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 Molecular kinetics underlies all biological phenomena and, like many other biological processes, may best be un-
derstood in terms of networks. These networks, called Markov state models (MSMs), are typically built from physi-
cal simulations. Thus, they are capable of quantitative prediction of experiments and can also provide an intuition for 
complex conformational changes. Their primary application has been to protein folding; however, these technologies 
and the insights they yield are transferable. For example, MSMs have already proved useful in understanding human 
diseases, such as protein misfolding and aggregation in Alzheimer’s disease.
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Introduction

Much of today’s biological research is motivated by 
the desire to understand higher-order processes more 
fully. For example, our desire to understand human 
development and disease helps us to drive research on 
cell biology. In turn, our desire to understand cells has 
motivated us to understand signaling pathways and gene 
networks. At each of these levels, networks — entities 
connected by arrows based on their relationships to one 
another — have proven to be a valuable way of repre-
senting knowledge (Figure 1). 

Now our desire to understand the molecular underpin-
nings of biology and disease is motivating research into 
molecular kinetics. For example, it has recently been 
discovered that small oligomers of just a few Aβ peptides 
may be the toxic elements in Alzheimer’s disease [1]. 
Determining their structures could aid in designing drugs 
to prevent their formation, however, the structural het-
erogeneity of these oligomers makes accurate structural 
characterization with conventional methods difficult. 
Fortunately, computational modeling can capture both 
the dominant structures and dynamics of these molecules 

[2]. Another example is proteomics. Now that genomics 
has given us the sequence of the human genome, there 
is a push for high throughput structure prediction to ob-
tain the structures of all the proteins encoded therein. 
Information-based methods have proved useful for small 
globular proteins, but physical models (which capture 
both thermodynamics and kinetics) are likely required to 
push to systems like membrane proteins for which less 
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Figure 1 Example networks. (A) A signaling pathway with a 
cell (large green rectangle), proteins (colored ovals), a nucleus 
(dashed green circle), repression as blunted arrows, movement 
into the nucleus as a dashed arrow, and transcription as a solid 
black arrow. (B) The cell cycle with stages G1, S, G2, and M.
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structural data is available. Since the majority of drugs 
on the market target membrane proteins, such informa-
tion would again be valuable for designing therapeutics.

As in many other fields, networks are a valuable 
framework for representing knowledge of molecular 
kinetics. In particular, networks called Markov state 
models (MSMs) are proving to be a powerful means of 
understanding processes like protein folding and confor-
mational changes [3-12]. The power of MSMs derives 
from the fact that they are essentially maps of the con-
formational space accessible to a system. That is, like a 
road map with roads labeled with speed limits and cities 
labeled with populations, MSMs give the probability 
that a protein or other molecule will be in a certain set 
of conformations (called a state or node) and describe 
where it can go next and how quickly. Figure 2 shows 
a portion of an MSM as an example. Examining these 
maps can give tremendous insight into processes like 
protein folding and could even suggest how to manipu-
late these processes with small molecules, mutations or 
other perturbations. Models with sufficient resolution can 
also yield quantitative agreement with, or even predic-
tion of, experimental observables like folding rates and 
structures [4-6]. 

MSMs are typically constructed from simulation tra-
jectories (i.e. series of conformations that were visited 
one after another in a physical simulation of a system, 
like a protein) [4, 5, 10, 12-14]. Because of the temporal 
relationship between conformations in a trajectory, it is 
possible to group conformations that can interconvert 
rapidly into states and then determine the connectivity 
between states by counting the number of times a simu-
lation went from one state to another. By employing 
these kinetic definitions, one ensures that the system’s 
dynamics can be modeled reasonably well by assuming 
stochastic transitions between states [3-7, 10, 11, 13, 15]. 
Thus, it is possible to perform analyses, such as identify-
ing the most probable conformations at equilibrium. In 
addition, one can naturally vary the temporal and spatial 
resolution of an MSM by changing the definition of what 
it means to interconvert rapidly or slowly [4, 5, 15-17]. 
By choosing a long timescale cutoff, one can obtain hu-
manly comprehensible models with just a few metastable 
(or long-lived) states that capture large conformational 
changes, like folding. Such coarse-grained models are 
useful for gaining an intuition for a system. With a short 
timescale cutoff, on the other hand, one can obtain a 
model with many states. By using such high-resolution 
models, one sacrifices ease of comprehension for more 
quantitative agreement with experiments [4, 5, 18].

