family, thus residing 
on the previously reported 43-gene pro-bone metastasis 
signature [23]. Notably, to our knowledge, no studies 
to date have evaluated the role of any of these proteins 
in breast or bladder to bone metastasis. Cox propor-
tional hazards models indicated that expression of all 
selected genes except SRGN was significantly or near-
significantly associated with either metastasis generally 
(COL6A1 and CST2) or bone metastasis specifically 
(all others) in one of three large clinical breast cancer 
microarray datasets (Table 1). Kaplan-Meier plots indi-
cated that patients expressing high levels SRGN showed 
significantly shorter relapse-free survivals than those ex-
pressing low SRGN (Figure 4C), and patients expressing 
high levels of PLOD2, PLAT, PLAU, or CSTs (averaged) 
had significantly or near-significantly shorter periods of 
bone metastasis-free survival than their lowly-expressing 
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Figure 4 Global and specific validation of BMSS proteins in experimental and clinical datasets. (A) Genes encoding proteins 
on the quantitative (“SILAC”) (left) and non-quantitative (right) MDA231 BMSSs were used as gene sets and tested for en-
richment via Gene Set Enrichment Analysis (GSEA) in the list of genes ranked by degree of overexpression in 1833 as com-
pared to MDA231 cell line microarray data. The panel to the right of each GSEA plot shows the corresponding heat map of 
the differential expression of BMSS genes sets in the 1833 and MDA231 microarray datasets. (B) The three quantitative (“SI-
LAC”) BMSS gene sets were tested for enrichment in the list of genes ranked by degree of overexpression in primary breast 
cancer tumors from patients in the MSK82 dataset who developed bone metastasis as compared to patients who remained 
disease free. (C) Kaplan-Meier plot of relapse-free survival of breast cancer patients stratified by median primary tumor 
SRGN expression in the KM-Plotter database. Log-rank test P-value is displayed. (D) Kaplan-Meier plots of bone metastasis-
free survival of breast cancer patients stratified by upper quartile primary tumor expression of the indicated genes in either 
the EMC286, NKI295, or MSK82 datasets, as indicated. Log-rank test P-values are displayed.

Table 1 Genes encoding BMSS proteins are associated with bone metastasis and general metastasis
           Gene Dataset                      Association                       HR  95% CI                           P-value
CST1 MSK82 Bone met 1.56 1.00-2.41 0.045
CST2 NKI295 Metastasis 11.63 2.65-51.04 0.001
CST4 MSK82 Bone met 2.13 0.92-4.91 0.076
CST1/2/4 (AVG) MSK82 Bone met 2.09 1.02-4.28 0.043
COL6A1 MSK82 Metastasis 1.73 0.94-3.19 0.079
PLOD2 EMC286 Bone met 1.44 1.11-1.89 0.006
PLAT EMC286 Bone met 1.32 1.12-1.56 0.001
PLAU NKI295 Bone met 3.31 1.00-10.97 0.051

Cox proportional hazards ratios are shown for the association of the expression of selected BMSS genes with either general metastasis-free surviv-
al (CST2 and COL6A1) or bone metastasis-free survival (all other genes) in either the MSK82, EMC286 or NKI295 clinical breast cancer datasets.



Secretome analysis of bone metastasis
1346

npg

 Cell Research | Vol 22 No 9 | September 2012

counterparts (Figure 4D). Finally, before initiating ex-
perimental evaluation of the role of these candidates in 
bone metastasis, we confirmed the upregulation of each 
gene in the relevant cell lines. Due to the large number 
of candidate genes overall, we attempted confirmation 
via qPCR first, proceeding to western blot confirma-
tion only if upregulation in bone metastatic variant cell 
lines was not observed at the RNA level. Similar to mass 
spectrometry data, we observed upregulation of either 
PLAU or PLAT (or both) in MDA231, 4T1, or TSU bone 
metastatic variant cell lines (Figure 5A). Elevated ex-

pression of PLOD2 was observed in MDA231 and 4T1 
bone metastatic variants, and SRGN (Figure 5A) as well 
as all three cystatins displayed strong MDA231-specific 
bone metastatic variant patterns of upregulation (Figure 
5B). Finally, COL6A1 was found to be upregulated at 
the RNA level in 4T1.2 and TSU-B2 cells, as compared 
to 4T1 and TSU cells, and at the protein level in 1833 as 
compared to parental (MDA231) cells (Figures 5C and 
5D).

