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 Alterations in oxidative phosphorylation resulting from mitochondrial dysfunction have long been hypothesized 
to be involved in tumorigenesis. Mitochondria have recently been shown to play an important role in regulating 
both programmed cell death and cell proliferation. Furthermore, mitochondrial DNA (mtDNA) mutations have 
been found in various cancer cells. However, the role of these mtDNA mutations in tumorigenesis remains largely 
unknown. This review focuses on basic mitochondrial genetics, mtDNA mutations and consequential mitochondrial 
dysfunction associated with cancer. The potential molecular mechanisms, mediating the pathogenesis from mtDNA 
mutations and mitochondrial dysfunction to tumorigenesis are also discussed.
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Introduction

Mitochondria are ubiquitous organelles in eukaryotic 
cells whose primary role is to generate energy supplies in 
the form of ATP through oxidative phosphorylation [1]. 
The oxidative phosphorylation chain is composed of five 
protein complexes: NADH-ubiquinone oxidoreductase 
as complex I, succinate-ubiquinone oxidoreductase as 
complex II, ubiquinone-cytochrome c oxidoreductase as 
complex III, cytochrome c oxidase as complex IV and 
ATP synthase as complex V. Oxidative phosphorylation, 
defined as the oxidation of electron-carriers by oxygen 
and concomitant ATP production, provides 90% of the 
cellular chemical energy required in various biological 
functions. Recent studies have also shown that mito-
chondria play a central role in apoptosis [2, 3] and cell 
proliferation [4]. Mitochondria are also major factors in 
modulating calcium signaling [5, 6], which is a universal 
second messenger.

Over the last 20 years, mitochondrial dysfunction, in-
cluding that associated with mtDNA mutations, has been 

identified in human diseases, including seizure, ataxia, 
cortical blandness, dystonia, exercise intolerance, oph-
thalmoplegia, optic atrophy, cataracts, diabetes mellitus, 
short stature, cardiomyopathy, sensorineural hearing loss 
and kidney failure [7, 8]. Large rearrangements or dele-
tions of the mitochondrial genome and about 200 point 
mutations, including those in genes encoding proteins for 
subunits of complex I, III, IV and V, rRNAs and tRNAs, 
have been linked to a variety of clinical disorders [9, 
10]. Accumulation of mtDNA mutations has also been 
suggested to play a major role in aging and the develop-
ment of various age-related degenerative diseases [11]. 
Interestingly, high levels of mtDNA mutations have been 
found in many tumors and cancer cells [12-14].

Mitochondrial genome and mitochondrial genetics

The mammalian mitochondrial genome is a double-
stranded circular DNA of ~16 500 nucleotides [15, 16]. 
It contains 37 genes encoding 13 peptides for the oxida-
tive phosphorylation apparatus, as well as 22 tRNAs and 
2 rRNAs essential for protein synthesis within mitochon-
dria. Besides these coding regions, a displacement loop 
(D-loop) is also present which contains elements regulat-
ing mtDNA replication and transcription.

Most mammalian cells contain hundreds or thousands 
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of copies of mitochondrial genomes [1]. Since mtDNA 
is in the proximity of reactive oxygen species (ROS) 
generation sites (the byproduct of oxidative phosphoryla-
tion) and mitochondria have relatively less sophisticated 
DNA protection or repair systems, mtDNA is therefore 
vulnerable to high mutation rates [8]. As a result, the 
mtDNA within a cell could be a blend of both wild type 
and mutant species, a condition called ‘heteroplasmy’. 
The normal situation, in which all mtDNAs are identical, 
is referred to as ‘homoplasmy’. The neutral polymor-
phisms are most likely homoplasmic, whereas the patho-
genic mutations are usually heteroplasmic in nature. It 
is expected that, due to the multiplicity of mitochondrial 
genomes in each cell, a threshold of mutant mtDNA must 
be reached before cellular dysfunction caused by defec-
tive mitochondria becomes apparent.

Because mtDNA replication and segregation are not 
synchronized with nuclear DNA, daughter cells from the 
same progenitor could have different mtDNA genotypes 
[8]. When the pathogenic threshold is surpassed in cer-
tain cells, the phenotype would change. This explains 
the time-related and tissue-specific variability of clinical 
features displayed in mtDNA-related disorders.