To date, MSMs have mostly been used to understand 
phenomena like peptide and protein folding [4, 5, 13, 
17, 19-23], RNA folding [6, 16], and conformational 
changes [8, 9, 24]. Having been validated by these stud-
ies, they are now being applied to important topics in 
human health. Examples include protein aggregation in 
Alzheimer’s disease [2] and vesicle fusion [25], an im-
portant step in influenza infection.  

The remainder of this review will be divided into 
four major sections. First, we review the application of 
MSMs to biomolecular folding, one of the driving prob-
lems behind the development of this technology. The 
next section focuses on the application of MSMs to hu-
man health, particularly protein misfolding diseases and 
influenza. This is followed by a review of MSM method-
ology and a discussion of efficiently capturing long tim-
escales with short simulations and MSMs in the last two 
sections.

Protein and RNA folding

Protein folding is one of the biological problems that 
has driven the development of MSMs. From a biophysi-
cal point of view, it is simply amazing how proteins 
collapse to specific structures so quickly given the as-
tronomical number of possible conformations they can 

Figure 2 An example MSM for the villin headpiece. Shown here 
are four clusters of conformations automatically identified by 
MSMBuilder. Each cluster represents a state of the villin protein. 
Arrows indicate transitions between states, also identified by 
MSMBuilder. The group or cluster representing the native state 
(right-most) was accurately identified. Its members match the 
crystal structure (shown in darker blue and magenta) with an 
average root mean square deviation (RMSD) of 1.8 Å. Courtesy 
of Joy Ku and Gregory R. Bowman, reproduced with permission 
from Biomedical Computation Review.
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adopt. From a biomedical point of view, understanding 
folding is an important first step towards understanding 
and preventing misfolding, as in Alzheimer’s and Hun-
tington’s diseases [26]. Better models for protein folding 
could also allow more efficient structure prediction [27, 
28], aiding high-throughput proteomics initiatives. 

Unfortunately, understanding protein folding is notori-
ously difficult. Much experimental work has been done 
to characterize protein folding, but no experiment can 
capture the dynamics of an entire system with atomic 
resolution in order to provide a complete picture of the 
process. Computer simulation has the potential to fill 
this void, but reaching biologically relevant timescales 
with sufficient (atomic) resolution is extremely challeng-
ing [29], and even with an infinitely long simulation one 
would still need a way to extract meaningful information 
from it. MSMs can overcome these issues by performing 
a kinetic clustering of conformations to provide maps of 
a system’s conformational space and extracting long tim-
escale dynamics from many short simulations [4, 5, 10, 
13, 30], similar to the way relay runners can cover large 
distances despite the fact that each runner only goes a 
little way. As explained in the section ‘Reaching biologi-
cally relevant timescales with MSMs’, MSMs may even 
be used to direct simulations to where they are needed 
most (via adaptive sampling) to efficiently explore the 
conformations that a molecule can adopt [6, 31-33].

Many of the initial applications of MSMs have been to 
small peptides due to the challenges of simulating larger 
proteins [12, 13, 17, 20-22, 34, 35]. For example, some 
of the fundamental methods were laid out by Singhal et 
al. [36] in an early work on a tryptophan zipper β hair-
pin. In another noteworthy example, Chodera et al. [13] 
developed and applied one of the first automated meth-
ods for building MSMs to a number of small systems. 
Buchete and Hummer[21] have also demonstrated how 
to tune MSMs to obtain models with varying degrees of 
coarse graining.

In one of the first forays into full protein systems, Jay-
achandran et al. [37] constructed an MSM for the villin 
headpiece. Villin was selected because it has a hydro-
phobic core and tertiary contacts, which make it a real 
protein rather than just a peptide, but is still extremely 
small and fast folding [38, 39]. Villin only has ~35 resi-
dues and folds on the microsecond timescale, whereas 
most proteins have a hundred or more residues and fold 
on millisecond to second timescales; thus, villin is more 
amenable to computer simulations, which are generally 
no longer than tens of microseconds. 