For our initial functional analyses, we focused on the 
collagen functionality proteins PLOD2 and COL6A1, as 

Figure 5 Endogenous and exogenous expression of BMSS genes selected for experimental analysis. (A-C) Endogenous 
mRNA expression of all genes selected for functional analysis in selected MDA231, TSU, and 4T1 family cell lines. (D) En-
dogenous protein expression of COL6A1 in conditioned media from MDA231 and TSU family cell lines. (E) SCP28 cells were 
engineered to stably overexpress the indicated genes by retroviral infection followed by drug selection. Fold overexpression 
of the indicated genes relative to vector (control) cells was quantified via qRT-PCR. (F) The indicated combinations of high ti-
ter retrovirus were mixed and used to infect SCP28 cells. After roughly one month of culture without drug selection, RNA was 
harvested and fold overexpression of the indicated genes relative to vector (control) cells was quantified via qRT-PCR. 
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they were found on all three BMSSs, and on the secre-
tory scaffold protein SRGN, as it was a highly-intriguing 
candidate specific to but robust in the MDA231 BMSSs. 
To test the importance of COL6A1, PLOD2, and SRGN 
in bone metastasis, we stably knocked down each gene 
in SCP2 cells, as aggressively bone metastatic variants 
of the MDA231 family of cells are the most suitable 
for bone metastasis loss-of-function experiments. We 
achieved roughly 95% efficiency of SRGN knockdown 
(KD), whereas KDs of COL6A1 and PLOD2 were ef-
fective (> 80% silencing), but did not completely ablate 
gene expression (Supplementary information, Figure 
S2A). We then used these cell lines, as well as vector 

control cells, for experimental bone metastasis assays. 
Following intracardiac injections into nude mice, we 
quantified bone metastasis progression over time via in 
vivo bioluminescent imaging (BLI) over the course of six 
weeks. However, we did not observe significant changes 
in bone metastasis burden via BLI, nor did we observe 
significant differences in the number or extent of bone 
lesions via X-ray analysis for any of these genes as com-
pared to control cells (Supplementary information, Fig-
ure S2C-S2E). Interestingly, while knockdown of these 
genes, individually, did not significantly affect bone 
metastasis progression, double knockdown of SRGN and 
PLOD2 (Supplementary information, Figure S2B) did 

Figure 6 Salivary cystatins, COL6A1 and PLOD2, and plasminogen activators promote bone metastasis in vivo. (A) Control 
and CST1-2-4 (top), COL6A1-PLOD2 (middle) and PLAT-PLAU (bottom) overexpressing SCP28 cells were xenografted into 
nude mice for experimental bone metastasis assays. Metastatic burden of hindlimb bone metastasis was quantified by week-
ly bioluminescent imaging (BLI). *P < 0.05. (B) BLI, (C) radiographic, and (D) TRAP staining (for mature osteoclasts) images 
are shown for representative mice from each experimental group. T = tumor, B = bone, OC = osteoclast. Scale bar, 50 µm in D.
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lead to modest, but significant, reductions in bone meta-
static burden (Supplementary information, Figure S2C-
S2E).

Extending the reasoning that manipulation of single 
secreted proteins may not frequently affect bone me-
tastasis progression, we focused our analysis instead on 
combinatorial manipulation of multiple proteins of the 
same functional class on our list of candidates. Thus, 
we sought to investigate the combinatorial role of (1) 
PLOD2 and COL6A1, (2) CST1, CST2, and CST4, and 
(3) PLAT and PLAU in bone metastasis. Here we chose 
overexpression rather than knockdown due to the option 
of stably manipulating the expression of multiple genes 
simultaneously with relative ease. Furthermore, we sus-
pected significant functional redundancy among proteins 
in the bone metastasis secretome, and gain of function (i.e. 
overexpression) phenotypes are less likely to be affected 
by redundancy than loss of function (i.e. knockdown) 
phenotypes are. Accordingly, stable, retrovirus-based 
overexpression of each of the seven selected genes was 
performed, individually at first, and anywhere between 
moderate (approximately four-fold) and extremely high 
(> 100-fold) stable ovexpression was achieved for each 
gene in SCP28 cells (Figure 5E). Next, we pooled the 
appropriate combinations of high-titer retrovirus and 
combinatorially infected SCP28 cells to make stable cell 
lines overexpressing either (1) PLOD2 and COL6A1, 
(2) CST1, CST2, and CST4, (3) PLAT and PLAU, or (4) 
vector (control). While we were not able to drug select 
these lines for overexperssion of individual genes, as all 
constructs had the same resistance marker gene, we in-
fected with very high titer, cultured the cells in vitro for 
approximately one month (approaching the duration of 
an in vivo experimental bone metastasis experiment), and 
then tested for maintenance of overexpression. We found 
that high expression of all constructs (comparable to 
levels observed in individually drug-selected overexpres-
sion cell lines) was indeed maintained (Figure 5F). We 
then used these three combinatorial overexpression cell 
lines, as well as control cells, for intracardiac injection 
of nude mice followed by quantification of bone meta-
static burden via BLI over six weeks. In stark contrast to 
the results with manipulation of individual genes, here 
we observed that overexpression of each combination 
of secreted proteins led to significant increases in bone 
metastasis as compared to the control cell line (Figure 
6A and 6B), thus confirming these BMSS proteins as 
novel mediators of bone metastasis. The strongest bone 
metastasis phenotype was observed in the SCP28-CST1-
CST2-CST4 cell line, with a nearly five-fold increase in 
bone metastatic burden being observed at day 15, and 
no less than a two-fold increase being observed at any 

