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CREB-binding protein (CBP) and its homologue p300 are transcriptional co-activators of various sequence-specific 
transcription factors that are involved in a wide array of cellular activities, such as DNA repair, cell growth, differentia-
tion and apoptosis. Several studies have suggested that CBP and p300 might be considered as tumour suppressors, with 
their prominent role being the cross-coupling of distinct gene expression patterns in response to various stimuli. They 
exert their actions mainly via acetylation of histones and other regulatory proteins (e.g. p53). A major paradox in CBP/
p300 function is that they seem capable of contributing to various opposed cellular processes. Respiratory epithelium 
tumorigenesis represents a complex process of multi-step accumulations of a gamut of genetic and epigenetic aberra-
tions. Transcription modulation through the alternate formation of activating and repressive complexes is the ultimate 
converging point of these derangements, and CBP/p300 represents key participants in this interplay. Thus, illumination 
of their molecular actions and interactions could reveal new potential targets for pharmacological interventions in re-
spiratory epithelium carcinogenesis.
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Introduction

cAMP response element-binding protein-binding pro-
tein (CBP) and p300 were originally identified as factors 
binding to the cAMP response element-binding protein 
(CREB) and the adenoviral E1A, respectively [1, 2]. The 
human CBP locus resides in the chromosomal region 
16p13.3 and shows homology to 22q13, where p300 is 
located [3]. CBP/p300 proteins share several conserved 
regions, which constitute most of their known functional 
domains (Figure 1). CBP and p300 have interchangeable 
roles during embryonic development and in many processes 
govern cellular homeostasis [4, 5]. However, genetic and 
molecular evidence suggests that they also fulfil distinct 
functions [3]. Homozygous CBP–/– and p300–/– knock-
out mice were inviable due to severe developmental de-

fects, albeit abnormal heart formation was noted only 
in p300–/– mice, thus suggesting that both proteins are 
necessary during embryogenesis with overlapping and 
unique functions [6]. Consistently, double heterozygous 
CBP+/– and p300+/– knockout mice are also embryonic 
lethal. However, only CBP+/– mice display features of 
Rubinstein-Taybi syndrome (RTS) [6, 7], while a more 
severe and penetrant RTS-like phenotype was found in 
mice in which one CBP allele was modified to express a 
truncated CBP protein [7].

Apart from other structurally defined regions, CBP/p300 
have specific areas for interaction with a wide array of tran-
scription factors and co-factors (Figure 1). The plethora of 
these interacting proteins indicates the unique involvement 
of CBP/p300 in transcriptional control as ubiquitous and 
versatile co-integrators. Many of the protein interactions 
with CBP/p300 are regulated by upstream signals. For ex-
ample, phosphorylation of the transcription factor CREB 
modulates its interaction with CBP, while hormones can 
induce the binding of CBP/p300 to nuclear receptors [8]. 
Notably, in some cases CBP/p300 can stimulate diverse 
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functions of certain transcriptional regulatory proteins [4, 
5]. Nevertheless, the most intriguing feature of CBP/p300 
is their stoichiometric function in vivo and their intrinsic 
enzymatic activities.

The importance of CBP/p300 is underscored by the 
fact that genetic alterations as well as their functional dys-
regulation are strongly linked to human diseases. Germline 
mutations of CBP were first reported in RTS, an autosomal-
dominant disease characterised by mental retardation, skel-
etal abnormalities and a high malignancy risk, albeit such 
defects have not been associated with p300 so far [9, 10]. 
Nonetheless, mutations of the p300 gene have been detected 
in human epithelial tumours, which is consistent with the 
general notion that p300 might possess tumour-suppressor 
activity [11, 12]. Although the tumour-suppressor function 
of CBP is still unclear, its involvement in chromosomal 
translocations associated with haematologic malignancies 
has been well-documented [13]. The critical involvement of 
CBP/p300 proteins in a variety of key molecular pathways 
provides the mechanistic rationale of their implication in 
respiratory epithelium tumorigenesis.