Warburg hypothesis and abnormal mitochondria 
in cancer cells

Cancer cells constitutively upregulate glucose me-
tabolism, even in the presence of abundant oxygen, and 
synthesize ATP mainly through ‘aerobic glycolysis’, a 
metabolic state that is linked to high glucose uptake and 
lactate production. To explain the fact that cancer cells 
were high in fermentation and low in respiration, War-
burg [17] proposed that cancer originated from a non-
neoplastic cell that adopted anaerobic metabolism as a 
means of survival after injury to its respiratory system, 
which led to the notion that tumors were initiated by per-
sistent damage to the mitochondria. Since then, changes 
in the number, shape and function of mitochondria have 
been reported in various cancers [18]. The bioenergetic 
switch from mitochondrial oxidative phosphorylation to 
glycolysis has been suggested to be a marker of tumor 
development or the bioenergetic signature of cancer [19-
21]. Furthermore, mitochondrial dysfunction has been 
shown to initiate critical signaling pathways that regulate 
cell growth [4, 22]. Recent studies suggested that de-
fects in mitochondrial respiration led to elevated levels 
of NADH, which could subsequently inactivate PTEN 
through a redox modification mechanism [23]. Inhibition 
of PTEN could activate protein kinase B (Akt) [23], and 
Akt was shown to enhance glycolysis, possibly through 
the effects on its key rate-limiting step, phosphoryla-

tion of newly acquired glucose by hexokinases [24]. Akt 
also triggers an increase in cell survival [25], which is 
commonly observed in cancer cells [26]. Furthermore, 
inhibition of oxidative phosphorylation by oligomycin in 
lung carcinoma was shown to trigger a rapid increase in 
aerobic glycolysis demonstrating that tumor cells can be-
come glycolytic as a result of suppression of mitochon-
drial energy production [27]. However, when glycolysis 
was suppressed, tumor cells were unable to sufficiently 
upregulate mitochondrial oxidative phosphorylation, in-
dicating partial mitochondrial impairment [28]. Rapidly 
growing tumors easily become hypoxic owing to the 
inability of the local vasculature to supply an adequate 
amount of oxygen. As a result, tumor cells upregulate the 
glycolytic pathway by inducing hypoxia-inducible factor 1 
(HIF-1) [29]. HIF-1 plays an important role in tumori-
genesis and will be described in detail in a later section.

mtDNA mutations in cancers

It is interesting to note that, even before DNA se-
quencing technology was available, abnormal mtDNA 
was observed in leukemic myeloid cells using electron 
microscopy [30, 31]. Subsequently, mutations in both the 
non-coding and coding regions of the mtDNA have been 
identified in various types of human cancers, and the 
majority of the mutations appeared to be homoplasmic in 
nature [32, 33]. One of the first comprehensive studies of 
mtDNA in cancer cells demonstrated that among 10 col-
orectal cancer lines, seven of them exhibited mutations 
in their mtDNA content [12]. The mtDNA mutations 
were found in rRNA (12S and 16S) genes, subunits of 
complex I (ND1, ND4L and ND5), complex III (cyto-
chrome b) and complex IV (COXI, COXII and COXIII). 
A total of 11 out of 12 mutations were nucleotide substi-
tutions, while the remaining mutation was a single base 
pair insertion. Moreover, all of these mutations were 
true somatic mutations and did not exist in constitutional 
mtDNA from the same patient. Similarly, mtDNA muta-
tions within the D-loop control region have been reported 
as a frequent event in ovarian, gastric and hepatocellular 
carcinomas [34-36]. Specifically, it was suggested that in 
the D-loop region, a poly-C stretch (C-tract), termed the 
D310 region, is more susceptible to oxidative damage 
and electrophilic attack compared with other regions of 
mtDNA [37]. In another study, it was found that in renal 
carcinoma, mtDNA harbored disruptive point mutations 
in eight of nine tumors, seven tumors with complex I 
genes mutations [38], and one with mutation in a com-
plex III gene.

Increasingly systematic analyses of mtDNA have been 
performed in various cancers, and in this review, we sur-
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veyed 101 papers published between 1998 and 2008, us-
ing Medline searches with ‘mtDNA mutation cancer/tu-
mor’ as keywords. The results of these analyses are sum-
marized in Tables 1-4. From these reports, we found that 
the majority of identified mutations (635) were located 
in the D-loop region (Table 3), as this region can accu-
mulate variances quite easily. In addition, some authors 

focused solely on the D-loop region when attempting to 
detect mtDNA mutations. Interestingly, more mutations 
have been found in genes encoding complex I subunits 
(Table 1), with 593 mutations reported at the occurrence 
of 9.3%, compared with genes for other respiratory com-
plexes (Table 2). Similar levels of mutations have been 
reported in tRNA and rRNA genes, with frequencies of 

Description
A total of 116 mutations were reported, in-
cluding 63 missense mutations, 42 silent 
mutations, 4 nonsense mutations, 3 insertions 
and 4 deletions.