other time points. Interestingly, the kinetics of bone me-
tastasis progression varied across these cell lines. The 
SCP28-COL6A1-PLOD2 and SCP28-CST1-CST2-CST4 
overexpressing cell lines had marked increases in bone 
metastasis at the first time point, and these increases 
were for the most part maintained over the course of 
the experiment. In contrast, the SCP28-PLAT-PLAU 
cell line behaved similarly to control cells until the later 
stages of the experiment, at which point outgrowth of 
SCP28-PLAT-PLAU bone metastatic lesions proceeded 
more rapidly than the control cells. All cell lines over-
expressing candidate bone metastasis proteins showed 
an increased number and severity of bone metastatic le-
sions by X-ray as compared to control cells (Figure 6C). 
For histological analyses, we performed TRAP (tartrate-
resistant acid phosphatase) staining to identify metastatic 
lesion-associated differentiated osteoclasts, as osteolytic 
metastases often promote osteoclast activity in the bone 
tissue. In all cases we observed large bone macrometasta-
ses with many TRAP-positive, differentiated osteoclasts 
in close proximity, although no statistically significant 
differences in TRAP-positive cell numbers were ob-
served between the different experimental groups (Figure 
6D). In conclusion, these experiments have validated the 
role of the salivary cystatins CST1, CST2, and CST4, the 
collagen functionality proteins PLOD2 and COL6A1, 
and plasminogen activators PLAT and PLAU in promot-
ing bone metastasis in vivo.

Discussion

Proteome-level methodology provides significant 
advantages over more traditional genomic and tran-
scriptomic analyses. While it is possible to approximate 
the abundance of proteins in the secreted fraction from 
microarray data [45], extrapolating proteomic data from 
transcriptomic data is problematic due to the prevalence 
of post transcriptional regulation, especially in the con-
text of secreted proteins. In particular, our study has 
demonstrated that, in the secreted protein fraction, quan-
titative protein and mRNA measurements only loosely 
correlate, thus highlighting the importance of protein-
level investigations. Therefore, with the maturation of 
proteomics technologies, secretome analysis has emerged 
as an attractive method for discovery of novel biomark-
ers and potential therapeutic targets. 

While the earliest secretome analyses were performed 
in bacteria [46], investigations into the mammalian se-
cretome have also become prevalent. The first cancer 
secretome analysis identified 145 proteins that were 
differentially expressed between tumorigenic and non-
tumorigenic pancreatic epithelial cells, and the first 
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metastasis secretome study found 27 secreted proteins 
to be differentially expressed between metastatic and 
non-metastatic variants of the MDA-MB-435 melanoma 
cancer cell line [47]. The first breast cancer metastasis 
secretome study profiled the secretomes of the MCF10A 
metastasis progression series, finding proteins such as 
alpha-1-antichymotrypsin and galectin-3-binding pro-
tein to be upregulated in conditioned media from the 
metastatic variants [48]. More recently, many secretome 
analyses of cell lines representing several different can-
cer types have been reported [8, 30-40]. Most secretome 
studies have used methodology similar to ours in terms 
of initial protein harvesting conditions and then have typ-
ically used either concentrating columns or total protein 
precipitation methods for secreted protein isolation. The 
most common downstream fractionation methods include 
either 1D or 2D gel electrophoresis of proteins or SCX 
of peptides. Ultimately, as also found in our analyses, 
cell line-based secretome approaches commonly report 
identification of between one to several hundred proteins 
in conditioned media, with between 20 and 40 percent 
predicted to be secreted. 

All secretome studies have faced the challenge of im-
plementing bioinformatics-based filters to remove from 
their analyses all non-secreted proteins (from ruptured, 
apoptotic cells) identified in the conditioned media of 
cell lines. Such methodology typically involves interro-
gating either primary sequence-based secretory pathway 
prediction algorithms, or curated, empirical subcellular 
localization databases (or a combination of both ap-
proaches). Neither method is fully accurate – targeting to 
the secretory pathway may not in fact lead to secretion, 
and, conversely, lack of empirical observation of extra-
cellular localization does not preclude secretion. Here 
we considered proteins to be secreted if they were either 
predicted by sequence or observed by observation to be 
secreted. Thus, we aimed to reduce false negatives, as we 
had downstream biological and clinical filters to further 
enrich for proteins of high interest.

