
REVIEW

Determinants of public T cell responses
Hanjie Li1, Congting Ye2, Guoli Ji2, Jiahuai Han1

1State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China; 
2Department of Automation, Xiamen University, Xiamen, Fujian 361005, China

Correspondence: Jiahuai Han
E-mail: jhan@xmu.edu.cn

Historically, sharing T cell receptors (TCRs) between individuals has been speculated to be impossible, consider-
ing the dramatic discrepancy between the potential enormity of the TCR repertoire and the limited number of T cells 
generated in each individual. However, public T cell response, in which multiple individuals share identical TCRs in 
responding to a same antigenic epitope, has been extensively observed in a variety of immune responses across many 
species. Public T cell responses enable individuals within a population to generate similar antigen-specific TCRs 
against certain ubiquitous pathogens, leading to favorable biological outcomes. However, the relatively concentrated 
feature of TCR repertoire may limit T cell response in a population to some other pathogens. It could be a great ben-
efit for human health if public T cell responses can be manipulated. Therefore, the mechanistic insight of public TCR 
generation is important to know. Recently, high-throughput DNA sequencing has revolutionized the study of immune 
receptor repertoires, which allows a much better understanding of the factors that determine the overlap of TCR 
repertoire among individuals. Here, we summarize the current knowledge on public T-cell response and discuss fu-
ture challenges in this field.
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Introduction

Adaptive T cell immunity depends on a pool of di-
verse T cell receptors (TCRs) that enable the host to 
mount specific T cell responses against an enormous ar-
ray of antigenic peptides presented by class I and class 
II major histocompatibility complex (MHC) molecules 
[1]. Antigen-specific T cell responses are characterized 
by cells expressing biased profiles of T cell receptors that 
are selected from a diverse, naive repertoire. In most T 
cell responses, the TCR repertoires responding to a par-
ticular antigenic epitope are distinct between individuals. 
The immune response to a specific epitope involving 
predominantly T cells bearing TCRs that are rarely ob-
served in multiple individuals is thus called private T cell 
response. In contrast, some other antigen-specific TCR 
repertoires consist of TCRs that are frequently observed 
in multiple individuals (public T cell response). Although 
it is often seen as an unusual phenomenon, public TCRs 
have been described in a variety of immune responses, 

including infectious diseases, malignancy and autoim-
munity (Table 1 and [25]).

The first observation of public TCR came from a 
study of HLA-B*0801-restricted CD8+ T cell clones 
specific for the EBV EBNA-3A339−347 peptide, wherein 
the shared TCR expressed a residue-identical TRBV7-
6/TRBJ2-7/TRAV26-2/TRAJ52 among four randomly 
selected individuals [2]. Since then, many observations 
of public TCRs in a variety of infectious diseases (Table 
1), including human cytomegalovirus [3-4], parvovirus 
B19 [5], Clostridium tetani [6], Herpes simplex virus [7], 
and HIV [8-10], have been reported. The involvement of 
public TCRs in malignancy was also observed in tumor-
associated antigen-specific T cells from melanoma [11-
15], synovial sarcoma and prostate cancer [16-17] (Table 
1). Public TCRs also occurred in autoimmune diseases 
such as multiple sclerosis [18], reactive arthritis [9], 
aplastic anemia [20], psoriasis vulgaris [21], systemic 
sclerosis [22], sarcoidosis [23], and rheumatoid arthritis 
[24] (Table 1). In addition, examples of public TCRs 
were extensively observed in non-human primates and 
mice [25]. Notably, public TCRs were shown to lead to 
favorable biological outcomes in acute SIV infection 
[26]. Studies of HIV-infected individuals with a long-
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term non-progressive disease have also revealed shared 
TCRs that display effective cross-recognition of epitope 
variants [9, 27-29]. However, public TCR usage among 
individuals has also been reported to facilitate viral im-
mune escape [30]. Therefore, although public TCR is 
widespread within pathogen-specific T cell response, its 
relative benefits and drawbacks are yet to be fully defined 
[25]. Given the frequent occurrences of public TCRs in 
those immune responses, understanding the cause and 
the role of public T cell responses can be useful for the 
development of vaccines of infectious disease, and per-
haps even therapeutic intervention for autoimmune and 
malignant diseases [25].