Villin was also the first target to be studied by auto-
mated methods [4], mainly the MSMBuilder package 
[15], which is now freely available on the web (https://

simtk.org/home/msmbuilder/). This new MSM, a portion 
of which is depicted in Figure 2, was validated by show-
ing that it is capable of reproducing the raw simulation 
data. Moreover, it also yields reasonable agreement with 
experimental measurements. For example, based on free 
energies calculated from the model, it was possible to 
predict the native structure to within 2 Å of the X-ray 
crystal structure (Figure 2). This was a significant ad-
vance since the native state of a system is determined by 
the lowest free energy state, yet most structure prediction 
algorithms are still based on identifying low-energy con-
formations due to the difficulties inherent in calculating 
the entropic component of free energies [40, 41]. Mak-
ing predictions based on free energies will be especially 
important for more complex systems, like inherently dis-
ordered proteins, where the lowest energy state may not 
be the lowest free energy state. The longest timescales in 
our villin MSM were also consistent with experimentally 
measured folding rates [4]. Capturing these rates is criti-
cal because most experimental observables can be de-
rived given complete knowledge of the relevant rates and 
a few conformations from each state. 

Similar methods have also been used to study the Pin-
WW domain [5]. This small protein consists of a three-
stranded β-sheet and is another common model system 
for protein folding studies [42]. One important contribu-
tion of this work was a method for probing the equilib-
rium ensemble of folding pathways, which is based on 
transition path theory [43] and related methods [44]. This 
study also revealed numerous parallel folding pathways, 
as well as misregistered trapped states which slow the 
folding process.

MSMs have also been applied to the related problem 
of RNA folding [6, 16]. This research has been driven by 
recent developments demonstrating that RNA does more 
than convey information from DNA to proteins and, like 
proteins, often must fold into specific three-dimensional 
shapes to accomplish these roles [45]. The ribosome is 
a noteworthy example; however, it is far too large to 
sample exhaustively. Thus, simulations have tended to 
focus on small motifs, like RNA hairpins [46, 47]. RNA 
hairpins are composed of a double helix stem capped by 
a short loop. Despite their small size, they play many 
important roles. They are ubiquitous in known RNA 
structures, may serve as nucleation sites for the folding 
of larger molecules and play important roles in RNA-
RNA and RNA-protein interactions [46, 48]. In the past, 
generalized ensemble simulations have been used to try 
to understand the thermodynamics of RNA hairpins [46, 
49, 50]. More recent work has begun to apply MSMs to 
capture both their thermodynamics and kinetics, showing 
that current force fields are at least sufficient to identify a 
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hairpin as the native state and get the order of magnitude 
of the folding rate correct [6, 16].

Other studies have also used MSMs to try to under-
stand phenomena like downhill folding [51], conforma-
tional changes in membrane proteins [9], the effects of 
mutations [52], proton pumping [53] and human disease 
(to be discussed in the next section). However, most of 
the work on protein and RNA folding has focused on 
methods development and validation. In the coming 
years, it will be exciting to identify common features in 
protein free energy landscapes, explain exactly how pro-
teins are able to fold so quickly and elucidate the origins 
of experimental observables. Capturing longer timescales 
(i.e. milliseconds to seconds and beyond) will be crucial 
for these future developments. An important step in this 
direction is a recent work that was able to capture the 
folding of NTL9 [54], an α/β protein that folds on the 
millisecond timescale [55]. Further application to other 
biomolecules should also prove fruitful.

MSMs and human health

Protein folding is not the only process that is difficult 
to characterize experimentally. Inherent disorder in pro-
cesses like aggregation and vesicle fusion also makes 
them good candidates for study with MSMs. Again, 
experimental studies of these systems have limited reso-
lution. Computer simulations can provide atomic-level 
descriptions of their dynamics and, with MSMs, reach 
the relevant timescales. 

One particularly noteworthy example of applying 
MSMs to human disease is a recent work on Aβ aggre-
gation, which plays an important role in Alzheimer’s 
disease [1, 2]. Aβ is extremely difficult to work with 
experimentally; however, with computer simulations 
and MSMs, Kelley et al. [2] were able to obtain models 
with atomic resolution capable of capturing dynamics on 
tens of seconds timescales.  To accomplish this feat, they 
first ran atomistic simulations of encounter complexes 
with varying numbers of monomers. An MSM was 
then constructed from this data using state definitions 
based on physical intuition (e.g. based on the number of 
monomers, dimers, trimers and tetramers). To achieve 
experimentally relevant concentrations of Aβ, they then 
added a diffuse state and rates of transitioning between 
this state and encounter complexes were calculated using 
an analytic diffusion theory. This model, a schematic of 
which is shown in Figure 3, was found to give reasonable 
agreement with experimentally measured rates, a tremen-
dous achievement given that standard simulations are 
about six orders of magnitude shorter than the relevant 
timescales. The MSM also gave important mechanistic 

insight into Aβ aggregation. In particular, the authors 
identified a reasonably populated C-terminal β-hairpin 
that was the main source of interactions between ag-