CBP/p300 transcriptional activity

The multifaceted role of CBP/p300 in transcription can 
be achieved by various mechanisms (Figure 2). CBP/p300 
are thought to serve as a physical “bridge” between diverse 
gene-specific transcription factors (GSTFs) and compo-
nents of the basal transcriptional machinery (BTM; e.g. 
TATA box-binding protein, TFIIB, TFIIE, TFIIF) thereby 
stabilising the transcription complex [4]. CBP/p300 might 
also act as a scaffold for the formation of multi-component 
complexes containing transcription factors and co-factors. 
A classical example of complex assembly involving mul-
tiple transcription factors and co-factors is the β-interferon 
gene promoter in response to viral infections [14]. The 
large size of CBP/p300 endows them with many different 
interaction surfaces, thus enabling them to bind concur-
rently to various proteins. By providing a platform for the 
assembly of transcription regulatory proteins, CBP/p300 
might increase the relative concentration of these factors 
in the local transcriptional environment (Figure 2). Ac-
cordingly, cells can cooperatively utilise its repertoire 
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Figure 1 Schematic representation of CBP and p300 homologous regions and functional domains along with a selected list of proteins 
that bind to specific sites of CBP/p300. BD, bromodomain; CH1-3, cysteine and histidine-rich regions 1-3; KIX, binding site of 
CREB; QP, glutamine- and proline-rich domain; RID, receptor-interacting domain; SID, steroid receptor co-activator-1 interaction 
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of proteins, so that the combinations of a few ubiquitous 
factors, and signal- and tissue-specific modulators, could 
create a broad spectrum of regulatory complexes.

Post-translational chromatin modifications modulate the 
activity of many genes by modifying both the core histones 
and non-histone transcription factors [15]. Acetylation of 
multiple sites in the histone tails has been directly associ-
ated with transcriptional upregulation, while de-acetylation 
correlates with transcriptional repression. Mechanistically, 
histone acetylation promotes the accessibility of DNA to 
transcription protein complexes, by facilitating the “unwir-
ing” of the chromatin structure [16]. CBP/p300 can interact 
with chromatin nucleosomes via nucleosome assembly 
proteins, histone-binding proteins and possibly histones 
themselves [17, 18]. In addition to histones, CBP/p300 also 
modulate a variety of other proteins by acetylation [19, 20]. 
In most instances, acetylation of transcription factors has 
been shown to enhance their DNA-binding activity (e.g. 
p53, p73, retinoblastoma (Rb), E2F, Sp3, signal transducers 
and activators of transcription) [11, 21], although it seems 
plausible that acetylation also regulates protein-protein 
interactions, protein-DNA recognition [19], as well as 
nuclear transport and structure [22, 23]. Acetylation of 
components of the BTM (e.g. TFIIE, TFIIF) has been found 

to enhance DNA-binding activity and gene transcription 
[24]. Moreover, CBP/p300 can bind additional co-factors 
that possess acetyl-transferase activity (e.g. p300/CBP-
associated factor (p/CAF)) [25], and also recruit proteins 
bearing other chromatin-modifying enzymatic activities 
(e.g. histone methyltransferases) [26].

The ability of so many proteins to interact with CBP/p300 
suggests that competition for the rather limited intracellular 
pool of CBP/p300 might account for the observation that 
unrelated transcription factors inhibit each other without 
direct interference [27, 28]. In this vein, sequestration of 
CBP/p300 by the adenoviral protein E1A [29], human 
papilloma virus protein E6 [30] and other viral proteins 
[3] is probably a means by which oncogenic viruses sup-
press many cellular transcription factors, and thereby may 
contribute to cellular transformation.

Given the multiple activities of CBP/p300, it is of 
paramount importance to enlighten their own regulatory 
principles. CBP/p300 are thought to be modulated by 
phosphorylation via cyclin/cyclin-dependent kinase (Cdk) 
complexes in G1/S [31], whereas various kinases, such 
as protein kinase A, protein kinase C, phosphatidylinosi-
tol-3 kinase/AKT and mitogen-activated protein kinases 
(MAPK), have been shown to phosphorylate CBP in vitro 

