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Classical algorithms aiming at identifying biological pathways significantly related to studying conditions fre-
quently reduced pathways to gene sets, with an obvious ignorance of the constitutive non-equivalence of various 
genes within a defined pathway. We here designed a network-based method to determine such non-equivalence in 
terms of gene weights. The gene weights determined are biologically consistent and robust to network perturbations. 
By integrating the gene weights into the classical gene set analysis, with a subsequent correction for the “over-counting” 
bias associated with multi-subunit proteins, we have developed a novel gene-weighed pathway analysis approach, 
as implemented in an R package called “Gene Associaqtion Network-based Pathway Analysis” (GANPA). Through 
analysis of several microarray datasets, including the p53 dataset, asthma dataset and three breast cancer datasets, 
we demonstrated that our approach is biologically reliable and reproducible, and therefore helpful for microarray 
data interpretation and hypothesis generation. 
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Introduction

Identifying biological pathways significantly regulated 
under various conditions has become one of the most 
common tasks in genome-wide expression profiling or 
association studies [1-4]. Biological pathways being in-
vestigated in such analyses can be obtained from various 
types of pathway databases. Several databases, such as 
KEGG [5, 6], WikiPathways [7] and Biocarta, manually 
create electronic graphs of structured pathways for cel-
lular signaling and metabolic processes. Other databases, 
such as Gene Ontology (GO), PANTHER [8, 9], Reac-
tome [10] and MSigDB [11], curate only gene composi-
tion information for pathways and usually do not provide 
graph representations. To develop general-purpose path-
way analysis algorithms applicable to both types of path-

way databases, it is a traditionally favored treatment to 
reduce “real” biological pathways featured with complex 
gene-gene linkages and topological arrangements into 
gene sets that are simply based on gene compositions of 
pathways. 

The “gene set over-representation analysis” approach 
tests whether a gene set is over-represented in a given 
gene list [12]. With Fisher’s exact test or chi-square test, 
this approach holds a “competitive model” of signifi-
cance assessment, in the sense that the gene set is tested 
against random genes from the genome [13]. This ap-
proach is especially useful for studies with a very small 
sample size, though difficult in determining an optimal 
gene list from microarray data. Another approach, “gene 
set analysis (GSA)”, pioneered by Gene Set Enrichment 
Analysis (GSEA) [11], calculates a gene set statistically 
summarizing gene expression changes over the gene set, 
which are then compared to null distributions to evalu-
ate significance. Gene set statistics proposed include the 
Kolmogorov-Smirnov type statistics in GSEA [11], the 
normalized mean of fold changes in Parametric Analysis 
of Gene Set Enrichment (PAGE) [14], the “maxmean” 
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statistics in MAXMEAN-GSA [15], the quadratic sum of 
modified Student’s T statistics in SAM-GS [16], the con-
trast between fold changes of genes within and outside 
gene sets in GAGE [17], as well as other choices such 
as mean [18, 19], absolute mean and mean of absolute 
(MeanAbs) of gene statistics [15]. Choices of the null 
distributions are among a “competitive model”, a “self-
contained model”, or a hybrid of the two [13, 15, 19]. 
Unlike the “competitive model” where significance of a 
gene set is judged by comparing with the rest of genes 
in the genome, “self-contained model” tests whether the 
gene set itself is associated with the conditions under 
study. The “competitive model” has been adopted by Q1-
test, PAGE and GAGE [14, 17, 19], the “self-contained 
model” by Q2-test [19], and a hybrid of the two models 
by GSEA and MAXMEAN-GSA [11, 15]. These two ap-
proaches do not cover all gene set-based pathway analy-
sis methods that have been proposed. For example, there 
are methods that test gene set association with sample 
conditions in logistic regression models [20-22], meth-
ods that focus on principal components of gene sets [23, 
24], and methods that take only a core subset of genes 
for analysis [25].

Although reduction of “pathways” to “gene sets” 
seems inevitable to include pathway databases with gene 
compositions only, and also very convenient and fruitful 
for algorithm development, there are important issues 
worth critical consideration when examining carefully 
the difference between “pathways” and “gene sets”. In 
“gene sets”, the functional interactions among genes are 
ignored and all genes are completely equivalent to each 
other. This is not true in many “real” biological path-
ways, where some genes are indeed more “central” and 
“indispensable” than others, such as the p53 gene in the 
p53 signaling pathway. In addition, the potential curation 
errors in construction of pathway databases might have 
been misclassified into a pathway where some irrelevant 
genes should not be taken equivalently as other genes. 
Therefore, we realize that there is clearly a “constitutive 
non-equivalence” among genes in a pathway irrespec-
tive of the conditions under study, and that it is more 
appropriate to model a pathway with a set of genes with 
constitutively non-equivalent weights, rather than a set of 
essentially equivalent genes.

Here we constructed a gene functional association net-
work based on protein-protein interactions (PPIs), co-an-
notations and co-expressions. We then used this network 
to determine the constitutive non-equivalence of genes 
and assign gene weights within pathways. These gene 
weights can be directly incorporated into classical GSA 
pipelines. We demonstrated that this gene-weighted GSA 
approach is reliable and reproducible for microarray data 

interpretation. We have implemented the network-based 
gene-weighting algorithm, as well as the gene-weighted 
version of GSA, in an open-source R package named 
GANPA (http://cran.r-project.org/web/packages/GANPA/
index.html).

Results

Strategy of network-based gene weighting within path-
ways

Given the notion that genes are constitutively non-
equivalent in pathways, we seek to develop a strategy to 
determine the gene non-equivalence in the form of gene 
weight. We reason that, if one gene is specifically associ-
ated with more genes in the pathway than expected, it is 
more likely to be functionally “important” in this path-
way, and less likely to be randomly introduced into this 
pathway by curation errors. This association specificity 
could be estimated in a hypergeometric sampling model, 
and used to judge how strongly a gene is related to the 
pathway (Figure 1A, Materials and Methods).

To achieve this goal, one practical way is to establish 
a gene functional association network [26], which could 
provide inter-gene linkages for evaluating gene-to-path-
way associations. We have constructed a comprehensive 
gene functional association network, referred to as gNET 
hereafter, from three types of gene associations: PPIs, 
co-annotation in GO Biological Process (BP), and co-ex-
pression in large-scale gene expression microarray data 
(Materials and Methods, Supplementary information, 
Data S2). We have controlled the association specific-
ity by filtering PPIs without PubMed references and BP 
terms that are too general to provide specific association 
information (Materials and Methods, Supplementary in-
formation, Data S1). Using a gene functional association 
network has several appealing features as compared with 
the inter-gene linkages recorded in certain databases such 
as KEGG (Supplementary information, Data S1).