Figure 3 Markovian model for Aβ oligomerization. Our model 
was built using the different aggregation states as the Markov 
states; in a system with four chains, there are five such states: 
four monomers (MMMM), two monomers and one dimer (MMD), 
two dimers (DD), one monomer and one trimer (MT), and finally, 
one tetramer (Q). In addition, to include the effects of low con-
centration found experimentally, we discriminate EC states (in 
which states are close) from separated states. The rate-limiting 
steps in the aggregation process are shown as dotted lines. The 
numbers associated with the transitions are transition probabili-
ties. The significant figures were determined from the uncertain-
ties in the transition probabilities. Some transitions with very 
low probability have not been shown for the sake of clarity. Re-
printed with permission from Kelley NW, Vishal V, Krafft GA, & 
Pande VS, J Chem Phys, 129, 214707, 2009. Copyright 2009, 
American Institute of Physics.
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gregated peptides, leaving the N-termini exposed to the 
solvent. The exposure of the N-termini to solvent makes 
them more accessible for binding with other molecules, 
explaining why antibodies targeting the N-terminus tend 
to have higher binding affinities than those targeting the 
C-terminus. 

In another example, MSMs were used to study vesicle 
fusion [25]. Vesicle fusion is important for processes 
like infection by enveloped viruses (e.g. in influenza); 
however, their large size and slow timescales make them 
inaccessible to standard computer simulations. Typi-
cal simulations have ~10 000 atoms and reach tens of 
nanoseconds timescales, but understanding vesicle fu-
sion requires reaching hundreds of microseconds times-
cales for systems with over 500 000 atoms. Once again, 
a combination of simulations with MSMs was able to 
overcome these limitations, leading to important mecha-
nistic insights. First, vesicles were found to fuse via two 
pathways: a fast pathway wherein two vesicles become 
connected by a short stalk and then rapidly fuse, and a 
slow pathway in which the stalk state transitions to a 
strongly metastable hemi-fused state before finally fus-
ing. In a later work, the authors were even able to probe 
the dependence of the relative probabilities and rates of 
these pathways on the lipid composition of the vesicles 
involved [56].

Other human diseases are also excellent candidates for 
study with MSMs. For example, thousands of short sim-
ulations have already been performed for the Huntingtin 
protein [57] and the influenza hemagglutinin fusion pep-
tide [58]. Thus, these systems are prime for study with 
adaptive methods [6, 31, 32], which allow one to build 
an initial MSM with available simulation data and then 
refine it by running new simulations from each state. 

MSM methodology

The dynamics of proteins and other molecules are 
governed by the system’s underlying free energy land-
scape. Much like hikers on a natural landscape, proteins 
prefer to stay in the valleys of their landscape and only 
rarely (and generally slowly) cross over the barriers and 
peaks between valleys. MSMs are essentially maps of 
such landscapes [3-7, 10, 13, 15, 19]. However, whereas 
road maps have cities connected by roads labeled with 
speed-limits, MSMs have conformational states (sets of 
conformations in the same valley) connected by edges la-
beled by the probabilities of transitioning between them. 

While MSMs may be visualized as networks, as in 
Figure 2, computers represent them as transition prob-
ability matrices (P) [3, 7], where the entry in row i and 
column j (Pij) gives the probability of transitioning from 

state i to state j in an interval called the lag time of the 
model (τ). The probability of being in any state at a par-
ticular time can be represented as a vector, v(t). The time 
evolution of v(t) can then be calculated using

ν(t + τ) = ν(t)P(τ)                                                       (1)

where P(τ) is a transition matrix with lag time τ and 
each multiplication advances the model through time by 
one lag time. 

The eigenvalue/eigenvector spectrum of a transition 
probability matrix gives important thermodynamic and 
kinetic information [3, 7]. For example, the first eigen-
value always has a value of one and the corresponding 
eigenvector gives the equilibrium probabilities of all the 
states. Subsequent eigenvector/eigenvalue pairs give 
information about sets of states that interconvert on the 
same timescale and the rates at which these transitions 
occur. For example, a rate can be calculated from an 
eigenvalue using

k =     -τ                                                                      (2)
      ln(μ)

where µ is an eigenvalue, τ is the lag time, and k is a 
rate. This equation comes from the equivalence between 
discrete time MSMs and continuous time master equa-
tions (see Refs [10] and [13] for details). Using these 
properties and a few representative conformations from 
each state, it is possible to compute experimental observ-
ables [4, 5]. One can even put error bars on these proper-
ties using Bayesian statistics [59, 60].

MSMs are straightforward to work with once you 
have a valid state definition (one yielding Markovian be-
havior). One simply has to assign conformations to these 
states and represent trajectories as a series of state as-
signments rather than as a series of conformations. One 
can then simply count the number of transitions between 
pairs of states and store these values as a transition count 
matrix (C), where the entry in row i and column j (Cij) 
gives the number of observed transitions from state i to 
state j. One can then obtain a transition probability ma-
trix (P) by normalizing each row of the transition count 
matrix. From P, one can then calculate all the eigenval-
ues, eigenvectors and observables they desire.

The most challenging part of building MSMs is identi-
fying a good state decomposition. A good state decompo-
sition should group conformations that can interconvert 
rapidly into the same state because this implies that they 
are not separated by a significant free energy barrier. 
Conformations that cannot interconvert rapidly, however, 
should be separated into different states because they are 
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likely separated by a significant free energy barrier. 
Practically speaking, it is neither possible nor desir-

able to determine the rate (or equivalently the probabil-
ity) of transitioning between two conformations. Rather, 
one must consider the rates of transitioning between sets 
of conformations. To understand this, one can imagine 
trying to measure how long it takes to get home from 
work. You could measure the time it takes to get from 
the front doorway of your office to the front doorway of 
your home. However, it would likely be more appropri-
ate to measure the time it took you to get from anywhere 
in your work place to any point in your home, regardless 
of whether you left work through the stairwell door and 
entered your home through the front door or left work 
through the main door and entered your home through 
the garage door. In the same spirit, measuring the transi-
tion rates between sets of kinetically equivalent confor-
mations is more meaningful than measuring the transi-
tion rates between individual conformations.

In the case of MSMs, one often obtains initial sets of 
conformations by clustering them into microstates based 
on geometric criteria (Figure 4), with the objective of 
having conformations within a given microstate be so 
similar that their geometric similarity implies a kinetic 
similarity [10, 13, 15]. This initial decomposition may 
be ideal for making quantitative comparisons with ex-
periments [4, 5, 18]. To gain an intuition for the system, 
kinetically related microstates can then be lumped into 
macrostates to ensure a direct connection to the underly-
ing free energy landscape (e.g. identify various valleys 
and how quickly one can get from one to another) [10, 
13, 15]. For example, in an earlier automated algorithm, 

one first generated a set of microstates, lumped them into 
macrostates using a method called PCCA [61], and then 
iteratively broke the macrostates up into new microstates 
and re-lumped them until convergence [13]. A more re-
cent automated algorithm (MSMBuilder), which is now 
freely available at https://simtk.org/home/msmbuilder/, 
avoids any iteration by using a different clustering al-
gorithm to obtain finer clusters and then doing a single 
round of lumping using either PCCA or an improved 
method, called PCCA+ [62, 63]. This procedure is out-
lined schematically in Figure 4. 

Regardless of how an MSM is built, it is necessary to 
choose a lag time and validate the final model. Checking 
that the implied timescales of the model level off as the 
lag time is increased is a first indication that a given state 
decomposition is reasonable and allows one to choose 
a lag time (the lag time at which the implied timescales 
first level off should be chosen) [64]. Intuitively, this 
equates to checking that the slowest rates (often on the 
order of hundreds of nanoseconds or greater) are invari-
ant with respect to the interval at which you count transi-
tions (often on the order of ten nanoseconds or less). Un-
fortunately, evaluating where the implied timescales of a 
model level off is extremely subjective and new methods 
are needed to replace this criterion. Some new methods 
employing information theory and Bayesian statistics 
point to how this may be done [59, 65]. Once a lag time 
has been selected, the transition probability matrix can 
be calculated and used to further validate the MSM by 
comparing its dynamics to the raw simulation data (the 
Chapman-Kolmogorov test) [4, 5, 13].

Another important question is how many macrostates 

Figure 4 Schematic representation of the steps required for building an MSM and obtaining representative conformations 
for each state. First, Generalized Ensemble (GE) data (or other data for that matter) represented by points are grouped into 
microstates represented by circles, with darker circles for more highly populated microstates. Kinetically related microstates 
are then lumped together into macrostates or metastable states, represented by amorphous shapes. Finally, representative 
conformations are obtained by extracting the most probable conformation from each macrostate. Reprinted from Methods, 
49, Bowman, GR, Huang, X, Pande, VS, Using generalized ensemble simulations and Markov state models to identify con-
formational states, 197-201, Copyright (2009), with permission from Elsevier.

GE Date                                   Microstates                               Macrostates                            Rep. Confs.

Conformation 1

Conformation 2
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to construct when building a model to gain some intu-
ition for a system. In the past, researchers have chosen a 
number of macrostates based on gaps in the implied tim-
escales [10, 13, 15]. Doing so imposes a separation of ti-
mescales – fast intrastate transitions, slow interstate tran-
sitions – that should give rise to Markovian behavior, i.e., 
the next state a trajectory visits should be independent of 
its history because it should be able to enter a state and 
quickly lose memory of where it came from before tran-
sitioning to a new state. However, recent work has shown 
that there is often a continuum of timescales without any 
obvious gap. Thus, the number of macrostates has come 
to be seen as a tunable parameter that can be adjusted 
based on one’s objectives [4, 5, 18]. For example, to gain 
an intuition for a system one may desire to lump a data-
set into as few states as possible, while still preserving 
the Markov property and reasonable agreement with the 
raw simulation data.

Reaching biologically relevant timescales with 
MSMs

An important advantage of MSMs is their ability to 
capture long timescale dynamics from many short simu-
lations [4, 5, 9, 15, 21, 30]. Traditional approaches to 
molecular simulation require global equilibration, i.e., 
each simulation must be orders of magnitude longer than 
the slowest relaxation process so that every possible tran-
sition can be observed multiple times [66]. In contrast, 
MSMs only require local equilibration [6], i.e., each 
simulation only needs to be long enough to equilibrate 
within a subset of all the possible states. One can then 
obtain a global model by statistically stitching together 
many short, parallel simulations covering different parts 
of the conformational space, much like creating a quilt 
from many small patches or relay runners covering long 
distances. 

Adaptive sampling algorithms take this reductionist 
approach a step further [6, 31, 32]. In adaptive sampling, 
one first obtains an initial model and then uses Bayesian 
statistics to calculate the contributions of each state to 
statistical uncertainty in some observable of interest, like 
the rate of the slowest process. A new round of simula-
tions is then started from these states in order to increase 
the model precision as efficiently as possible. Thus, one 
avoids running more simulations where they are unnec-
essary while gathering more data where it can be of most 
use. Work with toy models has shown that performing 
multiple rounds of adaptive sampling can quickly refine a 
model [31]. Indeed, it has recently been shown that adap-
tive sampling can reduce the wall-clock time necessary 
to achieve a given model quality by a factor of N, where 

N is the number of parallel simulations run during each 
iteration [33]. Adaptive sampling can also reduce the 
total computer time necessary for a given model quality 
by a factor of two [33]. An exciting future direction will 
be to apply adaptive sampling to real systems of biologi-
cal significance that are currently beyond the reach of 
computer simulations, like conformational changes in 
transcription elongation [67]. 

Even with adaptive sampling, however, MSMs are not 
without their limitations. For example, it is still unclear 
how to distinguish systematic errors from statistical un-
certainty and correct for them too. Furthermore, while 
MSMs are excellent for describing free energy land-
scapes in terms of their basins, capturing transition states 
can also be quite important for understanding the mecha-
nisms of conformational changes [46]. Recent work on 
the application of topological methods to understanding 
free energy landscapes shows how to capture such tran-
sition states [46, 68]. Indeed, progress on combining 
MSMs and topological methods to capture both free 
energy basins and transition states is already yielding 
insight into processes like RNA folding [16]. Moderate 
speedups may also be achieved by building MSMs from 
generalized ensemble simulations [6, 11, 15, 69], which 
perform a random walk in temperature to take advantage 
of broad sampling at high temperatures to improve mix-
ing between states at lower temperatures [70, 71].

Concluding Remarks

MSMs are a powerful means of mapping out the con-
formational space of both macromolecules and macro-
molecular complexes. While much of the literature on 
MSMs has focused on methods development and valida-
tion, they have already provided important insights into 
processes like protein folding, aggregation and vesicle 
fusion. Further progress in this direction will likely have 
important medical benefits, both by providing a deeper 
understanding of the molecular phenomena underlying 
higher-order biological processes (and especially human 
disease) and by allowing more effective drug and protein 
design. Methodological advances in the use of MSMs 
could also prove useful in systems biology and eventu-
ally find application in other fields relying on network 
representations, such as the study of gene networks and 
signaling pathways.
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