Figure 2 CBP/p300 participate in transcriptional control through various mechanisms. (1) “Bridging” GSTFs with the BTM. (2) 
Contributing to the formation of multi-protein complexes and directly and/or indirectly modulating the activation status of GSTFs 
through post-translational modifications. (3) Exhibiting acetyl-transferase activity on nucleosomes and certain GSTFs. Ac, acetyl 
group.
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[19, 32]. Furthermore, CBP/p300 are also targets of other 
post-translational modifications, such as methylation [33] 
and sumoylation [34]. Recent data have indicated the 
existence of an auto-regulatory loop, whereby the acetyl-
transferase activity of p300 is considered to be intrinsically 
weak [35], and its auto-acetylation, or possibly acetylation 
via other proteins, might stimulate its acetyl-transferase 
activity [35]. De-acetylases (e.g. histone deacetylase 1 
(HDAC1)) or other proteins (e.g. p53) could associate with 
p300 to keep it in a catalytically inactive state [36, 37]. On 
the other hand, it has been shown that p300 can also inacti-
vate HDAC1 via acetylation. Thus, two positive feedback 
loops (activation through auto-acetylation and inhibition of 
an inhibitor) ensure maximal p300 activity. A recent study 
has suggested that p300 auto-acetylation serves as a switch 
to regulate its arrival and departure during pre-initiation 
complex assembly [38]. In addition, there is evidence that 
p300 also functions in elongation [39]. Therefore, the ac-
tivity of CBP and/or p300 and their capacity to bind with 
certain transcriptional regulatory proteins are subjected to 
regulation by diverse mechanisms, hence contributing to 
transcriptional specificity and plasticity.

Implication of CBP/p300 in respiratory epithelium 
tumorigenesis

Most of the described tumour-related mutations in CBP/
p300 result in truncation of the p300 protein. In majority of 
the cases, the second allele was inactivated through deletion 
(loss of heterozygosity (LOH)), silencing (hemizygosity) 
or a different mutation (compound heterozygosity). These 
findings have qualified p300 as a classical tumour-sup-
pressor gene, but with a low detected mutation rate in cell 
lines [40]. It is currently less clear whether CBP should 
also be classified as a tumour-suppressor gene. However, 
the high prevalence of malignant tumours among RTS pa-
tients along with the fact that both CBP and p300 proteins 
are targets of transforming viruses suggest that disruption 
of CBP function contributes to carcinogenesis [11]. In 
lung cancer, LOH has been frequently detected in diverse 
chromosomal regions, albeit relatively few targeted tumour 
suppressor genes (including p53, Rb, p16 and FHIT) have 
been identified [41]. Recently, it was shown that the CBP 
gene is genetically altered in almost 15% of lung cancer 
cell lines and 5% of primary lung tumours [42]. Thus, 
point mutations and homozygous deletions of the CBP 
gene might be involved in the pathogenesis of a subset of 
lung carcinomas (Figure 3). Interestingly enough, these 
CBP mutations are not clustered in the catalytic (acetyl-
transferase) region but are dispersed throughout the entire 
gene, indicating that the biological effects of such mutations 
are diverse [42]. Another important aspect is the observed 

coexistence of CBP and p53 mutations, which suggests that 
CBP gene alterations might contribute to lung carcinogen-
esis by distorting pathways other than those engaging p53. 
Regarding p300, somatic mutations have been identified in 
several types of cancers [43], but their prevalence in lung 
cancer is unknown. The notion that CBP and p300 might 
play different roles in diseases such as lung tumorigenesis is 
supported by the observation that reintroduction of p300 but 
not CBP was able to suppress the growth of p300-deficient 
carcinoma cells [44].

Since mutations in CBP/p300 are relatively uncommon, 
CBP/p300 might contribute to lung carcinogenesis through 
alternative mechanisms (Figure 3). The cell-cycle apparatus 
acts as a dominant controller “supervising” the cell fate, 
and its deregulation represents an imperative step during 
malignant transformation. CBP/p300 are shown to associate 

Figure 3 CBP/p300 may contribute to respiratory epithelium car-
cinogenesis via multiple routes. Potential strategies for therapeutic 
interventions are indicated (currently tested regimens mostly target 
CBP/p300 acetyl-transferase activity; thicker arrow). BTM, basal 
transcriptional machinery; GSTF, gene-specific transcription fac-
tor.
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with the cyclin E/Cdk2 complex [45]. Although the precise 
role of CBP/p300 in regulating cell proliferation remains 
elusive, existing evidence suggests that they are negative 
modulators of the cell cycle. The fact that these proteins 
are targets of viral oncoproteins also suggests their impor-
tance in cell-cycle regulation, such as the control of DNA 
synthesis and S-phase progression [46]. For example, it has 
been shown that the p300/CBP-p/CAF protein complex can 
arrest cell cycle and might regulate target genes that are 
involved in the control of the G1/S transition, such as p21 
[46]. In vitro models have also suggested that sequestration 
of CBP/p300 by viral oncoproteins has the general effect 
of modulating transcription through affecting transcrip-
tion factors that normally utilise these co-activators [46], 
while the recently recognised link between CBP/p300 and 
the anaphase-promoting complex/cyclosomeE3 ubiquitin 
ligase has provided new insights into the roles of these 
proteins in the control of both cell cycle and transcription 
[45].