The prerequisite for public T cell response is the shar-
ing of TCRs in naïve T cell repertoire among different 
individuals. Indeed, a large degree of overlap has been 
observed between the naïve TCR repertoires in inbred 
mice [31, 32] and humans [33, 34]. This phenomenon 
of TCR sharing within the naïve T-cell pool of multiple 
individuals provides the molecular basis for public T cell 
responses, enabling epitope-specific clonotype selection 
based on optimal TCR recognition operating on a partial-
ly common platform [35-37]. In the following sections, 

we discuss the determinants of the overlap of naïve TCR 
repertoire, which lays the foundation for public T cell re-
sponse.

Public T cell responses rely on shared TCRs gener-
ated in initial recombination

Public T cell responses depend on mature naïve T 
cells from different individuals that bear the same TCRs. 
These T cells could be favorably selected during T-cell 
development, commonly produced during initial re-
combination, or both. Several mechanisms have been 
proposed to generate public T cell responses, including a 
structure-based interaction between TCR and pMHC [35, 
36] and biases during thymic selection. Since there won’t 
be any public T cell response if no TCRs are shared 
among individuals, identical TCRs must be generated 
during initial recombination. Indeed, studies have shown 
extensive overlaps in TCR repertoires of CD4+CD8+ (DP) 
thymocytes and naïve T cells. Because the characteris-
tics of the TCR repertoires in DP thymocytes and naïve 
T cells are very similar, thymic selection seems to play 
a minor role in determining the shared TCRs among in-

Table 1 Examples of public TCRs in humans
Disease                             Antigen                            MHC involved           TRBV               TRBJ               TRAV               TRAJ      References
Infectious diseases       
Epstein-Barr virus  EBNA 3A339–347 B*0801 7-6 2-7 26-2 52 2
Cytomegalovirus    IE1316–324 A*0201 5-1 1-3 unknown unknown 3
Cytomegalovirus    pp65103–114 B*3508 28 2-7 8-6 30 4
Parvovirus B19     NS1572–580 A*2402 5-1 2-1 unknown unknown 5
Clostridium tetani     Tetanus toxin DRB1*0301 5-4 2-3 41 unknown 6
Herpes simplex virus      Virion protein 2249–57 B*0702 10 2-1 8-1 27 7
HIV     Gag162–172 B*5701 19 1-2 5 13 8-10
Malignancy        
Melanoma     Melan-A26–35 A*0201 27 2-1 12 34/45 11-15
Cancer (multiple)     NY-ESO-1157–165 A*0201 12-3 2-1 17 31 16-17
Autoimmunity        
Multiple sclerosis     MBP83–99 DRB1*1501 6-5 2-7 23 10 18
Reactive arthritis     Unknown self-antigen B*2701 9 2-3 unknown unknown 19
Aplastic anemia     Unknown self-antigen DRB1*1501 5 2-1 unknown unknown 20
Psoriasis vulgaris    Unknown self-antigen Unknown 3 2-7 unknown unknown 21
Systemic sclerosis     DNA topoisomerase I class-II 30 1-1 unknown unknown 22
Sarcoidosis    Unknown self-antigen DR3 or DQ2 unknown unknown 12-1 15 23
Rheumatoid arthritis     Unknown self-antigen DRB1*0701 27 2-7 22 1 24
   14 2-1/2-7 unknown unknown 
Abbreviations: TRBV, β-variable TCR gene; TRBJ, β-joining TCR gene; TRAV, α-variable TCR gene; TRAJ, α-joining TCR gene; EBNA, 
Epstein-Barr virus nuclear antigen; HIV, human immunodeficiency virus; IE, immediate early; MBP, myelin basic protein; MHC, major 
histocompatibility complex. (For more examples of public TCRs, please see [25])
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dividuals; thus the common TCRs provided for public T 
cell responses rely mainly on initial V(D)J recombina-
tion. Despite being considered as a rather random pro-
cess, which could make TCR sharing impossible among 
individuals, V(D)J recombination must possess a large 
measure of constraints in order to exhibit common TCR 
sharing.

