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Dear Editors,

More and more genetic variants which contribute 
to human complex traits were identified recently in 
genome-wide association studies (GWAS), an approach 
that shows more efficiency than any other genetic ap-
proaches ever before [1]. It holds the promise to disclose 
genetic mechanism underlying the mystery of human 
diseases, since the most, if not all, of the genetic variants 
in the human genome could be investigated for their pos-
sible association with diseases by comparing the frequen-
cies of alleles in the cases (patients) and controls (healthy 
subjects).

In GWAS, statistical power is the principle issue in the 
design of studies [2]. The statistical power of a study in-
dicates the probability of identifying the risk locus if it is 
the one. Keeping a larger sample size of normal controls 
and cases is usually considered in order to achieve higher 
statistical power in association studies. Shared control 
for different studies, or common control, is a possible 
solution to achieve a large sample size, and the effort and 
cost of genotyping different sets of controls could also 
be reduced. Shared control has been successfully used 
in GWAS project [2]. However, this design may be im-
peded by the presence of population stratification in the 
cases as well as controls. 

A slight genetic background difference between cases 
and controls is sufficient to inflate type I error rate [3], 
therefore, could drastically increase false positive results. 
Several different methods have been proposed to detect 
population stratification and to control the false positive 
rate for association studies with stratified samples [4-7]. 
All these approaches have shown some success in con-
trolling the type I error rate.

Population stratification also affects statistical power 
in association studies. In a stratified population, hidden 
divergence among sub-populations leads to serious pow-
er changes when disease prevalence of sub-populations 
correlates with risk allele frequency and other population 
parameters [8]. Even for family-based association test 

(FBAT), power can be heavily affected by population 
differentiation since the estimated weights of families 
might provide poor approximation of the true theoretical 
optimal weights [9], even though the type I error rate in 
FBAT is little affected by the population stratification.

Population stratification is known to exist in Chinese 
populations across geographic area. Multiple studies sug-
gested consistently the presence of a significant bound-
ary between the populations of north and south in China 
[10, 11]. The genetic heterogeneity, therefore, poses a big 
challenge to association studies in Chinese populations 
[12], which can not be lightly ignored especially in light 
of the upcoming efforts of conducting large scale GWAS 
using a shared control design in China.

To investigate the magnitude of the divergence be-
tween representative Han populations in China, we con-
ducted a genome-wide study including 1 987 Han indi-
viduals (representing both Southern and Northern Han) 
from 14 populations across China (Beijing, Shandong, 
Anhui, Shanghai, Zhejiang, Jiangsu, Guangdong, Taiwan 
etc.). Genetic divergence (measured by Fst) between 
paired populations are in a range from 0.0002 to 0.007 
with an average of 0.003. Principle component analysis 
indicated that Han Chinese populations could be classi-
fied into three groups, i.e., Northern Han, Southern Han 
and Han from Zhejiang, Jiangsu & Shanghai, respective-
ly. The average pairwise genetic divergence between any 
of the three groups is approximately 0.003.

 The knowledge of genetic heterogeneity in Chinese 
populations laid a foundation for achieving a better, if 
not optimal, design of GWAS with shared controls. A 
better design is expected to yield higher power for a giv-
en sample size, which was calculated using a simulation 
algorithm throughout this study, given a predefined type 
I error (0.05) and other population parameters including 
sample size. The simulation algorithm incorporated a hi-
erarchical model to address genetic divergence in multi-
source scenarios. Given a risk allele frequency pA and ge-
netic divergence (Fst), allele frequency of each subpopu-
lation pi

A were generated randomly in a beta distribution 
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with mean pA and variance pA(1-pA)Fst. Statistical power 
on the given type I error (0.05) can be calculated for dif-
ferent study designs when the risk allele frequencies of 
subpopulations and other parameters were known (such 
as sampling strategy, prevalence of disease and relative 
risk of risk allele etc.) [8].

Since most of the patient samples, i.e., cases, were 
pre-collected from large hospitals in cosmopolitan areas, 
it is sensible to assume that they often come from mul-
tiple but unknown sources or subpopulations. To sim-
plify the demonstration of the results, we first consider 
4 000 patients from four different areas (1 000 cases per 
population). The overall size of the control group is fixed 
(8 000) for different designs (Figure 1). The divergence 
among populations is set to Fst = 0.003, the relative risk 
of the risk allele is 1.2 and disease prevalence is 0.1 for 

Figure 1 Performances of shared controls with different 
designs (A) Power increases with increase of sources in 
multi-source control design. Statistical power was shown 
on the y-axis and sampling strategies were addressed 
in figures under the x-axis respectively. Case group was 
showed in red and control group was presented in green. 
(B) Relative power increases of two different common 
control designs. The relative power increase was defined 
as the ratio of powers of the current designs over Design 
1 of the same series. Statistical power was shown on 
the y-axis and sampling designs were presented on the 
x-axis. For presentation of the designs, case group was 
marked in red and control group was shown in green.

all the populations. Statistical power was evaluated with 
two different risk allele frequencies (0.3, 0.1) and type I 
error rate was controlled in 0.05 with a method similar to 
genomic control.

For both risk allele frequencies, we showed that power 
increases with increasing sources of controls (Figure 
1A), and the single-source control yields the lowest 
power. Even when the case and control are completely 
miss-matched, statistical power of a multi-source de-
sign is still higher than the single-source one, although 
partially matched controls could deliver an even better 
performance. It should be noted that a perfect match can 
hardly be achieved given the complexity of the sources 
of patients in China. 

Another question of utmost importance is whether the 
shared control could benefit future association studies in 
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which the diversity of the sources of samples is expected 
to increase. To address this question, we investigated 
the power change assuming that 1 000 new cases will be 
added for each new study (Figure 1B). At a worse scenar-
io, the new cases will come from the source not overlap-
ping with those of the controls. The frequency of the risk 
allele was set to 0.1, while other parameters were taken 
as before. Two series of study designs were compared: 
one with single-source control of 8 000 subjects and the 
other with a control from four sources (2 000 subjects 
per source). The results of relative power are presented 
in Figure 1B which was defined as the ratio of powers of 
the current designs over Design 1 of the same series. The 
multi-source designs out-performed the single-source 
designs in terms of gain of power. We also observed that 
the power continually improves with increasing sources 
of new subjects for both types of designs. However, the 
power increase was nearly stopped for the single-source 
control design when number of studies is more than 3 
(Design 4-6), while the multi-source control design con-
tinues to gain more statistical power. This result demon-
strates that not much power can be scratched in a ‘bad’ 
design by recruiting more patients for the study. 

To summarize, this study showed that a good design of 
shared control for Han Chinese should include samples 
from multiple sources. A good multi-source design will 
not only benefit GWAS study using the existing cases 
but also the future studies when more patient samples are 
added. 
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