CBP/p300 are cardinal transcriptional co-regulators 
responsible for the proper function of a gamut of signal-
ling cascades. To this end, the growth-suppressing effect 
of CBP/p300 might be well explained by their ability to 
augment p53-mediated transcription [47]. The p53 tumour 
suppressor gene is the most commonly mutated gene in 
human cancers and is frequently found to be dysregulated 
in lung pre-malignant and malignant lesions [48]. A major 
function of p53 is to activate genes engaged in the response 
to DNA damage, such as murine double minute 2 (mdm2), 
p21, cyclin D1 and Bax [47]. Following DNA damage, 
p53 is activated by kinase-mediated phosphorylation as 
well as by acetylation at specific residues by CBP/p300 
[49], resulting in increased stability of the p53-CBP/p300-
DNA complex. Furthermore, CBP/p300 is required for 
p53-mediated transactivation of target genes through their 
co-activator function and through local histone acetylation 
[50]. It has also been suggested that the association of p53 
with CBP/p300 might account for p53-mediated negative 
regulation of genes whose promoters lack a suitable p53 
binding site [51]. Interestingly, CBP/p300 also contribute 
to controlling p53 stability by regulating its ubiquitina-
tion and degradation, through both Mdm2-dependent and 
Mdm2-independent mechanisms. Degradation of p53 is 
known to be mediated by a ternary complex comprising 
p53, Mdm2 and CBP/p300 [52]. Recently, the CH1 domain 
of CBP/p300 was found to display ubiquitin ligase activity 
towards p53, and therefore, CBP/p300 could also play a 
direct role in p53 degradation [53].

The E2F family of transcription factors play a pivotal 
role in regulating cell cycle progression and apoptosis [54]. 
In mammals, the E2F family has six different members. The 
best-characterised member is E2F-1 and its over-expression 

has been shown to be strongly associated with lung carcino-
genesis [55]. The ability of E2F-1 to stimulate transcription 
appears to be subjected to multiple regulations including 
co-activation by CBP/p300 and reversal of Rb-mediated 
repression through Rb phosphorylation [55]. At a molecular 
level, the Cdk-stimulated interaction of CBP/p300 with 
E2F-1 may be involved in irreversibly committing cells to 
cell-cycle progression [56]. Interestingly, although E2F-1 
has been shown to be acetylated in vitro by both p/CAF 
and CBP/p300 at the same lysine residues, a specific role 
for p/CAF in acetylation-induced stabilisation of E2F-1 in 
response to DNA damage was recently reported [57].

One of the major tasks of CBP/p300 is the cross-coupling 
of distinct gene-expression programs in response to various 
stimuli [28]. However, CBP/p300 levels in vivo are consid-
ered stoichiometric and apparently cannot simultaneously 
support its various functional activities. Thus, CBP/p300 
over-expression or their preferential usage by certain 
“hyperactive” transcription factors, or a combination of 
both, could contribute to unopposed cellular proliferation 
as well as apoptosis inhibition during lung carcinogenesis. 
Recently, CBP over-expression at the very early stages of 
respiratory epithelium carcinogenesis has been documented 
[28]. This observation has led to a “step-wise” model in 
which CBP over-expression accompanied by upregulation 
of members of the activator protein-1 (AP-1) family and 
a gradual downregulation of the retinoid acid receptor β 
might favour lung tumour progression and proliferation 
[58]. 

This model is in accordance with clinical observations 
that have identified cyclin D1 over-expression, which is 
AP-1 dependent, as a frequent event in human lung tumours 
[59]. Intriguingly, recent studies have demonstrated that 
cyclin D1 could control transcription factor activity by 
directly interacting with and repressing the transactivation 
capacity of p300 [60]. Nevertheless, the mechanisms by 
which cyclin D1 regulates a variety of cellular functions are 
not fully understood. