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Neural crest stem cell development

The neural crest (NC) is a unique embryonic structure 
and contains a remarkable multipotent stem cell popula-
tion that arises during vertebrate embryogenesis [1, 2]. NC 
has been referred to as the fourth germ layer because of its 
great importance during development [3]. NC stem cells 
arise from the dorsal neural tube during neurolation in early 
development, then migrate out from the neural tube and 
along defined pathways throughout the body, where they 
contribute to numerous cell types and tissues, including 
melanocytes, ocular and periocular structures, bone and 
cartilage cells of the cranial skeleton, odontoblasts, auto-
nomic neurons, sensory neurons, enteric neurons, smooth 
muscle, endocrine cells, chromaffin cells, and glial cells 
[1]. Although it has long been thought that the fates of 
NC-derived lineages are controlled by transcription and 
growth factors, the physiological functions of these factors 
are not fully known.

 Understanding NC development is medically important 

Human neurocristopathies include a number of syndromes, tumors, and dysmorphologies of neural crest (NC) stem 
cell derivatives. In recent years, many white spotting genes have been associated with hypopigmentary disorders and 
deafness in neurocristopathies resulting from NC stem cell-derived melanocyte deficiency during development. These 
include PAX3, SOX10, MITF, SNAI2, EDNRB, EDN3, KIT, and KITL. Recent studies have revealed surprising new 
insights into a central role of MITF in the complex network of interacting genes in melanocyte development. In this 
perspective, we provide an overview of some of the current findings and explore complex functional roles of these genes 
during NC stem cell-derived melanocyte development. 
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because defective derivatives of aberrant NC cell devel-
opment give rise to numerous human diseases known 
as neurocristopathies [4]. These diseases include ocular 
diseases (such as iris hypoplasia and optic nerve head mel-
anocytoma), cardiocutaneous syndromes, craniofacial mal-
formations of mesoectodermal origin, DiGeorge syndrome, 
Ewing’s tumors, Hirschsprung disease, lentigo, medullary 
carcinoma of the thyroid, melanotic nevi, melanoma, mul-
tiple endocrine neoplasia (types 2A and 2B), neuroblas-
toma, neurocutaneous syndromes, neurofibromatosis type 
1, PCWH (Peripheral demyelinating neuropathy, Central 
dysmyelinating leukodystrophy, Waardenburg syndrome 
(WS), and Hirschsprung disease), PHACES syndrome 
(Posterior fossa abnormalities and other structural brain 
abnormalities, Hemangioma(s) of the cervical facial region, 
Arterial cerebrovascular anomalies, Cardiac defects, aortic 
coarctation and other aortic abnormalities, Eye Anomalies, 
Sternal defects, and/or Supraumbilical raphe), pheochro-
mocytoma, piebaldism, WS, Tietz syndrome, and more 
[4]. Among these WS is an autosomal-dominant subtype 
of complex NC diseases and is named after the Dutch 
ophthalmologist who, in 1947, first described a patient 
with heterochromia iridis (different eye colors), congenital 
deafness, and dystopia canthorum (lateral displacement of 
the inner canthi of the eyes leading to a wide nasal bridge). 
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WS patients also show additional defects, including white 
forelock, pigmentary disturbance of the skin, upper limb 
abnormalities, and megacolon [5]. To date there are at 
least four types of WS that are due to mutations in separate 
transcription factors, including SOX10, MITF, PAX3, and 
SNAI2, and in signaling molecules, including EDNRB and 
EDN3. The four WS types are categorized based on presen-
tation of various subsets of the phenotypic characteristics 
of the syndrome. For example, WS type 1 patients have 
craniofacial defects, WS type 3 patients have craniofacial 
and limb defects, and WS type 4 patients have megaco-
lon. Intriguingly, distinct subtypes of WS and piebaldism, 
which is associated with mutation of KIT, often have the 
common phenotype of hypopigmentation, which is due to 
melanocyte defects in the skin. The comparable hypop-
igmentation defect in these diseases reflects a possible 
functional relationship among the disease-associated genes 
in melanocyte development. In this review, we discuss the 
known functional roles of these genes during NC stem cell-
derived melanocyte development and propose alternative 
models of functional roles of these genes, with a focus on 
the central role of MITF. 

White spotting mouse disease models and melanocyte 
development

 Gene expression programs that direct the development 
of distinct cell lineages from unspecified precursor cells are 
the result of complex interactions between cell-extrinsic 
signals and transcription factors. An excellent system to 
study such interactions is provided by the development 
of melanocytes. Their precursor cells, the melanoblasts, 
originate from multipotent NC stem cells and migrate 
along characteristic pathways to various destinations such 
as the iris and the choroid of the eye, the inner ear, the 
dermis, and the epidermis. In the skin, these precursors 
differentiate into melanin-producing cells that determine 
skin color and protect the organism from UV radiation, one 
of the risk factors for skin cancers such as melanoma [6]. 
In addition, the precursors distribute into the bulged region 
of developing hair follicles, where they persist as self-
renewing stem cells in the niche [7]. For their development, 
melanoblasts depend on numerous transcription factors and 
signaling systems. These include the transcription factors 
PAX3 [8, 9], SOX10 [9-11], and MITF (Microphthalmia-
associated Transcription Factor) [12], the WNT signaling 
pathway [13, 14], G protein-coupled endothelin receptor 
B (EDNRB) and its ligand, endothelin 3 (EDN3) [15, 16], 
and receptor tyrosine kinase KIT and KIT-ligand (KITL) 
[17, 18]. Among the genes encoding these factors, Mitf, 
Sox10, Pax3, Kit, and Kitl comprise a particularly intrigu-
ing set, since heterozygosity for certain mutations in each 