A total of 92 mutations were reported, includ-
ing 41 missense mutations, 48 silent muta-
tions, 2 nonsense mutations and 1 deletion. 
The A4769G and A4917G mutations were 
found in 4 different tumors.
A total of 26 mutations were reported, includ-
ing 12 missense mutations, 13 silent muta-
tions and 1 deletion. 

A total of 152 mutations were reported, in-
cluding 52 missense mutations, 91 silent 
mutations, 2 nonsense mutations, 2 insertions 
and 5 deletions.

A total of 18 mutations were reported, includ-
ing 8 missense mutations and 10 silent muta-
tions.

A total of 156 mutations were reported, in-
cluding 63 missense mutations, 86 silent 
mutations, 3 nonsense mutations, 2 insertions 
and 2 deletions.

A total of 33 mutations were reported, includ-
ing 11 missense mutations, 20 silent muta-
tions and 2 deletions.

Cancer types
Leukemia [112-114], colorectal cancer [12, 115, 116], cervical tumor 
[117], lung cancer [118], skin cancer [119, 120], ovarian cancer [34], 
parathyroid gland tumor [121], renal cancer [38], thyroid tumor [122-
127], renal oncocytoma [38, 128], head and neck cancer [79, 129], gas-
trointestinal tract tumor [130, 133], prostate cancer [131], breast cancer 
[132].
Breast cancer [134, 135], cervical tumor [117], lung cancer [118], brain 
tumor [136], skin cancer [119, 120], oral cancer [137-139], parathyroid 
gland tumor [121], pancreatic cancer [134], prostate cancer [134], renal 
tumor [140], thyroid tumor [32, 122-126, 141], head and neck cancer [79, 
129], gastrointestinal tract tumor [130], glioma [142].
Bladder cancer [143], cervical tumor [117], colorectal cancer [116], lung 
cancer [118], thyroid tumor [122, 123, 125, 126], parathyroid gland tu-
mor [121], head and neck cancer [79, 129], gastrointestinal tract tumor 
[130], renal cancer [144], oral cancer [138, 139].
Leukemia [112, 113], bladder cancer [143, 145], brain tumor [146], cer-
vical tumor [117], parathyroid gland tumor [121], colorectal cancer [116], 
head and neck cancer [79, 143], lung cancer [118], ovarian cancer [34], 
renal tumor [38, 128, 140], thyroid tumor [122-126, 141], gastrointes-
tinal tract tumor [130], prostate cancer [131], oral cancer [139], breast 
cancer [132].
Cervical tumor [117], colorectal cancer [12, 116], head and neck cancer 
[79], thyroid tumor [123, 125, 126], lung cancer [118], brain tumor [136], 
skin cancer [120], ovarian cancer [34], parathyroid gland tumor [121], 
prostate cancer [147], gastrointestinal tract tumor [130].
Leukemia [112, 114], bladder cancer [143], breast cancer [132, 134], cer-
vical tumor [117], parathyroid gland tumor [121], colorectal cancer [115, 
134, 148], lung cancer [118], skin cancer [119, 120], pancreatic cancer 
[134], prostate cancer [131, 134], renal tumor [128, 140, 144, 149], thy-
roid tumor [123-125, 141, 150], esophageal cancer [151], head and neck 
cancer [79], gastrointestinal tract tumor [130, 152], glioma [142].
Leukemia [112], breast cancer [134], cervical tumor [117], parathyroid 
gland tumor [121], colorectal cancer [134], lung cancer [118], ovarian 
cancer [34], pancreatic cancer [134], prostate cancer [134], thyroid tu-
mor [122, 124-126, 141], renal cancer [38], head and neck cancer [79], 
gastrointestinal tract tumor [130, 152], glioma [142].

Region
ND1

ND2

ND3

ND4

ND4L

ND5

ND6

Table 1 Complex I mutations
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Region
Cyt b