Mass spectrometry-based proteomics studies also 
face the question of whether and how to quantify protein 
abundance. Here we have performed both label-free, 
non-quantitative analyses as well as quantitative SILAC-
based analyses. The former approach was utilized for 
several secretomic analyses due to its high time and cost 
efficiency; the latter approach was used for three selected 
high interest comparisons. Non-quantitative methodol-
ogy provides a natural, simple cutoff – the limit of detec-
tion – for determining differential abundance of a protein 
between samples of interest. However, this relatively 
arbitrary cutoff can give rise to both false positives and 
negatives. Quantitative, SILAC-based proteomic ap-

proaches do not feature this arbitrary cutoff, and will thus 
determine a larger number of differentially expressed 
proteins (depending on the fold-change threshold used 
for significance). In both analyses, however, only rela-
tively abundant proteins will be identified when using 
standard fractionation approaches. Interestingly, in our 
hands, SCX fractionation of peptides (i.e. MudPIT [49]), 
as used for SILAC-based analyses, allowed for identifi-
cation of greater numbers of proteins than did fraction-
ation of proteins via 1D gel electrophoresis. 

In this study, we have presented what is, to our knowl-
edge, the first analysis of the bone metastasis secretome. 
Using both quantitative and non-quantitative proteomics 
approaches, we have globally profiled the secreted pro-
tein fraction from a total of nine cell lines of relevance 
to bone metastasis spanning two species (mouse and 
human) and two cancer types (breast and bladder). In 
general, significant overlap at the pathway level was 
observed between the BMSSs from the three different 
cell line families profiled. Pathways and proteins with 
MFs related to bone biology and bone metastasis were 
overrepresented in all BMSSs, and global enrichment 
of the BMSSs in clinical bone metastasis datasets was 
observed. Thus, we conclude that the identified BMSSs 
are each appropriately reflecting protein-level changes 
pertinent to bone metastasis in the secreted fraction. 
We further observed, however, less overlap among the 
BMSSs at the level of individual proteins. We therefore 
hypothesize that general secreted protein pathways and 
mechanisms underlying bone metastasis are conserved 
across mouse and humans and breast and bladder cancer, 
but that the specific proteins mediating this process do 
vary significantly by species and cancer type. 

In choosing to evaluate candidate novel bone me-
tastasis proteins, we first considered clinically relevant 
proteins that were consistently upregulated in cross spe-
cies and/or cross cancer BMSSs. However, we also con-
sidered the most intriguing candidates that were specific 
to the MDA231 (human breast cancer) BMSS, as our 
focus is on human disease and as the MDA231 organo-
tropic metastatic derivatives are the most widely used 
and well-validated system for functional bone metastasis 
investigations. Our initial finding, that genetic alteration 
of a single secreted protein was typically insufficient 
to significantly affect bone metastatic progression, was 
not unexpected, as bone metastasis is considered to be 
a multigenic phenotype [23]. Thus, we chose to focus 
our analysis on classes of functionally related, clinically 
relevant proteins identified in the three BMSSs. Specifi-
cally, we have shown that combinatorial overexpres-
sion of the following groups of proteins significantly 
promoted experimental bone metastasis progression, 
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thus confirming them as novel secreted mediators of 
bone metastasis: (1) two collagen functionality proteins 
(PLOD2 and COL6A1); (2) two plasminogen activators 
(PLAT and PLAU); and (3) three salivary cystatin family 
members (CST1, CST2, and CST4). We note that there is 
considerable evidence that the observed co-overexpres-
sion of these proteins in cell line-based bone metastasis 
models is conserved in the clinical context. For example, 
the three Cystatin genes investigated have very tightly 
correlated gene expression patterns in MSK82 clinical 
samples [44], ranging from r = 0.61 (P = 7.5 × 10−10) to r 
= 0.74 (P = 1.3 × 10−15) which may in part be due to the 
fact that these genes arose from duplication events and 
share highly similar promoter regions. In this dataset, 
COL6A1 and PLOD2 also show evidence of co-overex-
pression, as the pearson correlation coefficient of their 
gene expression patterns is r = 0.21 (P = 0.055). The ex-
pression patterns of PLAT and PLAU are also positively 
correlated in this dataset, although the data do not reach 
statistical significance. However, investigating the larger 
NKI295 dataset [50] (n = 295 patients), the pearson cor-
relation coefficient of PLAT and PLAU gene expression 
patterns is statistically significant, at r = 0.13 (P = 0.028). 
Thus, the synergistic pro-metastatic effect of BMSS pro-
tein combinations that we observed in our mouse model 
studies may also occur in clinical bone metastasis.