of these genes leads to the strikingly similar phenotype of 
belly spotting in mice (Figure 1). Since many in vivo and 
in vitro observations suggest that there are mutual interac-
tions between these genes [9, 19], a possible functional 
regulatory relationship may exist among these genes in 
melanocyte development.

Mouse mutations have long served as human disease 
models for many aspects of developmental studies [20, 
21]. In addition, mouse coat color mutants serve as an 
excellent model for the study of melanocyte development 
and pigmentation [22]. Owing to the shared embryonic 
origin of various tissues or pleiotropic effects, these mu-
tants also serve as models of disorders in vision, hearing, 
craniofacial development, enteric nervous system develop-
ment, and neural tube closure. White spotting mutations 
produce white hair and skin in regions where melanocytes 
normally appear. This phenotype can result from a defect 
of survival, migration, proliferation, or differentiation at 
a particular time of melanocyte development when the 
specific gene product is required. The best-characterized 
models used in the studies of melanocyte development are 
Microphthalmia (Mi), Dominant megacolon (Dom) , Splotch 
(Sp) , Dominant white spotting (W), Steel (Sl), Piebald-
lethal (sl) , and Lethal spotting (ls) (Figure 1). All of the 
mutated genes associated with these models are cloned, 
and they belong to two categories: transcription factors 
and receptor/ligand systems. These mutations provide a 
rich genetic resource for investigation of the mechanisms 
of melanocyte development at the molecular, cellular, and 
physiological levels.

Microphthalmia
This locus encodes the basic-helix-loop-helix-leucine-

zipper transcription factor Mitf [12]. At least 25 different 
murine mutant alleles of Mitf have been identified, provid-
ing a useful genetic resource for studies of development 
and disease [23, 24]. Mitf homozygous mutant mice, such 
as MitfMi (microphthalmia), Mitfmi-ew (mi-eyeless-white), 
MitfMi-wh (Mi-white), or Mitfmi-vga-9 (a transgenic insertional 
allele), typically survive but are microphthalmic, deaf, and 
completely white, reflecting the complete abolishment of 
melanocytes (Figure 1) [12, 25]. Additionally, a few muta-
tions result in osteoclast defects. 

 Mutations of human MITF are associated with 10-15% 
of WS type 2, and patients show skin hypopigmentation, 
ocular pigmentation defects, and deafness caused by defects 
of melanocytes of the inner ear [26]. Tietz syndrome shows 
more obvious hypopigmentation and deafness that is also 
associated with mutations in MITF [27].

 Dominant megacolon (Dom)
This mouse mutant exhibits white spotting and mega-
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Figure 1 Mutations in the genes encoding key transcriptional factors or signaling molecules result in characteristic white coat color 
phenotypes, reflecting the ability of these genes to regulate NC stem cell-derived melanocyte generation. Among these genes 
Mitf affects development of both melanocytes and RPE, whereas others affect only melanocyte development. (A) A Mitfmi-vga-9 
homozygote (a null allele). Mitfmi-vga-9 homozygotes are white, with small eyes, whereas heterozygotes have normal pigmentation. 
(B) A Mitfmi-rw (microphthalmia-red eyed white) homozygote, which contains a genomic deletion starting downstream of exon 1E 
and ending upstream of exon 1M and encompassing the exons 1H, 1D, and 1B1a/1B1b and their flanking sequences [147]. 
Mitfmi-rw homozygotes show abnormal RPE development and primarily white fur, but always display a black head spot, reflect-
ing normal melanocyte generation in that region. (C) A Mitfmi-bws (microphthalmia–black and white spotting) homozygote. These 
mice harbor a point mutation that results in altered splicing so that the Mitf produces not only a wild-type transcript that contains 
exon 2b, but also a transcript that lacks exon 2b, which contains a KIT signaling-dependent phosphorylation site, serine-73. 
This causes deficiency of many skin melanocytes without affecting RPE development, resulting in widespread white spotting 
and black eyes. (D) A 10- month- old Mitfmi-vit (microphthalmia-vitiligo) homozygote. This allele contains a G to A transition that 
leads to an aspartate to asparagine substitution at amino acid 222 in the helix 1 region of MITF protein. Mitfmi-vit homozygous 
mice are born normally pigmented, but gradually lose their melanocyte stem cells with aging, resulting in a gray coat phenotype 
[146]. (E) Ednrbtm1Myks homozygote (left) and heterozygote littermate (right). This homozygote contains a transgenic insertion of 
a LacZ reporter gene at the Ednrb locus, resulting in absence of Ednrb expression. Homozygotes are almost completely white, 
with pigmented regions remaining in the head and rump, and die from megacolon as juveniles [129]. (F) Kittm1Alf (also known as 
KitW-lacZ) homozygote (top) and normal littermate (bottom), age P3. This mouse is homozygous for the transgenic insertion of a 
LacZ reporter gene at the Kit locus [148]. Absence of normal Kit causes complete lack of skin melanocytes, resulting in white fur. 
(G) A Sox10Hry homozygote (left) and normal littermate (right). This mouse contains a 15.9- kb deletion of non-coding sequence 
located 47.3 kb upstream of the transcription start site in the gene Sox10, leading to loss of skin melanocytes and megacolon 
[30]. (H) A Pax3Sp heterozygote, which displays a characteristic white belly patch. Mice harboring heterozygous mutations of 
certain alleles of Sox10, Mitf, Kit, and Kitl show a similar belly spotting phenotype.

colon in heterozygotes. Homozygous Dom mutations are 
embryonic lethal (at E13.5) and exhibit absence of mel-
anocytes and enteric neurons, size reductions in the dorsal 
trigeminal and facial ganglia, and defects in dorsal root 

ganglia, sympathetic ganglia, and terminal oligodendrocyte 
differentiation in spinal cord. This locus encodes Sox10 
(Sry-like HMB box 10), a member of the high mobility 
group (HMG) family of transcription factors, showing 
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HMG domain homology to the testis determining factor 
SRY [28, 29]. The Sox10Dom allele results from a point 
mutation that introduces a frameshift and early trunca-
tion that generates a truncated SOX10 protein lacking the 
transcription activation domain [11]. A transgene-insertion 
mutant mouse line (Hry) was shown to be the result of a 
15.9- kb deletion of a non-coding sequence located 47.3 kb 
upstream of the transcription start site in Sox10 [30]. 

 Mutations in human SOX10 are associated with WS 
type 4, also known as Waardenburg-Shah syndrome. The 
patients show WS characteristics of the white forelock and 
eyelashes, abnormal iris pigmentation, and deafness, along 
with enteric aganglionosis, which is seen in patients with 
Hirschsprung disease [10, 11]. Recently, a complex neu-
rocristopathy, PCWH, which shows WS phenotypes along 
with additional neurological defects, has been shown to 
result from mutated SOX10 mRNA escaping the nonsense-
mediated decay pathway [31]. Recent evidence suggests 
that some WS2 patients harbor SOX10 deletions, and some 
of these patients also show the neurological phenotypes of 
PCWH [32].

 Splotch
This locus encodes a paired-box homeodomain tran-

scription factor, Pax3, and the Splotch mouse mutant was 
due to a Pax3 loss- of- function mutation [33]. Mice harbor-
ing heterozygous Pax3 mutations show ventral spotting, 
whereas homozygous mutations are embryonic lethal. Pax3 
belongs to the Pax gene family, which is highly conserved 
across species and whose members contain a paired DNA- 
binding domain [34].

 Mutations in human PAX3 are associated with WS 
type 1 and type 3 or Klein- WS [35]. WS type 1 patients 
show dystopia canthorum, hypopigmentation most often 
manifested as a white blaze of hair at the forehead or 
leukoderma, heterochromia iridis, and deafness. WS type 
3 patients show additional skeletal abnormalities and car-
diopulmonary defects.

Piebald (s) and lethal spotting (ls)
Mutations in the recessive mutants s and ls also disrupt 

normal melanocyte development. The s locus encodes G 
protein-coupled Ednrb [16] and the ls locus encodes Edn3, 
a 21-residue peptide ligand with high affinity for EDNRB 
[15]. The related ligands, EDN1 and EDN2, can also bind 
EDNRB. Activating mutations in the Ga subunits Gnaq 
and Gna11 can promote expansion of the early melano-
blast population, suggesting that the G protein-coupled 
receptor plays an important role in regulating melanocyte 
development [36].

 Mutations at the human EDNRB and EDN3 loci are 
also associated with WS type 4 or Waardenburg-Shah 

syndrome, which is inherited as an autosomal recessive 
trait. As described above, the patients show pigmentary 
defects and enteric aganglionosis [37, 38]. Additionally, 
ABCD syndrome, named for the patients’ phenotypic pre-
sentation of albinism, black lock, cell migration disorder 
of the neurocytes of the gut, and deafness, has been identi-
fied as a homozygous nonsense mutation in the EDNRB 
gene [39]. EDNRB is also associated with melanoma risk 
and is required for the expansion of malignant melanoma 
[40, 41].