COI

COII

COIII

ATPase6

ATPase8

Cancer types
Leukemia [112, 113], bladder cancer [143], brain tumor [146], 
breast cancer [132, 134], colorectal cancer [12], lung cancer [118], 
ovarian cancer [34], pancreatic cancer [134], parathyroid gland 
tumor [121], prostate tumor [134, 147, 153], skin cancer [120], thy-
roid tumor [122-126], head and neck cancer [79], gastrointestinal 
tract tumor [130], nasopharyngeal carcinoma [154], glioma [155].
Breast cancer [134], colorectal cancer [116, 156], lung cancer [118], 
brain tumor [136], skin cancer [120], parathyroid gland tumor [121], 
pancreatic cancer [134], prostate cancer [44, 134], thyroid tumor 
[122, 124-126], ovarian cancer [34], head and neck cancer [79], 
gastrointestinal tract tumor [130, 133], glioma [155], hepatocellular 
cancer [157].
Colorectal cancer [12], breast cancer [134], head and neck cancer 
[79, 151], lung cancer [118], skin cancer [120], ovarian cancer [34], 
parathyroid gland tumor [121], thyroid tumor [122, 124-126], gas-
trointestinal tract tumor [130], leukemia [113].
Brain tumor [146], breast cancer [134], colorectal cancer [12, 156, 
158], head and neck cancer [79, 129, 151], lung cancer [118], skin 
cancer [120], ovarian cancer [34], parathyroid gland tumor [121], 
thyroid tumor [123-126, 141, 150], gastrointestinal tract tumor [130], 
oral cancer [138, 139].
Breast cancer [135, 159], colorectal cancer [146], head and neck 
cancer [79, 129, 151], lung cancer [118], skin cancer [120], parathy-
roid gland tumor [121], thyroid tumor [123-126], gastric tumor [152], 
leukemia [113].
Breast cancer [134], colon cancer [134], liver cancer [41], ovarian 
cancer [34], pancreatic cancer [134], parathyroid gland tumor [121], 
prostate cancer [134], thyroid tumor [124, 125], gastrointestinal 
tract tumor [130], head and neck cancer [79, 129, 151].

Description
A total of 93 mutations were reported, including 
50 missense mutations, 38 silent mutations, 2 non-
sense mutations and 3 deletions.

A total of 86 mutations were reported, including 
22 missense mutations, 62 silent mutations and 2 
insertions.

A total of 46 mutations were reported, including 12 
missense mutations, 33 silent mutations and 1 dele-
tion. 

A total of 54 mutations were reported, including 
24 missense mutations, 25 silent mutations, 1 non-
sense mutation, 1 insertion and 3 deletions. 

A total of 55 mutations were reported, including 34 
missense mutations, 20 silent mutations and 1 non-
sense mutation.

A total of 9 mutations were reported, including 2 
missense mutations and 7 silent mutations.

Table 2 Complex III, IV and V mutations

Cancer types
Leukemia [112, 113], bladder cancer [143, 160], breast cancer [132, 161-
165], cervical tumor [160, 166, 167], colorectal cancer [12, 116, 148, 158, 
168-170], endometrial tumor [160, 171-173], head and neck cancer [79, 
129, 143, 151, 174-176], liver cancer [180, 181], lung cancer [143, 177, 
182, 183], brain tumor [136], skin cancer [119, 120], oral cancer [137, 
138, 160, 184], parathyroid gland tumor [121], prostate cancer [131, 137, 
185-187], renal tumor [137, 149], stomach cancer [137, 178, 181], thyroid 
cancer [121, 137, 188], uterine carcinoma [137], nasopharyngeal carci-
noma [154], ovarian cancer [189], gastrointestinal tumor [130, 179, 190, 
193], hepatocellular cancer [35, 157, 181, 191, 192], glioma [155, 194], 
astrocytoma [195], Barrett’s cancer [196], osteosarcoma [197], Ewing’s 
sarcoma[198], gallbladder carcinoma [199].

Description
A total of 635 mutations were reported, in-
cluding 510 point mutations, 56 deletions 
(among them 2 were 50 bp deletions) and 69 
insertions. Mutations at position 310 were 
detected in several types of cancers. A263G, 
C150T, C16223T, C16519T, G16390A, 
G207A, G94A, T146C, T152C, T16189C, 
T195C, T204C, T72C were also found to as-
sociate with cancers by different groups.

Region
D-loop

Table 3 D-loop mutations
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3.7% and 4.3%, respectively (Table 4), although muta-
tions in tRNA genes are much more prevalent in patients 
with other mitochondrial diseases. The relatively com-
mon 4977 bp deletion mutation was detected in gastric 
cancer [39], lung cancer [40] and liver cancer cells [41].

The direct impact of several mtDNA mutations on tu-
morigenesis has been tested with the cybrid (cytoplasmic 
hybrid) system, where mtDNA is singled out for analysis 
[42]. Cybrids carrying a pathogenic mutation at posi-
tion 8993 or 9176 in the mtDNA ATP synthase subunit 
6 gene (ATP6) derived from patients with mitochondrial 
encephalomyopathy were investigated for tumorigenesis 
in a nude mouse assay. It was found that the ATP6 muta-
tions conferred an advantage in the early stage of tumor 
growth [43]. In a separate study, the T8993G mutation 
was introduced into the PC3 prostate cancer cell line, and 
the resulting mutant cybrids were reported to generate 
tumors that were seven times larger than the wild-type 
cybrids [44]. Further, as prostate cancer often metasta-
sizes to bone, the above cybrids were co-inoculated in a 
nude mouse system with bone stromal cells [45]. Growth 
acceleration in cybrids with mtDNA mutation was dem-
onstrated in the bone microenvironment, and this effect 
was further shown to be likely mediated by upregulation 
of fibroblast growth factor 1 (FGF-1) and focal adhesion 
kinase (FAK) [45].

In another investigation, the contribution of mtDNA 
mutations to tumor cell metastasis was also analyzed [46]. 

It was found that the mtDNA variant, which delivered 
the highest metastatic potential, contained G13997A and 
13885insC mutations in the ND6 gene.

We recently examined the contribution of mtDNA mu-
tations and mitochondrial dysfunction in tumorigenesis 
using human cell lines carrying a frame-shift mutation in 
the complex I subunit 5 gene (ND5); the same homoplas-
mic mutation was also previously identified in a human 
colorectal cancer cell line [12]. With increasing mutant 
ND5 mtDNA content, respiratory function, including 
oxygen consumption and ATP generation through oxida-
tive phosphorylation, declined progressively, whereas 
lactate production and dependence on glucose increased. 
Both heteroplasmic and homoplasmic mtDNA mutation 
caused an increased production of mitochondrial ROS. 
However in cells with heteroplasmic ND5 mutation, the 
cytosolic ROS level was somewhat reduced, probably 
due to the upregulation of antioxidant enzymes. As a re-
sult, only cells with homoplasmic ND5 mutation exhibit-
ed enhanced apoptotic potency. Furthermore, anchorage-
dependence and tumor-forming capacity of cells carrying 
wild type and mutant mtDNA were tested by a growth 
assay in soft agar and subcutaneous implantation of the 
cells in nude mice. Surprisingly, the cell line carrying the 
heteroplasmic ND5 mtDNA mutation showed signifi-
cantly enhanced tumor growth, whereas tumor formation 
was inhibited for cells with the homoplasmic form of the 
same mutation [47].

Cancer types
Breast cancer [134], colon cancer [134], liver cancer [180], lung cancer 
[143, 200], brain tumor [136], skin cancer [120], ovarian cancer [34], 
parathyroid gland tumor [121], pancreatic cancer [134], prostate cancer 
[131, 134, 147], renal tumor [128, 140, 201], thyroid tumor [122, 124, 
125, 127], head and neck cancer [79], gastrointestinal tract tumor [130], 
nasopharyngeal carcinoma [154], splenic lymphoma [202], leukemia 
[114].
Leukemia [112], colorectal cancer [12, 116], endometrial cancer [172], 
ovarian carcinoma [34], parathyroid gland tumor [121], prostate can-
cer [147], thyroid cancer [124, 125], gastrointestinal tract tumor [130, 
203], head and neck cancer [79], nasopharyngeal carcinoma [154], re-
nal cancer [144].
Bladder cancer [143], brain tumor [146], colorectal cancer [12, 116], 
breast cancer [159], endometrial cancer [172], head and neck cancer [79, 
129, 143], lung cancer [143], skin cancer [120], ovarian carcinoma [34], 
parathyroid gland tumor [121], prostate cancer [131, 147], renal tumor 
[140, 144], thyroid tumor [125, 150], gastrointestinal tract tumor [130], 
leukemia [114].

Description
A total of 56 mutations were reported, in-
cluding 54 point mutations and 2 deletions. 
A3234G of tRNAleu has been reported in 
lung, colon and renal cancers. Additional 
mutations have been found in tRNAasp, 
tRNAthr and tRNAphe genes.

A total of 53 mutations were reported, in-
cluding 47 point mutations, 5 insertions and 
1 deletion. The T710C mutation has been 
reported in both colorectal and thyroid can-
cers.
A total of 56 mutations were reported, in-
cluding 52 point mutations, 2 deletions and 
2 insertions.

Region
tRNA

12S rRNA

16S rRNA

Table 4 tRNA and rRNA mutations
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ROS generation and its role in tumorigenesis

ROS are a collective term, which includes superoxide, 
hydrogen peroxide and the hydroxyl free radical [48]. 
The mitochondrial electron transport chain is a major 
source of ROS, as some of the electrons passing to mo-
lecular oxygen are instead leaked out of the chain. It has 
been estimated that generation of these partially reduced 
oxygen molecules comprises about 2-4% of the oxygen 
consumed [48]. ROS are highly active and can cause 
damage to different cellular components including mtD-
NA [49, 50]. The damaged mtDNA, if not repaired prop-
erly, produces mtDNA mutations, which, in turn, could 
initiate tumorigenesis and sustain cancer development.