How does initial V(D)J recombination determine 
TCR sharing?

The available data suggest that convergent recombina-
tion [37-40] and biases during recombination [33, 37, 41] 
are the major contributors of TCR sharing in TCR rep-
ertoires among individuals. Convergent recombination 
is the process whereby multiple recombination events 
‘converge’ to produce the same nucleotide sequence and 
multiple nucleotide sequences “converge” to encode the 
same amino-acid sequence (Figure 1), which results in 
different TCR sequences to be generated with differential 
frequencies during recombination [37-40]. Recombinato-
rial biases include biased V/D/J gene usage and combi-
nation, bias in the number of nucleotide deletions at the 

coding ends of V/D/J gene segments, bias in the number 
of nucleotide additions and bias in base usage at the V-D/
D-J junctions [33, 37, 41-43]. How those two determi-
nants generate the substantial sharing of TCRs among 
individuals during initial recombination is discussed be-
low.

Convergent recombination
“Convergent recombination” was first proposed as a 

mechanism that drives the sharing of antigen-specific 
TCR between multiple individual mice through statistical 
correlation studies in 2006, wherein 3 400 TCRβ chains 
from inbred mice CD8+ T cells responding to the influ-
enza A virus D(b)NP(366) and D(b)PA(224) epitopes 
were analyzed. The authors found that the sharing of 
both the TCRβ amino-acid and TCRβ nucleotide se-
quences was negatively correlated with the prevalence of 
random nucleotide additions in the sequence. However, 
the extent of TCRβ amino-acid sequence sharing among 
mice was shown to be strongly correlated with the level 
of diversity in the encoding nucleotide sequences, sug-
gesting that a key feature of shared TCRs is that they 
can be made in a variety of ways. Through computer 

Figure 1 The process of convergent recombination proposed by Venturi et al. [38]. Convergent recombination is illustrated for 
the amino-acid sequence SSLGAE within Vβ12-1-Jβ2-3 combination. (A) Gene segments used for the mouse TCR β-chain. (B) 
Multiple recombination mechanisms (involving different contributions from the germline genes and nucleotide additions) can 
produce the same nucleotide sequence agc tct ctg ggt gca gaa. Possible alignments with Vβ12-1 (blue), Dβ1/Dβ2 (red), and 
Jβ2-3 (green) gene segments involving different numbers of nucleotide addition (black) are shown. (C) Twelve unique nucle-
otide sequences can encode an identical amino-acid sequence SSLGAE. 



Determinants of public T cell responses
36

npg

 Cell Research | Vol 22 No 1 | January 2012 

simulation, the authors estimated the relative production 
frequencies and varieties of production mechanisms for 
TCRβ sequences and found strong correlations with the 
sharing of both TCRβ amino-acid sequences and TCRβ 
nucleotide sequences [38]. The same group further con-
firmed the role of convergent recombination in driving 
the sharing of TCR sequences in outbred macaques [39] 
and humans [40]. By analyzing 6 000 TCRβ sequences 
that are specific for the immunodominant Mamu-A*01-
restricted Tat-SL8/TL8 and Gag-CM9 epitopes of SIV 
in 20 outbred rhesus macaques, they observed that the 
spectrum of TCRβ sharing was negatively correlated with 
the minimum number of nucleotide additions required to 
produce the sequences and strongly positively correlated 
with the number of observed nucleotide sequences en-
coding the amino-acid sequences. TCRβ sharing was also 
correlated with the number of times and the variety of 
different ways that the sequences were produced in silico 
via random gene recombination [39]. Analyses on 2 836 
TCRβ sequences from 23 CMV-infected and 10 EBV-
infected individuals yielded similar results [40].