Dominant white spotting (W) and Steel (Sl)
 Similar to mice with defects in EDN3/EDNRB signal-

ing, mutations in W and Sl also disrupt normal melanocyte 
development. W encodes the receptor tyrosine kinase Kit 
(also known as c-Kit) [17]. Sl encodes Kitl, also known as 
stem cell factor (SCF) and mast cell growth factor (MGF) 
[18]. Most alleles of W and Sl in heterozygotes show head 
and belly spots and the homozygotes are often embryonic 
lethal; those homozygotes that survive are black-eyed 
white, sterile, and anemic [42]. Kitl produces two KITL 
proteins, a transmembrane form and a soluble form. The 
membrane-bound form is required for melanocyte precur-
sor survival in the dermis, whereas the soluble form is 
needed for melanocyte precursor dispersal on the lateral 
pathway and/or for their initial survival in the migration 
staging area [43]. In addition, Kit and Kitl mutants have 
defects in the intestinal pacemaker system, T-cell precur-
sors, and hippocampal learning and hearing [44-46]. 

 Mutations in human KIT are associated with piebaldism, 
a rare autosomal- dominant disorder in which patients show 
patches of white skin and white hair [47]. KIT mutations are 
also associated with human gastrointestinal stromal tumors, 
urticaria pigmentosa, and aggressive mastocytosis in which 
KIT proteins are constitutively activated [48, 49]. To date 
KITL mutations have not been found in human patients.

Snai2 knockout mice
Recent evidence suggests that mutations in human 

SNAI2 are associated with WS2 and piebaldism [50, 51]. 
The initial description of Snai2 knockout mice reported no 
NC defects and described normal melanocyte generation, 
migration, and development [52]. However, another report 
showed a strain-dependent phenotype of a small amount 
of white spotting in the homozygous Snai2 knockout mice 
[50]. The functional role of Snai2 in melanocyte develop-
ment is not known and requires further investigation.

Microphthalmia-associated transcription factor

 The first identification of the microphthalmia gene, 
now termed Mitf, was provided by cloning the gene from 
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a microphthalmic and hypopigmented transgene-insertion 
mutant mouse line [12]. Mitf encodes a transcription factor 
of the basic-helix-loop-helix-leucine zipper (bHLH-Zip) 
class, which, together with TFE3, TFEB, and TFEC, be-
longs to the MITF-TFE subfamily of bHLH proteins. The 
four mammalian members of this subfamily share very 
similar bHLH and leucine zipper domains and in vitro form 
all possible combinations of homo- and heterodimers with 
each other, but do not interact with other bHLH and bHLH-
Zip proteins [53]. Intriguingly, it has been shown that 
knockouts of Tfe3, Tfeb, and Tfec did not affect melanocyte 
development, suggesting that heterodimeric interactions are 
not essential for MITF-TFE function in melanocyte devel-
opment [54, L Hou and H Arnheiter, unpublished results). 
The Mitf gene is quite complex, with at least nine promot-
ers producing multiple isoforms, here termed A-MITF, 
J-MITF, C-MITF, MC-MITF, E-MITF, H-MITF, D-MITF, 
B-MITF, and M-MITF (Figure 2). These isoforms differ 
in their amino termini but share exons 2-9, which include 
all bHLH-Zip domains. MITF is broadly expressed though 
the protein levels and isoforms differ among cell types (for 
detailed structures of MITF, see Steingrimsson et al. [24] 
and Arnheiter et al. [23]). M-MITF is a major isoform in 
NC stem cell-derived melanocytes. All of the isoforms also 
produce alternative splice forms modifying exon 6 that lead 
to inclusion (+) or exclusion (–) of the sequence ACIFPT 
upstream of the basic domain. The function of MITF (+) 
or MITF (–) forms are not fully understood in melanocyte 
development, but they may be related to cell proliferation 
and different transcriptional activities [55. 56]. Distinct 
extracellular signaling pathways, such as those of WNT, 

KIT, EDNRB, and α-melanocyte-stimulating hormone 
(MSH), also regulate Mitf [57-60]. MITF proteins are 
modified by phosphorylation, ubiquitination, sumoylation, 
and acetylation [58, 61-63], and the protein inhibitor of 
activated STAT3 (PIAS3) inhibits MITF transcriptional 
activity [64]. 

 Mitf is expressed in developing NC-derived melanocyte 
precursors before the initial expression of Dopachrome 
tautomerase (Dct) and in the neuroepithelium-derived 
retinal pigmented epithelium (RPE) of the eye beginning 
at E10. On the basis of the coexpression of markers such 
as Kit and Dct, these NC-derived Mitf-positive cells are 
defined as melanocyte precursors [19, 65]. Mitf is one of 
the key transcription factors regulating many aspects of 
melanocyte development and has been referred to as the 
melanocyte master regulator [66, 67]. MITF is required 
for melanocyte cell survival by directly regulating Bcl2 
and MET, the receptor for hepatocyte growth factor [67, 
68], and is involved in melanocyte proliferation and cell 
cycle progression by its regulation of Tbx2, INK4A/p16, 
p21, and CDK2 [69-73]. MITF can also control melanocyte 
differentiation by directly activating transcription through 
E-box (CATGTG) binding sites in the melanocyte-specific 
genes, Dct, Tyrosinase (Tyr), Tyrosinase related protein 1 
(Tyrp1), and Silver/Pmel17, Aim-1, Mart1, and MC1R [62, 
74-76]. Interestingly, recent work suggests that MITF is not 
the sole regulator of Dct and Tyr in melanocyte develop-
ment. SOX10 also regulates Dct expression by directly 
binding to the promoter of Dct [77] and melanocyte-specific 
expression of Dct is dependent on its synergistic activation 
by SOX10 and MITF [78, 79]. In addition, MITF is not 