Of considerable biological and therapeutic interest 
now are the mechanisms by which these secreted pro-
teins facilitate bone metastasis. Collagen is crucial to 
the bone matrix, but the most common bone collagen 
is Collagen type 1, with far less being known about 
COL6A1, though its mutations are linked to muscular-
skeletal defects such as Bethlam myopathy and Ulrich 
Congentical Muscular Distrophy [51-54]. Interestingly, 
a recent secretome analysis identified COL6A1 as a 
strongly upregulated protein in the conditioned media of 
metastatic, as compared to non-metastatic lung cancer 
cell lines [55]. PLOD2 hydroxylates collagen-like pep-
tides, leading to their increased crosslinking potential. 
Little mechanistic work has been reported on the effect 
of PLOD2-based crosslinking in bone tissue; however, 
mutations in PLOD2 are the cause of Bruck syndrome, a 
congenital osteogenesis-imperfecta-like skeletal disorder 
caused by insufficient/improper collagen crosslinking 
[41]. Notably, high extracellular matrix (ECM) tension 
and stiffness, which is affected by the amount and type of 
crosslinked collagen polymers, has recently been shown 
to have a powerful impact on metastasis [56] as well as 
the differentiation of mesenchymal stem cells into the 
osteoblast lineage [57]. Thus, it is possible that PLOD2 
and COL6A1-overexpressing cancer cells could be influ-
encing the local bone ECM so as to alter the normal bone 

homeostasis, and to in turn foster a bone microenviron-
ment hospitable for survival and progression of metastat-
ic lesions. Interstingly, Lysyl Oxidase (LOX), a different 
collagen-modifying enzyme that also increases collagen 
crosslinking, has also been shown to influence metas-
tastic progression. High expression of LOX – either by 
stromal cells [56] or by cancer cells [58] – dramatically 
promotes local and distant metastasis in breast cancer. 
Thus, it is possible that increased local ECM stiffness – 
whether achieved via PLOD2 or LOX – can be viewed as 
a general mechanism for promoting cancer cell invasion 
and colonization in multiple tissue microenvironments. 

PLAT and PLAU are serine proteases which activate 
plasmin and allow it to degrade ECM components such 
as fibronectin and laminin, and activate zymogen-state 
MMPs. While PLAT and PLAU have been implicated 
in osteoclast-mediated bone resorption [59, 60], cancer 
cells are not thought to be able to directly resorb bone. 
Thus, whether tumor cell-derived PLAT/PLAU can en-
hance bone resporption indirectly remains to be seen. A 
further question is whether PLAT and PLAU function 
redundantly or have unique roles in promoting bone me-
tastasis. The salivary cystatins – CST1, CST2, and CST4 
– are perhaps the most surprising of the identified novel 
mediators of bone metastasis. Cystatins are cysteine pro-
tease inhibitors, with cystatin-C (CST3) potently inhibit-
ing pro-metastatic Cathepsin B [61] and thus being con-
sidered to be a potential metastasis suppressor. The sali-
vary cystatins, however, have not been shown to strongly 
antagonize Cathepsin B [62], and instead have been 
hypothesized to function in salivary glands as inhibitors 
of harmful proteinases expressed by pathogens [63]. Ad-
ditionally, the salivary cystatins have been suggested to 
have high affinity for hydroxyapatite, the main mineral-
ized component of bone tissue [64]. Thus, whether sali-
vary cystatin production functions in bone metastasis via 
facilitating evasion of the immune system, or homing to 
the bone tissue, or by a different mechanism altogether, 
remains to be determined. 

Finally, it is also of interest to determine the in vivo 
source of production of these secreted proteins of inter-
est. Here we have profiled tumor cell line conditioned 
media in vitro, but we envision the possibility that, in 
vivo, production of pro-bone metastatic secreted proteins 
could be achieved by either tumor or tumor-associated 
stromal cells, as secreted proteins are accessible to all 
cells in proximity to the secretion source. Thus, it would 
be interesting to determine whether knockout mice lack-
ing key secreted bone metastasis proteins would have 
reduced bone metastatic burdens in in vivo bone metas-
tasis assays due to deficiencies in the stromally-produced 
protein of interest. 
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Overall, we have aimed to present an analysis that has 
not only identified novel mediators of bone metastasis, 
but also has implications for the treatment of clinical 
bone metastasis. In general, proteins identified by secre-
tome studies have two main potential clinical applica-
tions: (1) biomarker identification, and (2) candidate 
therapeutic target identification. Here we have provided 
groundwork that can be used by future studies to deter-
mine whether several of the novel bone metastasis pro-
teins identified herein can be further developed as novel 
biomarkers and therapeutic targets for bone metastasis.

Materials and Methods

Cell culture and conditioned media preparation
All cell lines were maintained in Dulbecco’s modified Eagle’s 

medium (DMEM) supplemented with 10% Fetal Bovine Serum, 
fungizone, and antibiotics unless otherwise noted. H29 cells were 
cultured with doxycycline when not actively producing virus. For 
quantitative SILAC labeling analyses, matched pairs of highly or 
lowly bone metastatic cell lines were cultured in DMEM without 
arginine or lysine supplemented with 10% dialyzed FBS (Invit-
rogen) and either normal or heavy arginine (13C6, 15N4; +10 
Da) (Thermo Scientific Pierce) and lysine (13C6, 15N2; +8 Da) 
(Sigma). After 10 days of culture, cells were counted and equal 
numbers of cells were split to 15 cm dishes at roughly 50% conflu-
ence. Once cell lines reached ~70% confluence, two 15-cm dishes 
of each cell line were washed 3 times with PBS to remove serum 
proteins and incubated for 24 h in 15 ml of serum-free DMEM. 
Conditioned media was then removed, mixed (SILAC protocol 
only), filtered with 0.45 µm filters, and maximally concentrated (75 
to 100-fold) via room temperature centrifugation at 4 000 RPM in 
3 kDa molecular weight cutoff concentrating columns (Millipore). 
Concentrated conditioned media samples were stored at −80° until 
processing for mass spectrometry. For non-quantitative analyses, 
the procedure was carried out in the same fashion but with regular 
complete media and with samples processed separately, in parallel 
throughout (i.e. conditioned media were never mixed).

Sample preparation and mass spectrometry
For non-quantitative mass spectrometry preparation and analy-

sis, samples were prepared as previously described [65]. Briefly, 
concentrated conditioned media samples were run on a 10% SDS-
polyacrlymide gels and cut into 10 gel slices per sample spanning 
approximately the entire molecular weight range. Solubilized gel 
slices were treated with dithiothreitol (DTT) and 55 mM iodoac-
etamide prior to in-gel digestion with sequencing grade trypsin 
at a 20:1 protein:enzyme ratio for 12 h at room temperature [66]. 
All peptide digests were desalted using homemade C18 STAGE 
tips [67] and diluted in 10 µl of 0.1% acetic acid for MS analysis. 
For quantitative (SILAC-based) mass spectrometry preparation, 
samples were treated with DTT and iodoacetamide and subjected 
to in-solution trypsin digest overnight prior to desalting and subse-
quent SCX fractionation as described previously [68].

Mass spectrometry for non-quantitative samples was performed 
as previously described [65]. Briefly, nanoflow liquid chromatog-
raphy tandem mass spectrometry (LC-MS/MS) was performed on 

a hybrid linear quadrupole ion trap-Orbitrap mass spectrometer 
(Thermo Electron, San Jose, CA) coupled to an Agilent 1200 Se-
ries binary HPLC pump (Agilent Technologies, Palo Alto, CA) 
and an Eksigent AS2 autosampler (Eksigent Technologies). Pep-
tides samples (2 µl) were loaded via autosampler on 75-µm inner 
diameter-fused silica capillary columns constructed with an inte-
grated electrospray tip that was packed with C18 reversed phase 
resin (Magic C18, 5-µm particles, 200-Å pore size; Michrom 
BioResources, Auburn, CA). Peptides were separated by reversed 
phase liquid chromatography using a gradient of Buffer A (0.1 M 
acetic acid) and Buffer B (70 acetonitrile in 0.1 M acetic acid) at a 
flow rate of ~200 nl/min for 70 min. The Orbitrap instrument was 
operated in data-dependent mode using a resolution setting of 30 
000 to obtain a full MS spectrum followed by 10 MS/MS spectra 
obtained in the ion trap. Peptides selected for MS/MS interrogation 
were then placed on an exclusion list for 30 s to limit duplicate 
spectra. The MS scans were collected with an automatic gain con-
trol target value of 5 × 105 and maximum injection time of 100 ms 
over a mass range of 300-1 650 m/z. MS/MS scans were collected 
using an automatic gain control value of 4 × 104 and a threshold 
energy of 35% for collision-activated dissociation.

For quantitative (SILAC-based) analyses, mass spectrometry 
was performed as previously described [68]. Briefly, capillary 
nano LC-MS/MS of each SCX fraction was performed using an 
LTQ-Oribitrap hybrid mass spectromteter interfaced with an Eksi-
gent nano HPLC system. Samples were loaded onto a silica micro-
capillary C18 resin using an Eksigent autosampler. Samples were 
separated over a three-hour gradient run at a 300 nl/min flow rate. 
The data-dependent MS/MS scans were done using the top seven 
most abundant ions and collision-induced dissociation (CID) for 
fragmentation. 

Mass spectrometry data analysis
Non-quantitative mass spectrometry data were analyzed as 

previously described [65]. Briefly, all MS/MS spectra were pro-
cessed through the Bioworks 2.0 program utilizing the Sequest 
algorithm. Parameters for MS/MS database searching included a 
precursor tolerance of 0.1 Da and fragment tolerance of 0.5 Da. 
Searches were performed using the appropriate enzyme (with up 
to 3 missed cleavages). A static modification of 57 Da for cysteine 
iodoacetamide treatment and a dynamic modification of 16 Da 
for methionine oxidation were used in the database searches. The 
Scaffold program (version Scaffold_2.1.03, Proteome Software 
Inc., Portland, OR) was used to validate MS/MS-based peptide 
and protein identifications. Peptide identifications were accepted 
at greater than 95% probability as specified by the Peptide Prophet 
algorithm [69] or better than 0.01 peptide probability by the Se-
quest algorithm. False discovery rates were estimated to be 1% by 
searching a reverse database as previously described [70]

Quantitative (SILAC-based) mass spectrometry was performed 
as previously described [68, 71]. Briefly, Arg-10 and Lys-8 labeled 
peptides were quantified using area under extracted ion chromato-
grams (XICs). XICs were found and paired using the previously 
described methods [71]. The ratio of the areas under the paired 
XICs was reported as the ratio between heavy and light versions 
of peptides. MS/MS spectra were searched using IPI version 3.59 
mouse protein sequence database for the 4T1 vs. 4T1.2 compari-
son and the IPI version 3.62 human protein sequence database for 
the MB-231 vs. 1833 and TSU vs. TSU-B2 comparisons. MS/MS 
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database search and quantification were conducted using a 10 ppm 
precursor mass window using publicly accessible and open source 
software PVIEW (http://compbio.cs.princeton.edu/pview). Up to 
one missed cleavage was allowed for database search. MS/MS 
spectra were assigned an amino acid sequence using a high con-
fidence < 1% false discovery rate (FDR). For proteins quantified 
by multiple peptides, the median ratio of all of the peptides was 
assigned to the protein. Protein expression ratios were normalized 
using all detected XIC pairs so the median of their logarithm was 
zero, correcting for any unequal loading of light and heavy sample.

Cloning
All genes to be overexpressed were PCR amplified from cDNA 

and inserted into the pRVPTOpuro retroviral plasmid using either 
5′BamHI and 3′ EcoRI (for COL6A1, and SRGN), 5′ HindIII and 
3′ Not1 (for PLOD2, PLAT, CST1, CST2, and CST4), or 5′ HindIII 
and 3′ Xho1 (PLAU).

Generation of stable cell lines
Stable shRNA-mediated knockdown was achieved with the 

pSuper-Retro system (OligoEngine) targeting the sequences 
5′-GCTGTGTCTTACTAGAAA-3′, 5′-GCAAGTGTCCTTAAGT-
CAA-3′, and 5′-CGAAAGTGATGCTTTCCAT-3′ for COL6A1, 
PLOD2, and SRGN, respectively. Stable overexpression of all 
genes was achieved using pRVPTOpuro retroviruses. Retroviral 
vectors were transfected into the packaging cell line H29. After 48 
h viruses were collected, filtered, concentrated, and used to infect 
target cells in the presence of 5 µg/ml polybrene. The infected 
cells were selected with 0.8 µg/ml puromycin or 0.5 mg/ml hygro-
mycin. In the case of combinatorial overexpression, concentrated 
virus was mixed and cells were not subjected to puromycin selec-
tion.

Western blot
For western blot analysis, either IP or whole cell lysate samples 

were subjected to SDS-PAGE and subsequently transferred to Im-
mobilon PVDF membranes (Millipore). Membranes were blocked 
in 5% milk for two hours prior to primary antibody incubation 
for two hours (antibody was diluted 1:1 000 in 5% milk). Human 
anti-COL6A1 (Santa Cruz SC 20649) was used. Coomassie blue 
staining of the membrane was used to assess equal loading of con-
ditioned media samples. 

Statistics and bioinformatics
In considering whether proteins identified by mass spectrom-

etry of conditioned media should in fact be considered secreted, 
amino acid sequences from all proteins identified were first sub-
mitted to the SignalP 3.0 server online database [26, 27] to identify 
predicted cleavable signal peptides. Submissions were searched 
within the eukaryotes organism group using the hidden Markov 
models method, and sequences scoring positive by the SignalP 
D-score within the N-terminal 70 amino acids were considered 
to be secretory-predicted. Secondly, all identified proteins were 
searched via the DAVID v. 6.7 [28, 29] website for GO cellular 
compartment (i.e. subcellular localization) annotations, and all any 
proteins annotated as being extracellular were considered to be 
secreted, even if they were not predicted as such by SignalP.

GSEA v2.0 [42, 72] was used to determine enrichment of bone 
metastasis signatures in normalized microarray data of published 

experimental and clinical datasets [23, 44, 50, 73]. Clinical data-
sets were separated into two phenotypes for GSEA: those who 
developed bone metastasis and those who did not develop any 
metastasis, according to clinical, site-specific metastasis annota-
tions [74]. For gene list ranking, multiple probe matches for the 
same gene were collapsed into one value, with the highest probe 
reading being used in each case. Only probes with matches to gene 
symbols were used. Genes were ranked using the provided signal-
to-noise ranking statistic and GSEA was run using a weighted 
statistic and evaluated for statistical significance by comparison 
to results obtained using 1 000 random permutations of each gene 
set. For all other GSEA parameters, default settings were used.

For GO enrichment analysis, bone metastasis signature genes 
were loaded into the DAVID v. 6.7 [28, 29] website and submitted 
to the functional annotation tool. MF and Biological Function on-
tological databases were interrogated. For I P A (Ingenuity® Sys-
tems, www.ingenuity.com), signatures were loaded and analyzed 
according to default settings, with indirect network connections 
not being included. 