Such a network-based gene-weighting strategy is gen-
eral-purpose and suitable for almost all public pathway 
databases in that it requires no additional information 
except for gene compositions. We performed a number 
of tests and found that this strategy provided biologically 
consistent gene weights for various pathways and func-
tional gene sets (Supplementary information, Tables S1 
and S2, and Data S3). Taking p53 gene for example, the 
computed gene weights suggest that it acts as a core gene 
in pathways such as the p53 hypoxia signaling pathway 
(Figure 1B) and p53 signaling pathway (with a high 
weight ranking top 1), and it participates but not domi-
nates in pathways such as Huntington’s disease pathway 
and cell cycle checkpoint pathway (ranking 72 and 102, 
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Figure 1 Network-based gene-weighting algorithm. (A) An il-
lustration of the gene-weighting algorithm. A gene functional 
association network is required to provide inter-gene associa-
tion linkages. For any gene Gi (red) in a given pathway S of K 
genes, its Mi functional associated genes (brown) are distributed 
within (Xi) and outside (Mi-Xi) the pathway. A hypergeometric 
distribution model can be used to estimate the specific associa-
tions between Gi and S, which reflects Gi’s contribution to the 
pathway (see Materials and Methods). (B) Inter-gene functional 
associations and gene weights determined with gNET for the 
p53 hypoxia pathway (Biocarta). Each node represents a gene 
and its size proportional to gene weight. Genes are linked by 
functional associations in gNET. Genes with no functional as-
sociations with other genes are also shown. (C) Inter-gene func-
tional associations and gene weights determined with FunCoup 
for the p53 hypoxia pathway (Biocarta). Genes are linked by 
functional associations in FunCoup. 

respectively; Supplementary information, Table S1). An-
other example is the EGFR gene, which is suggested to 
be a more central gene in some pathways (such as AT1R 
pathway [27] and EGF pathway [28]) than others (such 
as calcium signaling pathway [29] and cytokine-cytokine 
receptor interaction [30]) (Supplementary information, 
Table S2). We have tested another functional association 
network named FunCoup [31], which produced similar 
gene weights in the pathways, with p53 hypoxia signal-
ing pathway again taken as an example (Figure 1C). For 
those genes that have no functional associations with 
other genes in the pathway, we simply assigned a mini-
mum weight (Figure 1B and 1C, Materials and Meth-
ods). This way, the gene composition information from 
pathway databases is always retained even when the gene 
association network suggests a poor association with the 
pathway for some genes. Although this approach seems a 
bit conservative, it could help improve the stability of the 
gene weight estimates, since a gene association network 
might not be necessarily comprehensive and accurate 
enough for all pathways from various databases.

Stability and robustness of the network-based gene 
weights

We next addressed whether the gene weights deter-
mined from the above strategy are indeed stable, know-
ing the false positives that could have been introduced 
in the data sources of gNET, such as PPIs, co-annotation 
and co-expression. As a previous report on human PPI 
network has suggested, there was ~85.5% verification 
rate of yeast-two hybrid protein pairs by co-affinity puri-
fications, indicating ~14.5% false positiveness [32]. We 
performed two types of perturbation to gNET to re-cal-
culate gene weights for 833 pathways (KEGG, Biocarta 
and Reactome) extracted from the MSigDB collection 
(version 3.0) at Broad Institute. First, 30% of the link-
ages in gNET were removed randomly for 1 000 times. 
Second, all the linkages in gNET were randomized, while 
retaining the original network topology (that is, we shuf-
fled the node labels but retained topological properties 
such as node degree distribution). We again took the p53 
hypoxia signaling pathway as an example. Compared 
with the nearly complete destruction of gene weights by 
edge randomization, the gene weights were only quite 
slightly affected by the 30% edge removal perturbation 
(Figure 2A and 2B). Overall, for all the 833 pathways, 
network randomizations have caused an average decrease 
of gene weights as dramatically as more than 40% for a 
majority of the 833 pathways, whereas the 30% linkage 
removals only have a very minor effect on gene weights 
(around 10% decrease) (Figure 2C). Further, we have 
tested another functional association network, FunCoup 
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[31], on weighting genes in the pathways (Supplementary 
information, Data S1). The weights assigned by these 
two independently constructed networks are quite similar 
(Figure 1C and data not shown).

Taking the perturbation data here and the above 
weighting strategy design together, the network-based 
gene weights estimated in a hypergeometric model are 
generally stable and robust upon potential network per-
turbations, providing a strong support for development of 
pathway analysis methods with gene weights.

Incorporating gene weights into classical pathway anal-
ysis approaches

The gene weights determined from above accounting 
for the constitutive non-equivalence can be integrated 
into GSA pipelines to generate a weighted version that 
could potentially allow more specific evaluations of path-

way significance (Figure 3, Materials and Methods). We 
have two motivations here for the validity of such a treat-
ment. First, expression changes of core genes, as com-
pared with other genes, can reasonably be considered as 
stronger evidences when deciding whether a pathway is 
regulated. Second, assigning smaller weights to less rel-
evant genes present in a pathway allows a more reliable 
pathway significance assessment.