Figure 2 Schematic diagram of the mouse Mitf gene and its mutations. The upper part of the figure shows the genomic organiza-
tion of the gene. The boxes represent exons, with the numbers written on top indicating the corresponding nine distinct exons: 
1A, 1J, 1C, 1MC, 1E, 1H, 1D, 1B, and 1M, each associated with a distinct mRNA isoform, and the common exons 2-9. The 
bHLH-Zip domain (colored pink) is contributed by part of exon 6B, all of exon 7 and 8, and part of exon 9. The lower part of the 
figure shows 20 of the currently known alleles that have been described in the literature [24, 25, 125, 147]. Filled circles represent 
point mutations, filled triangles represent insertion mutations, and lines represent deletions (Courtesy: Heinz Arnheiter).
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sufficient to induce Tyr expression and full melanocyte 
differentiation in the absence of functional SOX10, sug-
gesting that Sox10 also may control expression of other 
melanocyte-specific gene(s) [80]. 

 SOX10 and PAX3 are both broadly expressed in NC 
stem cells [81, 82]. Supporting this similarity in expres-
sion patterns, ectopic expression of a Sox10 transgene 
under the control of regulatory regions from the Pax3 
gene in Sox10-deficient NC cells rescues melanocyte 
differentiation [83]. Intriguingly, Sox10 and Pax3 have 
more expansive expression patterns than M-Mitf and are 
required for several lineages of NC cells; yet, M-Mitf is 
activated in a small subset of NC cells and is only required 
for melanocyte development. These observations suggest 
that additional extrinsic signaling control must be involved 
in Mitf regulation. In support of this idea, we have found 
that MITF is not sufficient to induce the expression of Tyr 
without functional KIT signaling [19], suggesting that KIT 
signaling modulates the activity of MITF either directly or 
indirectly in melanocyte development. Further studies are 
needed to understand the roles of MITF in melanoblast 
survival, proliferation, differentiation, and disease.

Transcriptional regulation of Mitf

MITF plays an essential role in survival, migration, 
proliferation, and differentiation of melanocytes during 
development. Therefore, understanding the transcriptional 
regulation of Mitf will help us identify the transcriptional 
hierarchy that directs the development of melanocytes from 
NC stem cells. Here we discuss two transcription factors, 
SOX10 and PAX3.

SOX10 is expressed in NC stem cells [81] and in NC-
derived structures during embryonic development [11], 
and is required for proper development and survival of 
NC-derived melanocyte, glial, and enteric neuron lineages 
[84-86]. Sox10 function is regulated by sumoylation in 
Xenopus NC development [87]. SOX10 has been shown 
to strongly activate Mitf expression in cultured cell lines 
[9, 88] and to regulate Dct expression [77]. In addition, 
SOX10 is required not only for inducing Mitf expression in 
NC cells, but also for Mitf-dependent Tyr expression [80]. 
These results suggest that SOX10 regulates the expression 
of other melanocyte-specific gene(s) in addition to Mitf in 
melanocyte development. In contrast, in zebrafish mel-
anocyte development Sox10 is only required for directly 
activating mitf, which, independent of the further actions 
of Sox10, rapidly stimulates downstream target genes and 
hence pigmentation [89]. These results clearly show that 
distinct species differ in usage of homologous regulators 
and their targets for melanocyte development. In zebrafish, 
sox10, mitf, and downstream pigment genes are linked 

in a linear, seemingly simple, regulatory chain in which 
sox10 controls the expression of mitf, which in turn is 
sufficient to regulate melanocyte-specific gene expression 
and pigmentation. In mice, the situation is apparently more 
complex in that the generation of melanocytes requires both 
Sox10 and Mitf, and neither gene alone can overcome the 
lack of the other to generate tyrosinase-expressing, mature 
melanocytes (schematically illustrated in Figure 3). This 
regulatory model was confirmed in mouse melanocytes, in 
which it was shown that SOX10 cooperates with MITF to 
regulate Tyr gene expression by direct activation of the Tyr 
distal regulatory element [90]. SOX10’s interacting factors 
and its downstream targets are yet to be fully elucidated in 
NC stem cell and melanocyte development.

PAX3 is expressed in NC cells and is required for early 
NC and melanocyte development [33, 82, 91]. PAX3 con-
trols neural tube closure through inhibition of p53-mediated 
apoptosis [92]. PAX3 also up-regulates Tyrp1 promoter ac-
tivity [93], and overexpression of Pax3 induces tyrosinase 
activity in ascidian embryos [94]. It has been shown that 
PAX3 weakly transactivates the Mitf promoter [8] and that 
PAX3 synergistically transactivates the promoter of Mitf 
with SOX10 [8, 9, 88]. However, contradictory data show-
ing that PAX3 does not synergistically act with SOX10 to 
activate Mitf transcription have also been reported [95]. 
In vitro studies have shown that the phorbol ester, 12-tet-
radecanoylphorbol 13-acetate (TPA), induces melanocyte 
differentiation from NC cells through Mitf up-regulation, 
but that Pax3 expression level is not altered by the treat-
ment [96]. It is currently unknown whether PAX3 directly 
regulates Mitf in melanocyte development in vivo. Recently 
it has been shown that PAX3 represses Dct expression in 
the absence of activated β-catenin, and such repression is 
relieved by activated β-catenin in melanocyte stem cells 
[97]. The precise function of PAX3 in NC stem cell and 
melanocyte development, however, is poorly understood 
and requires further investigation.