In addition to their cytotoxic effects, low levels of 
ROS participate in the regulation of many cellular path-
ways [51, 52]. The interaction of ROS with lipid spe-
cies and thiol-containing proteins is important in cell 
growth and differentiation [53, 54]. It was suggested that 
a threshold level of ROS (ROS window) is required for 
normal/cancer cell functions; above this level, cell death 
is activated and below it, proliferation is blocked [55-57]. 
ROS have been shown to be involved in the transmis-
sion of survival and proliferation signals associated with 
tumor promotion and maintenance. For example, H2O2 
has been demonstrated to activate the receptor tyrosine 
kinase [58, 59], Ras-mitogen-activated protein kinase 
(Ras-MAPK) [60, 61] and phosphatidylinositol 3′ -ki-
nase (PI3K) pathways [58]. ROS also mediate the stress 
signaling pathways involving nuclear factor-kappa B 
(NF-κB) [62] and the c-Jun NH2-terminal kinase (JNK) 
[63]. The window hypothesis has also been supported 
by the observation that removal of H2O2 from the cellu-
lar environment by catalase blocks cell proliferation via 
down-regulation of MAPK activity [64]. Similarly, ROS 
are also capable of preventing caspase activation, as in 
the case of protection of stimulated neutrophils from the 
toxic effects of oxidative stress [65].

The association of oxidative stress with tumorigenesis 
has been implicated in the induction of skin cancer by 
ultraviolet radiation, leukemia by γ-radiation and others, 
including lung cancer, by smoking. The role of ROS in 
tumor development has been supported by the demon-
stration that normal cells exposed to ROS show increased 
proliferation [54] and expression of growth-related genes 
[66-68]. Furthermore, a large number of cancer cells are 
known to produce more ROS than non-cancer cells [69, 
70]. These observations suggest that ROS stimuli may 
contribute to cancer initiation, maintenance and develop-
ment in vivo.

Rapid cell proliferation in cancer results in a surge 
of oxygen consumption and thus, tumor tissues suffer 

from hypoxia. The transcription factor, HIF-1 (Hypoxia 
inducible factor-1), is the key mediator of the hypoxia re-
sponse through regulating genes involved in metabolism, 
angiogenesis, cell cycle and apoptosis [71]. Transcrip-
tional activation of genes, such as vascular endothelial 
growth factor and glucose transporter, by HIF1 is among 
the best-understood examples of regulation of angiogen-
esis and metabolism during the adaptation to hypoxic 
conditions [72].

In addition to upregulating the glycolytic pathway, 
HIF-1 was also shown to inhibit mitochondrial biogen-
esis and respiration in a renal cell carcinoma model by 
repression of C-MYC activity [73]. Importantly, C-MYC 
was required for the expression of coactivator, PGC-1β, 
which is a key regulator of mitochondrial biogenesis [74]. 
Alternatively, HIF-1 downregulates oxidative phospho-
rylation through activation of pyruvate dehydrogenase 
kinase 1 (PDK1) [75, 76]. PDK1 inactivates the TCA 
cycle enzyme, pyruvate dehydrogenase, which converts 
pyruvate to acetyl-CoA. Interestingly, it was also demon-
strated that HIF-1 could modulate respiration efficiency 
in hypoxic cells by regulating complex IV subunit 4 
isoforms. Such regulation has important implications in 
ATP production, oxygen consumption and ROS genera-
tion [77].

Emerging evidence has indicated the important role 
of mitochondrial ROS generation during hypoxic activa-
tion of HIF [78]. Further, expression of the nuclear-tran-
scribed, mitochondrial-targeted ND2 mutants resulted 
in enhanced tumor growth, which was accompanied by 
increased ROS production and HIF-1α induction. These 
phenotypes were reversible by a complex III inhibitor, 
ascorbate [79].

Apoptosis, another link between mitochondrial 
dysfunction and tumorigenesis

Apoptosis is a process whereby a series of proteases, 
called caspases, are activated through a complex signal-
ing cascade leading to energy-dependent cell death [80]. 
Defects in apoptosis are among the major causes of tum-
origenesis [81]. Mitochondria play an important role in 
regulating apoptosis [82]. A recent study investigated the 
effects of mitochondrial respiratory chain modulation on 
apoptosis [83]. It was reported that defects in the respi-
ratory chain could either promote or inhibit cell death, 
depending on the specific alteration in electron flow [83]. 
The initiation of apoptosis can also occur in the mito-
chondria through stimulated ROS production. Low levels 
of ATP and high levels of cytosolic calcium, are usually 
associated with mitochondrial defects and reported as 
signals to induce apoptosis [84]. Interestingly, in some 
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cases, ROS mediate both pro- and anti-apoptotic effects, 
depending on their concentrations [85].