Because convergent recombination predicts that dif-
ferent TCR sequences have differential production fre-
quencies, the clonotypic frequencies of different TCRs 
are thus quite varying. Indeed, this prediction was borne 
out by a recent study on the naive CD8+ TCRβ repertoire 
in mice, showing that TCRβ sequences with convergent 
features were present at higher copy numbers within in-
dividual mice and also shared between individual mice. 
Thus, the clonotypic landscape of naive CD8+ T cell rep-
ertoire is largely determined by convergent recombina-
tion. Similar results in humans confirmed that convergent 
recombination shapes the clonotypic landscape in TCR 
repertoire of the memory and naive T cell pools, as well 
as their interrelationship within and between individuals 
[34]. The role of convergent recombination in shaping 
the intra-individual TCRβ clonotypic landscape and driv-
ing the inter-individual TCRβ sharing was also demon-
strated in DP thymocytes prior to MHC-mediated thymic 
selection (our unpublished data). It must be noted that a 
random convergent recombination process is an insuf-
ficient cause of the large overlap observed in DP TCRβ 
repertoire, indicating involvement of other mechanisms.

Recombinatorial biases
Although convergent recombination yields a statisti-

cally significant prediction about the extent of sharing 
of TCR sequences based on an unbiased, random re-
combination process, less than half of the overlap of DP 
TCRβ nucleotide sequence repertoires could be attributed 
to random convergent recombination (our unpublished 
data). Furthermore, there are TCR sequences that are 

most likely to be produced during random convergent re-
combination, but are present at lower clonotype frequen-
cies and only shared by fewer individuals [32, 38-40] 
(and our unpublished data), indicating preferences during 
recombination. Indeed, biases during recombination have 
been reported by many studies. Recombinatorial biases 
should contribute to the overlap of naïve TCR repertoire 
by preferentially generating a common subset of TCR 
sequences among individuals.

Preferences in the usage frequency and pairing of 
different V/D/J gene segments during TCR rearrange-
ment have been observed extensively. Analyses on 
TCRβ sequences from several variable genes in human 
lymphocytes revealed skewed patterns of Vβ, Dβ, and 
Jβ region usage [44]. It has also been found that Jβ us-
age is not random in human Vβ17 T cell repertoire prior 
to thymic selection [43]. Preferential pairing between 
Vβ genes, Dβ genes, and Jβ genes has also been shown 
[45, 46]. Although biases observed in the post-selection 
repertoire might be undermined by thymic selection, 
most of the biases should represent preferences during 
initial recombination, which are maintained during intra-
thymic selection (as discussed below). Indeed, a study on 
TCRα chains in human T cells demonstrated that the Vα-
Jα recombination in the thymus is not random. The TCRα 
chain diversity in peripheral T lymphocytes mimics the 
same general patterns of rearrangement as observed in 
the thymus, and these patterns appear to be conserved 
among different individuals [47]. In mice, it was also 
found that T-cell receptor Dβ and Jβ gene segment usage 
is not random, but patterned at the time of recombina-
tion. Notably, the relative frequency of gene segment 
usage established during recombination is very similar to 
that found after thymic selection [46]. Moreover, biased 
Vβ usage by human CD4+ and CD8+ T cells in neonatal 
and adult donors is highly correlated between unrelated 
individuals, and the correlation in biased Vβ expression 
patterns between CD4+ and CD8+ T cells can be domi-
nantly determined by germline TCRβ locus factors rather 
than thymic selection [48]. Other observed recombinato-
rial biases include the extent of the removal of nucle-
otides from the germline gene segments and additions 
of specific ‘random’ nucleotides. For example, there are 
differences between the various V and J genes in the 
numbers of nucleotides removed from the 3′ end of the V 
gene segments and the 5′ end of the J gene segments and 
base usage frequency at the N-addition is not random [42, 
43] (and our unpublished data).

Detailed analyses on recombinatorial biases were fa-
cilitated by recent high-throughput sequencings [33, 49-
52] (and our unpublished data), which enable comparison 
between the empirical TCRβ repertoires and the simu-
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lated model being made, so that biases during recombi-
nation could be revealed. A simulated TCRβ repertoire 
should incorporate the effect of random convergent re-
combination, which assumes random nucleotide deletion 
at the coding ends of those germline segments, and ran-
dom nucleotide addition at the junctions within different 
Vβ-Jβ combination. Figure 2A and 2B show the pattern of 
nucleotide deletions at the coding ends differing between 
the empirical and simulated repertoires of DP thymo-
cytes. A skew toward a longer length was also observed 
for Dβ segment in the empirical repertoire compared to 
the simulated repertoire after recombination (Figure 2C). 
Base usage in the simulated repertoire at the junctions 
was dissimilar to that of the empirical repertoire, with 
base C occurring at higher frequencies at the Vβ-Dβ junc-
tion (Figure 2D) and base G at the Dβ-Jβ junction (Figure 
2E) in the experimental repertoire. Furthermore, different 
Vβ and Jβ segments presenting different patterns of nucle-
otide deletion at the coding ends were also observed (our 
unpublished data), confirming a previous study showing 
that nucleotide deletion is influenced by base composi-
tion at the coding ends [42]. In addition, Vβ-Jβ and Dβ-
Jβ combination usage in DP repertoire was not random 

(our unpublished data). Overall, it is clear that TCR 
manufacture is not random. Biases in TCR gene usage 
and association, splicing, and terminal deoxynucleotidyl 
transferase activity all appear to combine and yield iden-
tical TCR structures within the naïve TCR repertoires of 
different individuals [25].

The role of thymic selection in TCR sharing

During intra-thymic development, immature thymo-
cytes are educated before migrating into the periphery 
and becoming naïve T cells. Only about 3% of thymo-
cytes are positively selected and survive thymic selec-
tion, while the rest are eliminated through negative 
selection or death by neglect [53]. The number of unique 
TCRαβ pairs in naïve T cells is thus markedly reduced 
to about 2 × 106 in mice [54] or 2 × 107 in humans [55]. 
Although thymic selection can dramatically limit the 
diversity of TCR repertoire, its contribution to TCR shar-
ing in naïve T cells depends on whether there is a com-
mon subset of TCR sequences that are preferentially and 
positively selected among different individuals, which is 
called “convergent evolution” [33].

Figure 2 Recombinatorial biases exemplified with TCR β nucleotide sequences within Vβ1-Jβ1-1 combination. Features of 
functional nucleotide sequences observed empirically or generated by simulation were compared. Features of the simulated 
repertoire are the expected values for a repertoire that is generated through a random convergent recombination process. 
Features of the empirical repertoire are shown for three individual mice. (A) Frequency distribution of simulated and empiri-
cal repertoires as a function of the number of nucleotide deletions at the 3′ end of the Vβ segment. (B) Frequency distribution 
of simulated and empirical repertoires as a function of the number of nucleotide deletions at the 5′ end of the Jβ segment. (C) 
Frequency distribution of simulated and empirical repertoires as a function of Dβ segment length after recombination. (D and E) 
Base usage of simulated and empirical repertoires at the Vβ-Dβ junction (D) or at the Dβ-Jβ junction (E). The error bars indicate 
SD. Correlations are based on Pearson’s correlation coefficient.
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Preferences in thymic selection have been reported 
by multiple studies. Skewed Jβ usage between thymic 
CD4+CD8+ (DP) and lymph node CD4+ or CD8+ T cells 
[43] and a slight shortening of CDR3 lengths during the 
transition from DP stage to CD4+ or CD8+ single posi-
tive stage [43, 56-58] have been reported. One study 
utilized transgenic mice expressing a genomic TCR Vα 
locus consisting of only a single Vα gene segment and a 
few Jα gene segments. The analysis of pre-selection DP 
thymocytes from this mouse showed a diverse array of 
TCR CDR3α sequences, while thymic selection produced 
a post-selection repertoire with marked overrepresenta-
tion of a subset of sequences, indicating that DP cells 
expressing particular CDR3α sequences might have quite 
different probabilities of being selected [59]. But this 
suggestion is challenged by the facts that the sequencing 
information of these studies is not sufficient to observe 
the true extent of clonotypic frequency differences within 
the pre-selection repertoire [32], and that the hierarchy 
of clonotypic frequency is preserved during intra-thymic 
development (see discussion above).