Signaling regulation of Mitf

 During melanocyte development, the three major 
signaling pathways involving WNT, KIT, and EDNRB 
play essential roles, whereas the roles of other signaling 
pathways are not readily apparent from analysis of mouse 
models. For example, despite expression of Met and Erbb3 
in melanoblasts, there were no melanocyte defects in Met 
and Erbb3 knockout mice [98, K Buac and WJ Pavan, 
unpublished results]. Although α-MSH utilizes cAMP to 
trigger melanin synthesis and pigmentation of melanocytes 
through activation of Mitf and Sox10 [59, 99], it does not 
affect melanocyte differentiation in mouse. However, it 
does function in this capacity in other vertebrates, such as 
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reptiles [100, 101]. Below we discuss the roles of WNT, 
KIT, and EDNRB signaling in melanocyte development 
(Figure 4).

WNT/β-catenin signaling
WNT signaling is essential for NC induction and mel-

anocyte development. Activation of Frizzled receptors by 
WNT leads to activation of downstream signal transduction 
molecules, such as β-catenin, PKC, CAMKII, PKA, and 
Rho GTPase, resulting in WNT-mediated complex cellular 
actions. In the best understood canonical WNT/β-catenin 
signaling pathway, when extracellular WNT ligand binds 
to its receptor (Frizzled), β-catenin accumulates, enters 
the nucleus, and subsequently interacts with members of 
the lymphoid enhancer binding factor 1/T-cell specific 
factor (Lef1/Tcf) family of transcription factors, which 
then modulate transcription of target genes [102]. Wnt1 
and Wnt3 are expressed in the dorsal part of the neural 
tube in spatiotemporal patterns consistent with the tim-
ing of NC induction [57, 103], and Dct-positive cells are 
markedly reduced in Wnt1/Wnt3 double knockout mouse 
E11.5 embryos [13]. 

 In vivo and in vitro studies also indicate that the 
WNT/β-catenin signaling pathway is required for induc-
tion of melanocyte and other cell fates. Overexpression 
of β-catenin in zebrafish promotes melanoblast formation 
and reduces formation of neurons and glia [57]. Similarly, 
WNT3a or WNT1 promotes the differentiation and ex-
pansion of melanocytes in cultured chick NC cells and in 

cultured mouse NC cells [104, 105]. Furthermore, both 
melanoblasts and sensory neurons are absent in β-catenin 
conditional knockout mice during embryonic development 
[106]. Interestingly, there is a highly conserved binding site 
for LEF-1 in the Mitf promoter [14, 107], and the interac-
tion between MITF and LEF-1, but not TCF-1, results in 
synergistic transactivation of the Dct gene promoter [108]. 
In addition, MITF can interact directly with β-catenin and 
can redirect its transcriptional activity away from canoni-
cal WNT signaling-regulated genes toward MITF-specific 
target promoters to activate transcription [109]. Together 
these studies suggest that WNT/β-catenin signaling pro-
motes melanoblast development by regulating MITF. 

KIT signaling
KIT signaling is required for normal development of 

three migratory cell populations: blood cells, melanocytes, 
and primordial germ cells [17, 18, 110]. Activation of 
KIT by KITL leads to receptor dimerization and auto-
phosphorylation of specific tyrosine residues in the kinase 
domain. This activates downstream signal transduction 
molecules, such as MAPK, phosphatidylinositol 3′-kinase 
(PI3K), JAK/STAT, and Src family members. Although 
KIT signaling-induced activation of PI3K is required for 
male fertility, this activation is not essential for melanocyte 
development [111].

KIT is expressed in developing NC cells, hematopoi-
etic stem cells, and primordial germ cells, whereas KITL 
is expressed in tissues associated with KIT-expressing 