Among studies of cell death resistance due to mito-
chondrial dysfunction in cancer cells, it was reported that 
mitochondrial respiration defects led to activation of the 
Akt survival pathway. As mentioned earlier, this up-reg-
ulation of Akt was suggested to result from an increase in 
NADH, the substrate of respiratory complex I, which then 
inactivates PTEN through a redox modification mecha-
nism [23]. In another study, modulation of mitochondrial 
function by up-regulation of mitochondrial chaperones 
has been implicated in the survival of cancer cells [86, 
87]. Heat shock protein 90 and its mitochondrial-related 
molecule, TRAP-1, were suggested to interact with cy-
clophilin D to inhibit cell death [87], whereas Hsp60 
was shown to orchestrate a broad cell survival program 
centered on stabilization of mitochondria to restrain p53 
function [86].

Interestingly, it was also reported that the molecular 
mechanism through which ATP6 mutations at positions 
8993 and 9176 promote tumorigenesis is by preventing 
apoptosis [43], although the details of such a signaling 
pathway remain unclear.

Retrograde regulation and other mitochondrial sig-
naling mechanisms in cancer cells

Retrograde regulation is a communication pathway 
from the mitochondria to the nucleus that is used to de-
scribe the cellular response to the changes in the func-
tional state of mitochondria [88]. The first evidence of 
altered nuclear gene expression in response to mitochon-
drial dysfunction in mammalian cells came from stud-
ies showing increased mRNA levels coding for various 
mitochondrial proteins in several types of mtDNA-less 
(ρ0) cells [89, 90]. One of the mechanisms suggested to 
play a role in the retrograde response was mitochondrial 
stress, which is supported by changes in mitochondrial 
membrane potential and elevation of calcium levels [88]. 
Using ρ0 human osteosarcoma 143B cells and cybrid 
cell lines carrying mutated mitochondrial tRNAs, it was 
shown that respiratory deficiency and the associated 
calcium increase induced the activation of CaMKIV (cal-
cium/calmodulin kinase IV). The activation of CaMKIV 
in turn activated CREB (cAMP-responsive element-bind-
ing protein) and Egr1 (early growth response gene-1) 
through PKC-mediated phosphorylation [22, 91]. In a 
recent report, such mitochondrial-nuclear communica-
tion was further divided into two different pathways: one 
caused by a reduction in respiration and another, named 
intergenomic signaling, which requires mtDNA [92]. Us-
ing DNA microarrays in the budding yeast Saccharomy-

ces cerevisiae, it was shown that intergenomic signaling 
functions in coordinating mitochondrial and nuclear gene 
expression.

In a Drosophila system, it was shown that mitochon-
drial dysfunction activated the production of both AMP 
and ROS, the former stimulating AMPK and p53, and 
causing the loss of cyclin E, and the latter turning on 
JNK, FOXO and other G1-S cell cycle checkpoint mol-
ecules. These findings demonstrate mitochondrial retro-
grade regulation of cell cycle progression via AMP and 
ROS at sublethal concentrations through independent 
signaling molecules [93].

In tumor cells, retrograde signaling has also been 
demonstrated as a pathway that links mitochondrial dys-
function to oncogenic events. In paraganglioma, muta-
tions in the mitochondrial tumor suppressor, succinate 
dehydrogenase (SDH) result in the accumulation of suc-
cinate, which was shown to inhibit HIF-α prolyl hydrox-
ylases, leading to the stabilization and activation of HIF-
1α [94]. Thus, succinate was suggested as a retrograde 
linkage between abnormal mitochondrial metabolism 
and oncogenesis. In an early study, cytoplasts (cells de-
pleted of nuclei) from tumor cells were shown to transfer 
tumorigenic properties when fused with nuclei from nor-
mal cells, indicating that cytoplasmic factors can induce 
malignant phenotypes [95]. Depletion and partial deple-
tion of mtDNA by a mitochondrial-specific ionophore, 
carbonyl cyanide m-chlorophenyl hydrazone, induced 
increasingly invasive behavior in C2C12 rhabdomyo-
blasts and A549 human lung carcinoma cells [96-98]. In 
such cases, a number of genes involved in Ca2+ response, 
glucose metabolism, oncogenesis and apoptosis were 
upregulated [99]. Further, in such systems, it was shown 
that calcineurin-mediated activation of the insulin-like 
growth facor-1 (IGF-1) receptor pathway and metabolic 
shift to the glycolytic pathway, provided a survival ad-
vantage to cells under mitochondrial stress caused by 
mtDNA depletion [100]. Recently, it has been shown that 
cells treated with a human carcinogen, dioxin, displayed 
resistance to apoptosis, increased expression of the tumor 
marker, cathepsin L, and a high degree of invasiveness, 
which are linked to the triggering of a signaling pathway 
that promotes tumor progression in vivo through directly 
targeting mitochondrial transcription and induction of 
mitochondrial stress signaling [101].