It was reported that MHC class I- and class II-restrict-
ed TCRs can be distinguished by minute, single-residue 
changes in CDR3α, reflecting the positive selection of 
preferential TCR contacts for the recognition of MHC 
class I or class II molecules, respectively [59]. Structural 
studies also indicate that germline TCR V regions might 
have an inherent propensity to recognize conserved fea-
tures found in the MHC α-helices, which could result 
in the preferential expression of certain V regions by 
CD4+ (MHC-class-II-restricted) or CD8+ (MHC-class-I-
restricted) T cells [60]. Although there are indeed a few 
examples of TCR V region alleles or family members 
with a bias toward a particular MHC allele or class, in 
general, most Vα and Vβ elements can be found in TCRs 
that recognize any of the extremely polymorphic alleles 
and isotypes of MHCI and MHCII [60]. Therefore, it 
seems that positive selection in the thymus must choose 
receptors that can react with MHC from an immense col-
lection of receptors with a large degree of randomness.

Despite that thymic selection might influence TCR 
sharing by both limiting (negative selection) and shaping 
(positive selection of preferred MHC-TCR-V-region in-
teractions) the naive TCR repertoire, recent studies from 
our lab and others strongly suggest that the role of thy-
mic selection in TCR sharing is minor. High-throughput 
DNA sequencing revealed that the overlap in the naive 
CD8+ TCRβ sequence repertoires of any two of the indi-
viduals appears to be independent of the degree of human 
leukocyte antigen matching [33], and TCRβ repertoire of 
murine DP thymocytes has almost the same recombina-
tion features as those in the naïve TCRβ repertoire (our 

unpublished data), indicating that thymic selection does 
not preferentially select for particular TCR sequences. 
Unable to encode functional TCRβ chains, non-functional 
TCRβ nucleotide sequences are not subject to thymic se-
lection and thus should preserve initial recombination pat-
terns. Deep sequencing analysis of the TCRβ repertoire of 
murine DP thymocytes revealed a highly similar usage of 
Vβ-Jβ combinations between functional TCRβ nucleotide 
sequences and non-functional TCRβ nucleotide sequences. 
Similar usage of Vβ segments from DN3 (DN: CD4-CD8- 
double negative) thymocytes through DN4 and DP thy-
mocytes were also observed [61, 62]. All these evidence 
strongly suggests that β-selection and TCRαβ heterodimer 
formation do not favor any particular Vβ-Jβ combinations. 
In addition, biased Vβ usage by human CD4+ and CD8+ T 
cells in neonatal and adult donors is highly correlated be-
tween unrelated individuals, and the correlation in biased 
Vβ expression patterns between CD4+ and CD8+ T cells 
can be explained by germline TCRβ locus factors, but not 
TCRβ allelic or HLA effects [63].

Detailed analysis of available sequences from DP 
TCRβ repertoire show that those functional TCRβ nucle-
otide sequences and non-functional TCRβ nucleotide 
sequences are highly similar in terms of nucleotide 
deletions at the coding ends of the Vβ and Jβ segments, 
nucleotide additions and base usage at the Vβ-Dβ/Dβ-Jβ 

junctions, and the length of rearranged Dβ segment after 
recombination (our unpublished data). Similarities as 
such strongly argue against selection for particular CDR3 
sequences. A comparison of the DP TCRβ repertoire with 
naïve TCRβ repertoire demonstrated that recombination 
features of DP TCRβ repertoire were maintained during 
thymic selection to the naïve TCRβ repertoire (our un-
published data), suggesting that the influence of MHC-
mediated selection is minimal. Furthermore, Vβ-Jβ com-
bination usage by TCRβ functional nucleotide sequences 
in human naïve repertoire was similar to that of non-
functional TCRβ nucleotide sequences [33], and β-chains 
were positively selected with similar efficiency regard-
less of CDR3 loop sequences [64]. Considering the ef-
fects of convergent recombination in shaping the intra-
individual clonotypic landscape of TCRβ sequences in the 
naïve repertoire (as discussed above) [32], it seems very 
likely that initial recombination patterns are preserved 
during intra-thymic development with no preferential se-
lection for particular TCR sequences and thus thymic se-
lection (convergent evolution) unlikely contributes much 
to the inter-individual overalp of naïve TCR repertoire.