Figure 3 The transcriptional regulatory hierarchy of Sox10 and Mitf in melanocyte development and differentiation is distinct 
in zebrafish and mice. Examples of the transcriptional regulatory network models are based on reference [149]. In zebrafish, 
melanocyte development exhibits a simple regulatory chain model. Here, Sox10 directly activates mitf and Mitf, independent 
of the further actions by Sox10, and rapidly stimulates downstream target genes and hence pigmentation. Mouse melanocyte 
development exhibits a more complex feed-forward loop network model. Here, SOX10 directly regulates Mitf and subsequently 
cooperates with MITF and/or additional SOX10-dependent regulators to activate downstream target genes, including Tyr. This 
model allows for temporal control of melanogenic gene expression in mouse.
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Figure 4 A simplified schematic showing the features of key signaling pathways in melanocyte development. Green lines 
represent three major signaling pathways, WNT, KIT, and EDNRB, which are all connected to Mitf. WNT/β-catenin signaling 
promotes melanoblast development by regulating MITF transcription. KIT and EDNRB signal pathways are not required for the 
initial expression of Mitf in melanocyte development, but both pathways induce the phosphorylation of MITF in mature melano-
cytes. However, the KIT signaling-dependent phosphorylation site at serine-73 is not essential for melanocyte development. 
It is unknown whether melanocytic KIT and EDNRB signaling pathways act through regulation of MITF and whether EDNRB 
signaling-dependent MITF phosphorylation plays any role in melanocyte development in vivo. MITF is involved in melanocyte 
survival, proliferation, and differentiation by regulating downstream genes. Blue lines represent MITF target genes, which include 
genes involved in cell survival (Bcl2 and Met), cell proliferation (p21, p16, CDK2 , and Tbx2), and differentiation (Tyr, Tyrp1, Dct, 
Silver/Pmel17, Mart1, Aim-1, and MC1R). During melanocyte lineage development, the transcription factors SOX10, PAX3, and 
LEF1 regulate expression of the melanocyte-specific Mitf isoform. The relative positions of the binding sites for these factors 
within the proximal Mitf promoter are shown. MITF is insufficient to induce Tyr expression and full melanocyte differentiation in 
the absence of SOX10. SOX10 is required for Dct and Tyrosinase expression in addition to the control of Mitf. Although PAX3 
is known to repress Dct expression, the precise function of PAX3 in melanocyte development is poorly understood. In addition, 
MSH can elevate cAMP levels that subsequently activate both the cAMP and the MAP kinase pathways, resulting in elevated 
Mitf promoter activity in melanogenesis. However, how CREB activation is involved in melanocyte development is unknown 
to date. KIT signaling-induced activation of PI3 K is not essential for melanocyte development [111]. Question marks indicate 
insufficient data to describe the involvement of these signaling pathways in melanocyte development.

cells and in the neural tube [43, 112-115]. KIT signaling 
is necessary for the survival and/or migration of melano-
blasts [43, 116, 117]. Injection of KIT antibody into early 
mouse embryos blocks proper melanocyte development 
[118, 119], and ectopic expression of KITL promotes mi-
gration, proliferation, and differentiation of melanocyte 
precursors [120]. Tyrosine residues 567 and 569 of KIT 

are crucial for its function in melanocyte development, as 
specific mutation of both residues results in complete loss 
of melanocytes [121].

 Understanding of the complex relationship between KIT 
signaling and MITF function also concerns their temporal 
expression patterns in melanocyte development. One pos-
sible model is that MITF can activate Kit transcription [122] 
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and thus upregulate KIT expression [65]. This model is 
supported by observations that zebrafish mitf mutants fail 
to express kit, suggesting that the initial expression of KIT 
is dependent on MITF [123]. Another possible model is that 
KIT signaling induces the transcriptional activity of MITF. 
This model is supported by studies on cultured melanocytes 
and melanoma cells in which KIT signaling leads to an in-
crease in MITF phosphorylation, which is associated with 
an enhanced recruitment of the transcriptional coactivator 
p300/CBP and a concomitant stimulation of MITF tran-
scriptional activity [58, 124]. This increase is transient and 
followed by rapid ubiquitination and proteasome-mediated 
degradation of MITF [61]. However, we have shown that 
the initial expression of Kit is not dependent on MITF and 
that the initial expression of Mitf is not dependent on KIT. 
In addition, we have shown that the presence of MITF alone 
is not sufficient for Tyr expression in melanoblasts in the 
absence of functional KIT signaling, and that KIT signal-
ing influences gene expression through MITF in a gene-
selective manner during melanocyte development [19]. 
Taken together, these results suggest that MITF and KIT 
are not related in a simple linear regulatory chain, and that 
both cooperatively regulate the expansion of melanocyte 
precursors in development. To date, it is unknown when 
and where KIT signaling-dependent MITF phosphoryla-
tion occurs and whether this post-translational modifica-
tion plays any role in melanocyte development in vivo. 
Interestingly, one mutant Mitf allele that results in reduced 
skin melanocytes, Mitf mi-bws (mi-black and white spotting), 
produces not only a wild-type transcript that contains exon 
2b, but also a transcript that lacks exon 2b, which contains 
a KIT signaling-dependent phosphorylation site, serine-73. 
This suggests that exon 2b may play a role in melanocyte 
development, potentially through KIT signaling-dependent 
phosphorylation. However, targeted mutation of serine-73 
to alanine leads to normally pigmented mice [125]. This 
indicates that mutation of this phosphorylation site is not 
deleterious to melanocyte development. The developmental 
mechanism of Mitfmi-bws mutant mice and the precise func-
tion of Kit signaling in melanocyte development require 
further investigation. 