To illustrate the benefits of weighted pathway analy-
sis, we choose MeanAbs as the pathway statistic, which 
is not too complicated, yet still effective in demonstrat-
ing the reliability and characteristics of a gene-weighted 
GSA approach [15, 33] (see Materials and Methods for 
details). Briefly, Student’s T statistic (also referred to as 
“T score”) is used as the gene statistic to summarize dif-
ferential expression, and the pathway statistic MeanAbs 
is simply an average over absolute gene statistics, tak-
ing into account both up- and downregulations. In the 
corresponding weighted pathway analysis, the pathway 
statistic is a weighted average of absolute gene statistics, 
and for convenience it will be referred to as W-MeanAbs 
(weighted MeanAbs) below. To test the null hypothesis 
of no associations between a pathway and study condi-
tions (“self-contained model”), sample permutations 
provide an empirical null distribution for significance 
evaluation. Nonetheless, the nominal pathway statistics 
are subject to properties of different gene sets (for in-
stance, W-MeanAbs would be affected by pathway size, 
gene weights and inter-gene correlations), and therefore 
are not directly comparable across different pathways 
(Supplementary information, Data S1). To allow inter-
pathway comparisons with pathway statistics, we stan-

Figure 2 Robustness of network-based gene weights in path-
ways. (A) Gene weights in the p53 hypoxia pathway. Red: 
weights based on gNET. Black: weights after random removal 
of 30% network edges, 1 000 times to obtain the standard de-
viation. (B) Gene weights in the p53 hypoxia pathway. Red: 
weights based on gNET. Black: weights after topology-retaining 
network edge randomization, 1 000 times to obtain the standard 
deviation. (C) Distribution of average percentage of gene weight 
changes in all the 833 pathways. Blue: random removal of 30% 
network edge, 1 000 times. Red: topology-retaining network 
edge randomization, 1 000 times. 

Figure 3 Schematic diagram of classical gene set analysis 
approaches and GANPA. Left: classical gene set analysis ap-
proach; Right: GANPA. See Results, and Materials and Meth-
ods for details.
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dardize the nominal statistic to obtain a normalized 
pathway statistic (NS), which is in general comparable 
among pathways under the null hypothesis of no associa-
tion (Materials and Methods, Supplementary informa-
tion, Data S1). To correct for multiple comparisons, we 
use false discovery rate (FDR) along with permutation P 
values as the standard method.

To test the effectiveness of W-MeanAbs, we first took 
the well-known p53 dataset for a comparative evaluation. 
The p53 dataset, consisting of gene expression profiling 
of 17 p53-wild-type (WT) and 33 p53-mutated (MUT) 
cancer cell lines, is an ideal benchmarking dataset for 
pathway analysis algorithms [11]. We used the same 
gene sets from the original GSEA paper for p53 dataset 
[11], which were assigned gene weights based on gNET. 
We applied MeanAbs and W-MeanAbs to this dataset, 
with a 0.15 permutation FDR cutoff used to control er-
ror rates. Both methods have effectively identified p53-
related pathways, yet with an obvious improvement in 
the significance from W-MeanAbs (Table 1). Several 

pathways well known to be related to p53 functions are 
only identified by W-MeanAbs: three apoptosis-related 
pathways (mitochondria pathway, ceramide pathway and 
BCL2 network), two cell cycle-related pathways (cell 
cycle regulator, cell cycle arrest), and one p53-related 
pathway (p53 signaling). Taking a look into these path-
ways would reveal features of the weighted approach. In 
cell cycle regulator pathway, high-weight genes such as 
CDKN1A, CDC6 and CDK5 showed strong expression 
changes (Figure 4B). In the BCL2 network, the high-
weight genes such as BCL2, BCL2A1, BCL2L2, CASP8 
and BID showed strong differential expression, whereas 
most of the low-weight genes such as IGF1, IL3, ARHA, 
APBA2BP and ACTB showed no significant expression 
changes (Figure 4C). Interestingly, HSP27 pathway was 
ranked after three p53 pathways (p53 UP pathway, p53 
pathway, p53 hypoxia pathway) by W-MeanAbs, not 
as significant as that by MeanAbs, with a decrease in 
normalized statistic (NS) from 4.9 to 4.1. This seems to 
imply that the HSP pathway may be related to p53 func-

Table 1 Pathways significant in p53 dataset by MeanAbs and W-MeanAbs
	 Pathway	 Size	 S	 NS	 permP	 permFDR	 Rank*
MeanAbs	 Radiation sensitivity	 26	 1.5 	 5.0 	 0	 0	   1
	 p53 pathway	 16	 1.6 	 5.0 	 0	 0	   3
	 hsp27 pathway	 15	 1.7 	 4.9 	 0	 0	   5
	 p53 UP	 40	 1.4 	 4.6 	 0	 0	   2	
	 p53 hypoxia pathway	 20	 1.5 	 4.5 	 0	 0	   4	
	 Bad pathway	 21	 1.4 	 3.8 	 0.002	 0.103	   8	
	 cAMP chemotaxis	 31	 1.2 	 3.1 	 0.003	 0.132	 13
W-MeanAbs	 Radiation sensitivity	 26	 1.6 	 5.7 	 0	 0	   1	
	 p53 UP	 40	 1.5 	 5.5 	 0	 0	   4	
	 p53 pathway	 16	 1.7 	 5.2 	 0	 0	   2	
	 p53 hypoxia pathway	 20	 1.6 	 4.7 	 0	 0	   5	
	 hsp27 pathway	 15	 1.5 	 4.1 	 0.001	 0.062	   3	
	 p53 signaling	 87	 1.2 	 3.6 	 0.003	 0.123	 22	
	 Cell cycle regulator	 23	 1.4 	 3.5 	 0.003	 0.123	 10	
	 Bad pathway	 21	 1.4 	 3.6 	 0.004	 0.123	   6	
	 Mitochondria pathway	 19	 1.4 	 3.5 	 0.004	 0.123	   8	
	 Ceramide pathway	 22	 1.2 	 2.9 	 0.004	 0.123	 12	
	 bcl2 network	 23	 1.3 	 3.4 	 0.005	 0.123	 18	
	 Wnt Ca2+ cGMP	 19	 1.3 	 3.1 	 0.005	 0.123	 17	
	 cAMP chemotaxis	 31	 1.2 	 2.9 	 0.006	 0.123	   7	
	 Chrebp pathway	 17	 1.3 	 2.9 	 0.006	 0.123	 23	
	 Cell cycle arrest	 30	 1.2 	 2.8 	 0.006	 0.123	 29
Significance level is 0.15 by permutation FDR. S: pathway score; NS: normalized pathway score; permP: permutation P value; permFDR: 
permutation FDR. For MeanAbs and W-MeanAbs, Rank* is pathway significance rank in W-MeanAbs and MeanAbs, respectively. cAMP 
chemotaxis: ST Dictyostelium discoideum cAMP chemotaxis pathway; bcl2 network: bcl2 family and regulation network; Wnt Ca2+ 
cGMP: ST Wnt Ca2+ cyclic GMP pathway. Pathways with names in bold have corresponding pathway networks visualized in Figure 4.
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tions, yet still not a central pathway. The central genes 
in this pathway, such as HSPB1, FASLG, APAF1, CASP3 
and CYCS, did not have strong expression changes, 
whereas those heavily differentially expressed genes 
such as IL1A, FAS, BCL2, CASP9 and TNF are not quite 
specifically associated with HSP functions and thus only 
have a low weight (Figure 4A). To further verify the 
improvement of W-MeanAbs over MeanAbs, we reana-
lyzed the p53 dataset with gene sets weighted by another 
functional association network FunCoup. We observed 

very similar improvements, with the three apoptosis-
related pathways and the two cell cycle-related pathways 
again identified only by W-MeanAbs, and a similar de-
crease in significance for the HSP27 pathway (Supple-
mentary information, Table S3).

Although we mainly used MeanAbs as the demonstra-
tion statistic throughout this work, it should be empha-
sized that the pathway gene weights are conceptually 
reasonable to be integrated with other statistics in most, 
if not all, GSA methods. As an example, we integrated 

Figure 4 Gene functional association networks for selected pathways in p53 dataset. Node color reflects expression changes 
in the p53 dataset. Red: upregulated expression. Green: downregulated expression. Gray: not covered by microarray data. (A) 
HSP27 pathway, with a color panel showing the mapping between T scores and node colors. (B) Cell cycle regulator path-
way. (C) BCL2 network. 
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gene weights with the adapted KS statistic used by 
GSEA (see Materials and Methods). We then applied 
W-GSEA and standard GSEA to the p53 dataset, with 
gene weights assigned by gNET. GSEA/W-GSEA com-
monly identified the radiation sensitivity pathway and 
three p53 pathways as significant at a 0.15 FDR, similar 
to the MeanAbs/W-MeanAbs analysis described above 
(Supplementary information, Table S4). Nonetheless, 
most of the commonly top pathways showed an im-
provement in the normalized pathway enrichment score 
(NES) in W-GSEA as compared with GSEA, such as the 
p53 pathway, p53 UP, radiation sensitivity pathway and 
p53 signaling, which is a similar case in W-MeanAbs as 
compared with MeanAbs (Table 1, Supplementary infor-
mation, Table S4). Further, the HSP27 pathway was not 
identified as significant as MeanAbs, also similar to its 
decreased significance in W-MeanAbs as compared with 
MeanAbs (Table 1, Supplementary information, Table 
S4), which can be similarly explained (Figure 4A). How-
ever, GSEA/W-GSEA indeed appeared to identify fewer 
significant pathways, probably a consequence of the low 
power issue related to GSEA methodology as suggested 
by several other research groups [13, 16, 19, 34]. For 
this reason, we will just stress here that gene weights can 
be reasonably combined with statistics as complex as 
GSEA, and continue using W-MeanAbs/MeanAbs as our 
standard method in the following analysis.

Pathway identification in a relatively simple human dis-
ease

One of the important applications of pathway analysis 
is to interpret global gene expression patterns in human 
diseases. Thus, it would be essential to see whether a 
novel pathway analysis algorithm indeed works well for 
disease datasets. Here we took asthma as an example. 
The data that we used consisted of airway epithelial sam-
ples from seven healthy and nine asthmatic children [35].

The MeanAbs and W-MeanAbs method identified 
15 and 13 pathways, respectively, at a 0.05 permutation 
FDR, with 9 of them shared by two methods (Table 2). 
Among the shared pathways, RAC1 pathway, metabo-
lism of carbohydrates, ECM pathway, CTCF pathway, 
Basigin interactions and glycolysis were ranked as the 
top 10 significant pathways in both methods (Table 2). 
Among them, Basigin interactions had a number of its 
genes differentially expressed, with ITGB1, L1CAM, 
SLC16A1 upregulated, and BSG, SLC3A1 and SLC16A3 
downregulated (Figure 5A). In W-MeanAbs, Basigin 
interactions was reported to be even more significant in 
the sense that its core genes, such as BSG, SLC3A2 and 
ITGB1, were all dramatically differentially expressed 
(Figure 5A).

Then it would be interesting to examine pathways 
that are ranked top by one method but not by the other 
methods, which should clearly reflect the different char-
acteristics of the two methods. The fructose and mannose 
metabolism pathway (KEGG), ranked 40 by MeanAbs, 
was ranked as the top 6 significant pathways by W-
MeanAbs. In its 11 highly weighted genes, 7 of them, 
including PFKFB1, TPI1, ALDOB, HK1, PFKL, HK3 
and ALDOA, showed a strong differential expression in 
asthma (Figure 4C). On the contrary, the pyruvate me-
tabolism pathway (Reactome) and renin-angiotensin sys-
tem (KEGG), ranked as the top 10 and top 12 significant 
pathways by MeanAbs, were ranked 32 and 19 by W-
MeanAbs, respectively, and did not pass the significance 
level (Table 2). For pyruvate metabolism pathway, the 
genes are distinctively clustered into two groups accord-
ing to the functional associations, the “Basigin group” 
and the “Pyruvate group” (Figure 5C). The “Pyruvate 
group” is undoubtedly the desired group here in a path-
way named “Pyruvate metabolism”; yet in asthma, it is 
the “Basigin group” that was more dramatically changed 
in expression (Figure 5C), recalling the top significant 
pathway Basigin Interactions by MeanAbs/W-MeanAbs 
that we have just mentioned (Figure 5A). Surely there 
are some biological concerns that Reactome experts have 
put the “Basigin group” together with “Pyruvate group” 
in the “pyruvate metabolism pathway”, but the point here 
is that W-MeanAbs can automatically “double-check” 
and reliably “re-adjust” the two subgroups for their rela-
tive “contributions” to the whole pathway. The renin-
angiotensin pathway, where several highly expression-
regulated genes, such as CTSA, LNPEP and ANPEP, 
are poorly associated with the majority of genes of the 
pathway, whereas several high-weight genes such as 
AGT, ACE2 and CMA1 do not show obvious expression 
changes, is therefore judged by W-MeanAbs as not sig-
nificant at the 0.05 permutation FDR level (Figure 5D 
and Table 2).

Taken together, a functional association network-
based gene-weighting approach has unique strength in 
determining pathway significance given expression data, 
especially for pathways consisting of heterogeneous sub-
groups with non-equivalent association confidences to 
the whole pathway.

Correction for genes encoding multi-subunit proteins
In the asthma data, the VEGF pathway, consistently 

identified to be altered in asthma according to a num-
ber of reports [36-39], appeared to be less significant 
in W-MeanAbs as compared with MeanAbs (Table 2). 
When looking into this pathway, we noticed one issue 
that should be solved for more accurate gene weighting. 
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Table 2 Significant pathways in the asthma dataset by MeanAbs and W-MeanAbs
	 Pathway	 DB	 Size	 NS	 FDR	 R1	 R2
NoW	 RAC1	 BC	   20	 4.8 	 0	   2	   5
	 Carbohydrates	 RT	 100	 4.5 	 0	   1	   1
	 Glucose transport	 RT	   34	 4.4 	 0	 13	 13
	 ECM	 BC	   20	 4.4 	 0	   8	   8
	 Pyruvate and TCA	 RT	   29	 4.2 	 0	 21	 23
	 CTCF	 BC	   21	 4.2 	 0	   5	   4
	 Packaging of telomere ends	 RT	   19	 4.1 	 0	 20	 22
	 Basigin interactions	 RT	   22	 4.0 	 0	   7	   7
	 Glycolysis	 RT	   19	 4.0 	 0	   4	   3
	 Pyruvate metabolism	 RT	   16	 3.9 	 0	 32	 32
	 VEGF	 BC	   26	 3.4 	 0	 24	 14
	 Renin angiotensin system	 KG	   16	 4.5 	 0.039	 19	 21
	 Bile acids metabolism	 RT	   23	 4.0 	 0.039	   3	   2
	 p53 hypoxia	 BC	   22	 3.5 	 0.039	 11	 11
	 Lysine degradation	 KG	   35	 3.2 	 0.039	 40	 44
OrigW	 Carbohydrates	 RT	 100	 4.6 	 0	   2	   1	
	 RAC1	 BC	   20	 4.5 	 0	   1	   5
	 Bile acids metabolism	 RT	   23	 4.4 	 0	 13	   2
	 Glycolysis	 RT	   19	 4.4 	 0	   9	   3
	 CTCF	 BC	   21	 4.3 	 0	   6	   4
	 Pentose phosphate	 KG	   22	 4.2 	 0	 19	   6
	 Basigin interactions	 RT	   22	 4.1 	 0	   8	   7
	 ECM	 BC	   20	 3.8 	 0	   4	   8
	 Gluconeogenesis	 RT	   27	 4.3 	 0.045	 28	   9
	 Glycolysis gluconeogenesis	 KG	   51	 4.2 	 0.045	 34	 10
	 p53 hypoxia	 BC	   22	 3.9 	 0.045	 14	 11
	 Fructose-mannose metabolism	 KG	   26	 3.8 	 0.045	 40	 12
	 Glucose transport	 RT	   34	 3.7 	 0.045	   3	 13
MultiW	 Carbohydrates	 RT	 100	 4.6 	 0	   2	   1
	 Bile acids metabolism	 RT	   23	 4.4 	 0	 13	   3
	 Glycolysis	 RT	   19	 4.4 	 0	   9	   4
	 CTCF	 BC	   21	 4.3 	 0	   6	   5
	 RAC1	 BC	   20	 4.3 	 0	   1	   2
	 Pentose phosphate	 KG	   22	 4.2 	 0	 19	   6
	 Basigin interactions	 RT	   22	 4.1 	 0	   8	   7
	 ECM	 BC	   20	 3.7 	 0	   4	   8
	 Gluconeogenesis	 RT	   27	 4.3 	 0.041	 28	   9
	 Glycolysis gluconeogenesis	 KG	   51	 4.2 	 0.041	 34	 10
	 p53 hypoxia	 BC	   22	 4.0 	 0.041	 14	 11
	 Fructose-mannose metabolism	 KG	   26	 3.8 	 0.041	 40	 12
	 Glucose transport	 RT	   34	 3.7 	 0.041	   3	 13
	 VEGF	 BC	   26	 3.5 	 0.041	 11	 24
Pathway significance is controlled at a permutation FDR of 0.05. Pathways with names in bold have corresponding pathway networks vi-
sualized in Figure 5. 
Abbreviations for DB (pathway database): RT (Reactome); KG (KEGG); BC (Biocarta).
Abbreviations for pathways: bile acids metabolism (metabolism of bile acids and bile salts); pyruvate and TCA (pyruvate metabolism and 
TCA cycle); fructose-mannose metabolism (fructose and mannose metabolism); carbohydrates (metabolism of carbohydrates).
Abbreviations for methods: NoW (no weighting, i.e., MeanAbs); OrigW (W-MeanAbs with original weights without corrected for multi-
subunit proteins); MultiW (W-MeanAbs with weights corrected for multi-subunit proteins). R1 (Rank1); R2 (Rank2). For NoW, Rank1 is 
Rank (OrigW) and Rank2 is Rank (MultiW); for OrigW, Rank1 is Rank (NoW) and Rank2 is Rank (MultiW); for MultiW, Rank1 is Rank 
(NoW) and Rank2 is Rank (OrigW). 
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Figure 5 Gene functional association networks for selected pathways in asthma dataset. Node color reflects expression 
changes in the asthma dataset. Red: upregulated expression. Green: downregulated expression. Gray: not covered by mi-
croarray data. (A) Basigin interactions (Reactome), with a color panel showing the mapping between T scores and node col-
ors. (B) Fructose and mannose metabolism (KEGG). (C) Pyruvate metabolism pathway (Reactome). (D) Renin-angiotensin 
system (KEGG). (E) VEGF pathway (Biocarta). (F) VEGF pathway (Biocarta), with gene weights computed after correcting 
for multi-subunit proteins. Gene weights in A-E are not corrected for multi-subunit proteins. Each circle in E, F indicates a 
cluster of genes encoding one multi-subunit protein. 
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sion of W-MeanAbs with the subunit combination as W-
MeanAbs hereafter.

Conserved pathways across three breast cancer datasets
To further test the multi-subunit combined weighted 

approach, we collected three breast cancer datasets from 
GEO database, each with cancer samples and normal 
controls. As the comparison between malignant cancer 
samples and normal tissues usually generates a large 

This issue, referred to as the “over-counting” problem, is 
closely related to the genes encoding multi-subunit pro-
teins. Since genes encoding subunits for multi-subunit 
proteins are usually considered to be different genes, a 
multi-subunit protein can artificially take a higher pro-
portion in a pathway than a single-subunit protein. Al-
though this issue should also affect classical GSA, it is 
more severe in our original network-based gene-weight-
ed approach. As clearly depicted in the VEGF pathway 
(Biocarta), the 8 genes encoding EIF2B and EIF2S 
proteins take a proportion of nearly 30% of this 29-gene 
pathway, and the enriched inter-gene linkages among the 
subunit genes elevated the weight of each other in our 
network-based weighting strategy. The actually less close 
association of these two multi-subunit proteins with the 
VEGF pathway further exaggerated the side effect, lead-
ing to an unexpected masking of the otherwise central 
role of VEGFA and its receptor genes (Figure 5E).

To determine whether this issue is prevalent enough 
for a specialized treatment, we prepared a collection of 
multi-subunit proteins and explored their prevalence in 
biological pathways. A list of genes encoding 82 multi-
subunit proteins were extracted from human genes and 
provided as Supplementary information, Data S4. The 
majority of them have less than 5 subunits, yet few can 
have more than 10 (Figure 6A). 567 of the 833 pathways 
do not involve any of the 82 multi-subunit proteins, sug-
gesting that a combination of subunit genes would not 
affect most of the pathways in an analysis (Figure 6B). 
Nonetheless, since as many as 266 pathways involve at 
least one multi-subunit protein, it is essential to design 
a refined version of the gene-weighting strategy so as to 
make the gene weights assigned for these pathways more 
accurate.

To correct this problem, our refinement is to add two 
extensions to the original gene weighting (Figure 6C). 
First, we do association counting on the whole-protein 
level for multi-subunit proteins rather than on each of 
its subunits. Second, genes encoding subunits and single 
proteins are both assessed by their associations with the 
pathway. The new weights of the 833 pathways after cor-
rection for multi-subunit proteins are provided as Supple-
mentary information, Data S5. We reanalyzed the asthma 
dataset with the new gene weights and observed obvious 
changes in the significance evaluation of RAC1 pathway 
and VEGF pathway (Table 2). It can be clearly seen that 
the new weights in the VEGF pathway are now much 
more consistent with biological knowledge, which recap-
tured its significance in asthma (Figure 5F and Table 2). 
As the subunit combination of multi-subunit proteins has 
been seamlessly integrated with the gene-weighted GSA 
pipeline, for simplicity, we will still refer to this new ver-

Figure 6 Combination of subunit genes encoding multi-subunit 
proteins for pathway analysis. (A) Distribution of subunit num-
bers (size) for multi-subunit proteins. (B) Distribution of multi-
subunit proteins (count) in all the 833 pathways. (C) An illustra-
tion of the gene-weighting algorithm with a correction for multi-
subunit proteins. In this example pathway, two multi-subunit 
proteins are present, as shown by the two dashed circles. X 
(red) and Y (violet) are subunit- and protein-encoding genes, 
respectively. In the original gene-weighting scheme subunit- and 
protein-encoding genes were not distinguished; whereas in this 
corrected version, to solve such confusion, we replaced gene-
level association counting by protein-level association counting. 
Therefore, in this corrected version, the within-pathway asso-
ciations of X and Y are counted as 4 and 5, respectively, rather 
than 6 and 7. Outside-pathway associations are also counted at 
protein level.
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number of differential genes and pathways (at 0.1 per-
mutation FDR level, the three breast cancer datasets have 
661, 663 and 653 significant pathways for MeanAbs, 
respectively; and 654, 664 and 649 for W-MeanAbs, 
respectively), we took the top pathways from each data-
set analysis to see how many pathways were conserved 
across all datasets, which might be a more appropriate 
metric to evaluate the performance of a pathway identifi-
cation method, especially with respect to reproducibility. 
We tried serial cutoffs ranging from top 30 to top 80 and 
W-MeanAbs frequently identified more conserved path-
ways (Supplementary information, Figure S1). When 
setting top 80 as the cutoff, MeanAbs and W-MeanAbs 
identified 9 and 14 conserved pathways, respectively, 
with 8 of them being common to both methods (Table 
3). The 8 conserved pathways are mainly related to cy-
toskeleton regulation, cell motion, cancer signaling, p53 
signaling, and cellular synthesis (Table 3). The 6 path-
ways unique to W-MeanAbs are all known to be related 
to breast cancers or features common to cancers such 
as proliferation-related pathways: PDGF pathway [40, 

41], pancreatic cancer, downstream signal transduction 
(related to PDGF signaling [40, 41], see Reactome [10] 
for details), G2-M transition [42, 43], metabolism of 
nucleotides [44], and regulation of APC activators be-
tween G1-S and early anaphase [45-47]. The cell cycle 
checkpoint pathway unique to MeanAbs is also common 
to multiple cancers. Nonetheless, the reproducibility is 
obviously better in W-MeanAbs than in MeanAbs, which 
is essentially a required capability of pathway analysis 
methods.

Throughout the applications to various real datasets, 
we have shown that a weighted approach indeed offers 
an improved accuracy for pathways consisting of core 
genes and less relevant genes, as well as pathways with 
heterogeneous subgroups that have non-equivalent asso-
ciations to the pathway. The potential weighting bias due 
to involvement of multi-subunit proteins has been further 
corrected to improve reliability. With the breast carcino-
mas datasets, we have demonstrated the good reproduc-
ibility of our weighted approach, which would be useful 
for cross-dataset comparisons that are common in human 

Table 3 Conserved pathways in three breast cancer datasets
Class Abbr.		                       MeanAbs			    	               W-MeanAbs	
		      GSE14548	     GSE10780	     GSE3744	   GSE14548  	   GSE10780	    GSE3744
		     N	    R	   N	    R	   N	 R	   N	  R	   N	  R	    N	  R
C1	 AGR	 12.2	     1	 26.8	   15	 10.4	 33	 11.6	   1	 25.5	 29	   9.5	 50
	 AML	   9.4	   57	 25.8	   25	 10.4	 31	   9.4	 53	 24.6	 43	   9.5	 48
	 AXON	 10.2	   12	 28.2	     3	   9.5	 55	 10.3	   6	 27.8	   7	   8.7	 75
	 FOCAL	   9.2	   73	 25.9	   24	 11.6	 11	   9.3	 62	 25.3	 33	 10.9	 17
	 p53	   9.6	   35	 26.8	   14	   9.7	 52	   9.2	 76	 28.2	   5	   9.8	 35
	 CanPath	   9.6	   36	 26.6	   17	 10.7	 18 	   9.6	 32	 27.0	 15	 10.7	 19
	 ProCan	 10.2	   13	 27.0	   13	   9.8	 48	 10.1	   9	 26.4	 18	   9.6	 43
	 SynNucl	 10.4	     9	 25.3	   35	 12.6	   3	 10.0	 14	 26.1	 21	 12.1	   5
C2	 CelCyc	   9.1	   78	 25.9	   23	   9.5	 57	   8.9	 97	 26.5	 17	   9.7	 39
C3	 PDGF	   8.7	 110	 23.3 	   91	   9.8	 50	   9.1	 80	 24.2	 50	 10.7	 18
	 PanCan	   8.9	   87	 24.5	   49	 10.3	 35	   9.5	 48	 24.7	 42	   9.6	 41
	 DOWN	   9.3	   63	 23.0	 108	   8.8	 84	   9.3	 61	 23.7	 65	   9.3	 55
	 G2MT	   8.9	   89	 24.9	   42	 10.1	 39	   9.4	 56	 24.4	 46	   9.9	 32
	 MetaNucl	 10.6    	     6	 23.2	   93	 12.4	   5	 10.3	   7	 23.7	 62	 11.6	   7
	 APC	   9.8	   22	 24.0	   64	   8.8	 87	   9.8	 19	 24.0	 56	   8.9	 68
Top 80 pathways of the three breast datasets are used to identify the conserved ones. N: normalized pathway score; R: rank of pathway. 
C1: by both MeanAbs and W-MeanAbs; C2: by MeanAbs only; C3: by W-MeanAbs only.
Abbreviations for pathway names are as follows. AGR: AGR pathway (Biocarta); AML: acute myeloid leukemia (KEGG); AXON: axon 
guidance (KEGG); FOCAL: focal adhesion (KEGG); p53: p53 signaling pathway (KEGG); CanPath: pathways in cancer (KEGG); Pro-
Can: prostate cancer (KEGG); SynNucl: synthesis and interconversion of nucleotide di- and triphosphates (Reactome); CelCyc: cell cycle 
checkpoints (Reactome); PDGF: PDGF pathway (Biocarta); PanCan: pancreatic cancer (KEGG); DOWN: downstream signal transduction 
(Reactome); G2MT: G2/M transition (Reactome); MetaNucl: metabolism of nucleotides (Reactome); APC: regulation of APC activators 
between G1/S and early anaphase (Reactome). 
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disease studies.

Discussion

Unlike conventional pathway analysis approaches that 
reduced biological pathways to gene sets and adopted 
an implicit assumption on gene equivalence, we have 
recognized the prevalence of “constitutive non-equiva-
lence” within biological pathways. Two types of “non-
equivalence” might be involved: (1) biological non-
equivalence: this is supported by the prevalent presence 
of genes with non-equivalent “contributions” or “asso-
ciation strengths” to pathways, such as p53 as core gene 
in the p53 hypoxia pathway, as well as by the presence 
of non-equivalent subgroups in pathways, such as the 
“Basigin group” and “Pyruvate group” in the “pyruvate 
metabolism pathway”; (2) technical non-equivalence: 
this specifically refers to the potential misclassification 
of irrelevant genes in the curation process, as well as 
false positives in computational classifications, such as 
predicting disease prognosis signature genes from high-
throughput data. We took a relatively conservative way 
in retaining the pathway gene compositions even when 
some genes were poorly associated with other genes in 
the pathway, in case the network was not comprehensive 
and precise enough. This would improve the stability of 
gene weight estimations. A good robustness of the gene 
weights has been illustrated by network perturbations and 
topology-retaining network randomizations. Throughout 
this work, we have demonstrated that “a set of genes 
with non-equivalent weights” serves as a better model 
to account for the two types of intrinsic non-equivalence 
in both pathways and functional gene sets, as compared 
with the classical view of “a set of equivalent genes”. 
Integration of the constitutive gene weights into GSA 
allows us to develop a network-based gene-weighting 
approach for pathway analysis, as implemented in an R 
package named GANPA (http://cran.r-project.org/web/
packages/GANPA/index.html).

Recently, several algorithms have tried to demonstrate 
the possibility of incorporating topological information 
in pathway graphs into gene set significance analysis, 
notably Pathway-Express [48], SPIA [49], SEPEA [50] 
and PWEA [51]. Pathway-Express defines a pathway 
score summarizing gene set over-representation prob-
ability and a gene “perturbation factor” accounting for 
both expression alteration and directional linkages, 
which is revised in SPIA by removing the mingling ef-
fects of expression changes in the “perturbation factor” 
[48, 49]. Unlike Pathway-Express and SPIA, SEPEA and 
PWEA omit linkage directions in KEGG pathways [50, 
51]. SEPEA adopts two types of topological information, 

distances to terminal genes and inter-pathway distances, 
whereas PWEA considers only inter-gene distances [50, 
51]. These represent a recent research shift from the 
completely reduced gene set view of pathways to a more 
structural and functional view that is closer to real bio-
logical pathways. From this perspective, our work can be 
seen as among the similar research stream.

However, GANPA is unique in several aspects. The 
above four algorithms mainly touch the question of de-
signing a pathway statistic to combine structural infor-
mation and gene expression changes, while our method 
asks the question of weighting the non-equivalence of 
genes within pathways using a gene functional associa-
tion network based on multiple sources of datasets in-
cluding protein-protein interactions, co-annotations and 
gene co-expressions. As a network-based gene-weighting 
method, GANPA offers several notable advantages over 
the above four algorithms that rely on curated gene-gene 
linkages in KEGG. First, it is more general-purpose and 
widely applicable, as both pathways with graph represen-
tations (KEGG, WikiPathways, etc.) and pathways with 
gene compositions alone (Reactome, MSigDB, GO BP, 
PANTHER, etc.) can be used for weighted GSA. Second, 
the potentially misclassified genes by curation errors in 
pathway databases are likely to be automatically identi-
fied and down-weighted by integrating gene functional 
associations. Third, genes with many non-specific associ-
ations to other genes across various pathways are statisti-
cally readjusted in these pathways, by considering the 
whole association network in a hypergeometric model. 
This specificity seems not directly targeted by other algo-
rithms, although, from a different aspect, SEPEA uses a 
distance rule to make some control over genes with high 
non-specific associations [50].

It is also worth noting that GANPA provides a gener-
ally applicable solution to the “over-counting” issue as-
sociated with multi-subunit proteins, which is implicit in 
classical GSA. The fundamental cause of this problem is 
that subunit-encoding genes are regarded equivalent to 
protein-encoding genes in classical gene set significance 
analysis. This is especially critical when a pathway con-
tains a not-so-relevant multi-subunit protein with a num-
ber of subunit genes, as illustrated in the VEGF pathway 
example in this work. By combining both expressions 
and associations of subunit-encoding genes as a single 
component, we showed that GANPA works well for this 
issue in pathway analysis. 

With the simple but effective MeanAbs and its cor-
responding weighted form W-MeanAbs on various 
datasets ranging from the specific p53 data to a rela-
tively simple asthma disease, and to three studies on the 
complex breast cancer diseases, we demonstrated that 
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our gene-weighting approach is biologically sound and 
effective for diverse datasets, and highly reproducible 
for comparisons across different studies. Taken together, 
we designed a network-based statistical algorithm to ac-
count for the constitutive nonequivalence of genes within 
pathways, proposed a “weighted gene set” model for bio-
logical pathways that can be integrated with regular GSA 
methods, and demonstrated the feasibility of this novel 
general-purpose approach for pathway analysis, which is 
therefore of a methodological and biological significance 
for future research. 

Materials and Methods

Microarray data and preprocessing
The p53 dataset was downloaded from GSEA website (http://

www.broadinstitute.org/gsea/). The expression data were already 
collapsed to genes. If essential, we replaced negative or absent 
measures with the row median, and removed rows with non-pos-
itive values. We log transformed the scale for downstream analy-
sis. Asthma (GSE18965) and breast cancer datasets (GSE14548, 
GSE10780 and GSE3744) were downloaded from NCBI GEO 
database (http://www.ncbi.nlm.nih.gov/geo/). Raw data were pre-
processed with customized CDF [52] using the RMA method [53-
55]. 

Gene sets and gene functional association networks
Gene sets were downloaded from GSEA website (http://www.

broadinstitute.org/gsea/). To compare with pathways identified by 
other methods using the p53 data, we used the earlier version ac-
companied by the previous study [11], and for all other data, the 
version 3 gene sets (KEGG, Biocarta, Reactome) were used. Gene 
sets with inter-gene associations, gene weights and/or expres-
sion changes were visualized using Cytoscape [56, 57], an open-
source project for network visualization and analysis (http://www.
cytoscape.org/).

Gene association network FunCoup [31] version 1.1 was 
downloaded from website (http://funcoup.sbc.su.se). gNET was 
constructed de novo with PPIs, co-expressions and GO (gene on-
tology). For PPIs, the following databases are used: BioGrid (http://
thebiogrid.org), HPRD (http://www.hprd.org), DIP (http://dip.doe-
mbi.ucla.edu), MINT (http://mint.bio.uniroma2.it/mint), IntAct 
(http://www.ebi.ac.uk/intact) and Reactome (http://www.reactome.
org). Only PPIs with at least one PubMed reference are used. 
For co-expressions, we collected the raw data of 73 human gene 
expression microarray datasets (each >20 samples, see Supple-
mentary information, Data S2) consisting of 2 798 samples from 
NCBI GEO database, and only gene pairs with >0.8 (or <−0.8 for 
negative associations) Pearson’s correlation coefficient in at least 
5 datasets were extracted. None of the datasets used for pathway 
analysis throughout this work were included in generation of co-
expressed gene pairs to avoid potential bias caused by data reuse 
(Supplementary information, Data S2). For GO BP annotation re-
sources (GOA, September 2010), we discarded too general terms 
for specificity concerns, and extracted only gene pairs sharing at 
least one lowest-level BP term in the GO hierarchy graph (Supple-
mentary information, Data S1). By integrating the three types of 

gene associations, we obtained 1 278 362 unique gene pairs.

Network-based gene weighting in pathways
Suppose that the genome contains N total genes. Given a gene 

functional association network of this genome and a pathway S 
consisting of K genes, we have two variables to characterize the 
functional property of any gene Gi (i=1, 2, ..., K) in S: the number 
of associations between Gi and the K genes in S, designated as 
Xi, and the number of associations between Gi and the N genes 
in the genome, designated as Mi. Suppose that Gi has no specific 
functional associations with genes in S; then Xi is expected to 
follow a hypergeometric distribution,

with the expectation derived as

For gene Gi (i=1, 2, ..., K), the observed number of associations 
between S and it (Xi) is likely to be significantly larger than E(Xi), 
when there is a specific functional association between Gi and S. 
Therefore, we proposed to use a rescaled form of Xi-E(Xi) to quan-
tify the relative association strength Wi between Gi and S, 

		     wi=Xi-E(Xi),
		     Wi=loga(wiIA(wi) + a),
where IA is an indicator function for the positive subset A: (0, 

+∞) on R, and a is some appropriate scaling base for which we 
used 2. Notice that the weight Wi defined in this way has a mini-
mum value of 1, which is a basic-level weight for genes within a 
pathway (also see Results).

Non-weighted and weighted pathway significance tests
Gene expression microarray data are first summarized with 

a gene statistic, for example two-sample Student’s T statistic, to 
evaluate differential expression. For a gene set S consisting of 
genes Gi (i=1, 2, ..., K), the observed gene statistic can be obtained 
as Ti. Pathway statistic can be derived from the gene statistics. The 
MeanAbs and corresponding W-MeanAbs statistics are the follow-
ing:

The standard weighted form of GSEA (see original paper [11] 
for more details) and its corresponding W-GSEA statistics are as 
follows:
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treated with some appropriate method. We took the combination 
approach, in which gene-gene linkages were mapped to the protein 
level, with subunit-encoding genes integrated into a single compo-
nent. Both protein-encoding genes and subunit-encoding genes are 
weighted by calculating protein-level association strength between 
the gene and pathway, using exactly the same gene-weighting 
methodology described above. 
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