Future challenges

Studies to date highly suggested that the substantial 
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sharing of TCRs among individuals is mainly determined 
by V(D)J recombination through convergent recombina-
tion and recombinatorial biases. What is intriguing is that 
V(D)J recombination is not a totally random process, 
which can generate a more diverse repertoire within 
an individual. Such a strategy would allow for massive 
TCR diversity across a species group, thus benefiting the 
population as a whole. Could those recombinatorial bi-
ases result from natural selection involving co-evolution 
of host and pathogens? What is the biological utility of 
those recombinatorial biases, and can recombinatorial 
biases be manipulated to the benefit of human beings?

V(D)J recombination has been shown to be regulated 
at multiple levels. Apart from cis-elements in the immune 
receptor loci, including recombination signal sequence, 
enhancers and promoters [48, 65], some trans-elements 
have been shown to play an important part in the regula-
tion of V(D)J recombination [66-68]. Moreover, accumu-
lating evidence has demonstrated the role of epigenetic 
factors in the regulation of V(D)J recombination, proba-
bly by altering the chromatin accessibility at the immune 
receptor loci [66, 69-75]. Future investigations into the 
upstream signals that regulate those known downstream 
regulators of V(D)J recombination should be able to pro-
vide insights into how the V(D)J recombination process 
can be manipulated.

A fundamental question in studying the regulation of 
V(D)J recombination is whether V(D)J recombination is 
a genetically programmed process that is inert to periph-
eral immune stresses, or regulated responsively to the 
immune state of the host. “Adaptive mutation”, a pro-
cess in which organisms adaptively change their genetic 
information to facilitate their adaptation to the stressful 
environments, has been well recognized [76-80]. Since 
V(D)J recombination generates a diverse immune recep-
tor repertoire to specifically combat the invading antigen, 
recombinatorial biases could be influenced by immune 
stresses and have evolved to better fight against common 
infections. On the other hand, public TCRs limit the di-
versity of TCRs, and this could make a population more 
vulnerable to rare pathogens. It has been observed that 
public TCRs appear less frequently in tumor-associated 
TCR repertoire compared to pathogen-specific TCR 
repertoire [25]. Although the reason for this discrepancy 
remains unknown [81], one could speculate that the pres-
ence of less anti-tumor public TCRs enables cancer to es-
cape immune surveillance more easily. It is clear that pri-
vate TCR repertoire plays a very important role in fight-
ing many diseases in each individual, including cancer. 
While private TCRs may render many in a population 
to succumb to a new pathogen, at least some individuals 
will be able to develop an adequate immune response to 

win over the pathogen. Thus, it would be beneficial to 
everyone in the population if there was a way to convert 
a private TCR response into a public one.

Effects of the composition of TCR repertoire on dis-
ease pathogenesis have been reported. The autoimmunity 
of non-obese diabetic mice was linked to the selection 
of a low-diversity repertoire of natural regulatory CD4 
T cells [82]. Decreasing repertoire diversity has been 
implicated in the age-associated decline in CD8 T cell 
immunity [83]. Future repertoire-wide studies into the 
causal relationship between TCR repertoire composition 
and disease pathogenesis are important as they could 
provide clues for applying public TCR responses in pre-
venting and treating human diseases.

Although recombinatorial biases and convergent 
recombination are two major determinants that are ac-
countable for the overlap of naïve TCR repertoire, much 
is to be learned about the underlying mechanisms and bi-
ological relevance of recombinatorial biases. The effects 
of TCR sharing on both viral escape and disease should 
be a future hotspot. Future investigation should be aimed 
at better understanding the role of the TCR repertoire in 
immune responses. Ideally, we would be able to predict 
and manipulate the TCR repertoire to the benefit of hu-
man health. 
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