EDNRB signaling
EDNRB exerts pleiotropic effects on mouse develop-

ment, and its function is required for the normal develop-
ment of NC-derived melanocytes and enteric ganglia [15, 
16]. Binding of EDNRB by EDN3 leads to the activation 
of downstream signal transduction pathways, including 
PKC, CamKII, and MAPK [126]. EDNRB is expressed 
in developing NC stem cells, melanoblasts, and enteric 
ganglia in mouse embryos [16, 127-130], whereas EDN3 
is expressed in tissues associated with Ednrb-expressing 

cells [127]. Studies on mice harboring mutant Ednrb alleles 
showed that EDNRB signaling functions are necessary for 
the development of melanoblasts and enteric neural precur-
sors [15, 16, 128, 131]. Likewise, transgenic expression of 
Edn3 prevents aganglionosis and piebaldism in lethal spot-
ted mice [132]. Experiments in Ednrb mutant mice have 
shown that EDNRB is not needed for melanoblast forma-
tion, but is needed for migration of melanoblasts and enteric 
neuroblast precursors prior to cell differentiation, between 
E10.5 and E12.5 [133]. In addition, it is also required for 
melanoblast development in the epidermis beyond E12.5 
[119]. Avian NC cells express an additional Ednrb gene, 
Ednrb2, which is involved in melanoblast differentiation 
and migration [134, 135].

Although EDNRB is expressed in unspecified NC cells 
and melanocyte precursors, it is not clear whether it acts 
solely in a cell-autonomous manner [16, 130, 136]. By 
cross-explantation of embryonic tissues and NC cells, it 
has been found that the melanoblasts of the hypomorphic 
Ednrbs (piebald) allele show increased survival on in 
vitro cultured wild-type skin compared with mutant skin 
[137]. To address the question of whether melanocyte 
development depends entirely on the cell-autonomous 
action of EDNRB, we have performed a series of tissue 
recombination experiments in vitro using NC cell cultures 
from EdnrblacZ embryos, which contain a functionally null 
allele of Ednrb. These studies showed that EDNRB plays 
a significant role during melanocyte differentiation by 
sequential cell-autonomous and non-autonomous actions 
[138]. Recently it has been shown that endothelin signaling 
leads to an increase in MITF phosphorylation and CREB 
phosphorylation in cultured human melanocytes [60]. How-
ever, it is unknown whether melanocytic EDNRB signal-
ing acts through regulation of MITF, when and where the 
MITF post-translational modifications occur, and whether 
EDNRB signaling-dependent MITF phosphorylation plays 
any role in melanocyte development in vivo. 

 In addition, how EDNRB itself is regulated in mela-
nocyte development is unknown. Interestingly, it has been 
shown that SOX10 directly activates Ednrb transcription 
in NC stem cell-derived enteric neurons [139], but genetic 
evidence suggests that SOX10 does not directly activate 
Ednrb transcription in the melanocyte lineage [140]. How-
ever, contradictory data showed that SOX10 transactivates 
the Ednrb promoter in human cultured melanocytes [141]. 
These results suggest that SOX10 may regulate differentia-
tion-related downstream target gene(s) based on the cellular 
context in development.

Notch signaling
Recent work showed that Notch signaling is involved in 

the maintenance of melanoblasts and melanocyte stem cells 
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[142, 143]. The precise function of Notch signaling in the 
maintenance of melanocyte stem cells, however, requires 
further investigation. For detailed information on the Notch 
signaling pathway and its general role in melanocytes, we 
refer the readers to other recent reviews [144, 145].

Conclusions

 White spotting genes play essential roles in NC stem 
cell-derived melanocyte development and related diseases. 
Nevertheless, much work is required to complete our func-
tional understanding of these genes in melanocyte devel-
opment. One of the important questions is when and how 
this complex network of genes interacts with other genes to 
regulate proper melanocyte development. Current evidence 
suggests that MITF is extensively involved in melanocyte 
development, providing a central link between transcrip-
tion factors and signaling pathways (Figure 4), and is also 
involved in melanocyte stem cell maintenance [146]. Do all 
transcription factors and signaling pathways use MITF to 
regulate melanocyte development? More research is needed 
to answer this question. For example, it is unknown if and/
or how PAX3 or SNAI2 regulates melanocyte development 
via Mitf. In addition, it will be very interesting to determine 
how WNT, KIT, and EDNRB signaling pathways regulate 
MITF and whether Notch signaling influences the mainte-
nance of melanocyte stem cells through regulation of MITF. 
It is unknown whether KIT- and EDNRB-dependent MITF 
phosphorylation plays any role in melanocyte develop-
ment in vivo. Increasing evidence suggests that signaling 
proteins tend to form networks of interactions rather than 
simple linear pathways. Therefore, most importantly, we 
need to further understand how distinct signaling path-
ways form interacting networks to regulate specification, 
survival, migration, proliferation, and differentiation of 
melanocyte precursors during development and how these 
pathways influence the dynamic balance between stem 
cell maintenance and differentiation in tissues of mature 
melanocytes. The field of melanocyte research has grown 
to include developmental cell biology and cancer biology, 
and will continue to provide a fruitful ground for basic and 
translational research in the future.
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