Retrograde signaling induces the expression of a num-
ber of tumor-specific marker genes, such as extracellular 
matrix protease, TGF-β and epiregulin, as well as other 
genes that control cell growth and proliferation, such as 
PKC, JNK/MAPK, CREB and NF-κB [88]. A proteomics 
approach was also used to gain insight into the nuclear 
gene targets of mitochondrial stress signaling [102, 103]. 
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In one study, the potential role for one of the identified 
retrograde response proteins, UQCRC1 (encoding com-
plex III subunit core protein 1), was analyzed, and it was 
found to be highly expressed in breast and ovarian tu-
mors [102].

Mitochondrial defects and genome instability

Since mitochondria are the major source of cellular 
ATP production, it is likely that mitochondrial dysfunc-
tion leads to a reduction in ATP levels that may affect 
the ATP-dependent pathways involved in transcription, 
DNA replication, DNA repair and DNA recombination. 
Mitochondria are also involved in the biosynthesis of 
deoxyribose nucleoside triphosphates (dNTP) [104, 105]. 
Taken together, it is conceivable that mitochondrial defi-
ciency could lead to mutagenesis in the nuclear genome. 
In yeast, it was reported that mitochondrial dysfunction 
caused by respiration inhibition, mtDNA depletion or 
mtDNA deletion resulted in a twofold to threefold in-
crease in the nuclear DNA mutation frequency [106]. In 
human cell lines depleted of mtDNA, it was reported that 
dNTP pools were affected, and in particular, a threefold 
reduction in dTTP pools was detected [107]. Since im-
balanced dNTP pools had been shown to be mutagenic 
[108], a molecular mechanism linking mitochondrial 
dysfunction to nuclear genome instability was proposed 
[107]. Interestingly, disruption of mitochondrial function 
in mouse zygotes led to telomere attrition, telomere loss, 
and chromosome fusion and breakage, mediated by al-
terations in ROS production [109].

Significance of investigation of mtDNA mutations 
in cancer

Despite tremendous progress in identifying and char-
acterizing nuclear oncogenes, tumor suppressor genes 
and their roles in cancer development, there are still 
many aspects of tumorigenesis that cannot be explained. 
The role of mitochondria, specifically mtDNA mutations, 
remains largely unclear. Although evidence suggests that 
some mtDNA mutations do play a role in certain stages 
of cancer development, there are still multiple potential 
pitfalls in such investigations [110]. Special caution and 
general guidelines should be followed in this very impor-
tant yet complicated line of research [111].

Based on our recent results [47] and studies from 
other labs, we propose that mtDNA mutations could 
function in cancer development as follows: in the initial 
stage, cancer cells are very mutagenic either because of 
a carcinogenic insult or due to the compromised repair 
mechanism, and mtDNA is more likely to be mutated at 

this stage. Because of the replicative advantage of mu-
tant mtDNA molecules, such as that previously described 
for mtDNA carrying the mutation associated with the mi-
tochondrial encephalomyopathy, mtDNA mutations are 
enriched to a certain level of heteroplasmy which would 
enhance tumor progression due to either the elevated 
ROS generation, which in turn activates the oncogenic 
pathways, or the increase in genome instability, or both. 
However, after transformation, it may become more 
important to have a functional respiratory chain than an 
inhibited one to sustain rapid cell proliferation. In some 
cases, the mutant mtDNAs causing severe mitochondrial 
defects are selected against and diluted out; in other cas-
es, residual mutant mtDNA might escape the selection. In 
late stages of cancer, the cells are progressively adapted 
to a glycolytic metabolism because of the hypoxic envi-
ronment. This may lead to the selection of cells in which 
the mutations make them mitochondrial function-inde-
pendent and, therefore, cells with homoplasmic mtDNA 
mutations may become predominant in such tumors. If 
this hypothesis is correct, the involvement of mtDNA 
mutations may, in fact, be much more prevalent in early 
stage cancers than originally thought.
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