For clinical dataset survival analyses, association between gene 
expression and bone metastasis was assessed by univariate Cox 
proportional hazards models or by Kaplan-Meier plotting followed 
by significance evaluation via log-rank test. In both cases, only pa-
tients having either bone metastases only (i.e. without concomitant 
metastases at other organs) or no metastasis at all were considered. 
For association between gene expression and non-site-specific me-
tastasis, all patients – metastatic or non-metastatic – were consid-
ered and evaluated via univariate Cox proportional hazards models 
or via Kaplan-Meier plotting using the online KM-Plotter database 
[75].

For other statistical analyses, results were reported as average 
± S.E. Two-sided independent Student′s t tests without equal vari-
ance assumption or were performed to analyze the data with P < 
0.05 considered as statistically significant. 

Tumor xenografts, bioluminescence, radiographic, and his-
tological analyses

All animal work was performed in accordance with the guide-
lines of the Institutional Animal Care and Use Committee of 
Princeton University under approved protocols. 1 × 105 cells were 
washed in PBS and injected intracardiac into female athymic Ncr-
nu/nu mice to study bone metastasis activity as described previ-
ously [23]. Noninvasive bioluminescent imaging was performed to 
quantify the metastasis burden in using an IVIS 200 Imaging Sys-
tem (Caliper Life Sciences). Analysis was performed with Living 
Image software (Xenogen) by measuring photon flux of the region 
of interest. Data were normalized to the signal obtained immedi-
ately after injection (Day 1). X-Rays were obtained using 35 kV 
for 15 s. Bone isolation, fixation, decalcification, and subsequent 
TRAP staining was performed as previously described [76].

Reverse transcription and quantitative PCR
Total RNA was isolated using the RNeasy kit (Qiagen) and 

reverse-transcribed with the Superscript III kit (Invitrogen) fol-
lowing the manufacturer’s instructions. Quantitative PCR was 
performed using the SYBR Green PCR Master Mix (Applied 
Biosystems) with the ABI Prism 7900HT thermocycler (Applied 
Biosystems). The following primers were used for q-PCR: hSRGN 
forward: 5′-GGCTTGTCCTGGCTCTTGCCC-3′, reverse: 5′-TT-



www.cell-research.com | Cell Research

Mario Andres Blanco et al.
1353

npg

GGTACCTGGCTCTCCGCGT-3′; hCOL6A1 forward: 5′-CAGG-
GACCCCCAGGACACCAA-3′; reverse: 5′-GGCCGCACTTG-
CATTCACAGC-3′; hPLOD2 forward: 5′-GCGTTCTCTTCGTC-
CTCATCA-3′, reverse: 5′-TGAAGCTCCAGCCTTTTCGTG-3′; 
hCST1 forward: 5′-GCGGGTACTAAGAGCCAGGCAACA-3′, 
reverse: 5′-GCACAGGTGTCCAAGTTGGGCTG-3′; hCST2 
forward: 5′-CCTGCTGCGGGTGCTACGAG-3′, reverse: 5′-GCA-
CAGGTGTCCAAGTTGGGCT-3′; hCST4 forward: 5′-CCGCT-
GCAGGTGCTGCGAG-3′, reverse: 5′-ATGGTGCGGCCCAC-
CTCTACG-3′; hPLAT forward: 5′-TTCGTTTCGCCCAGCCA-
GGAA-3′, reverse: 5′-GCGCAGCCATGACTGATGTTGCT-3′; 
hPLAU forward: 5′-TCGTGAGCGACTCCAAAGGCA-3′, 
reverse: 5′-GGCAGTTGCACCAGTGAATGTTGG-3′; hGAPDH 
forward: 5′-GAAGGTGAAGGTCGGAGTC-3′, reverse: 5′-GAA-
GATGGTGATGGGATTTC-3′; mSRGN forward: 5′-TCCTG-
GCTCTCGCCTTCGTCC-3′, reverse: 5′-TTCGGTTTGCAGCG-
GACCCAC-3′; mCOL6A1 forward: 5′-CACCTACACCGACT-
GCGCCAT-3′, reverse: 5′-CCCGTCGGTCACCACGATCAA-3′; 
mPLOD2 forward: 5′-GCGGCTGGCAGACAAGTACCC-3′, re-
verse: 5′-AGACGGCTGATGTACGGGGCA-3′; mPLAT forward: 
5′-ATGCTGTGCGCTGGAGACACC-3′, reverse: 5′-ATGCA-
CACCAGAGGGCCTCCC-3′; mPLAU forward: 5′-GTGTGCT-
GCGGACCCAGAGTG-3′, reverse: 5′-CTCAGAGTTGGGCG-
GCCTTCG-3′; mGAPDH forward: 5′-TCCCACTCTTCCAC-
CTTCGATGC-3′, reverse: 5′-GGGTCTGGGATGGAAGTGGT-
GAGG-3′.
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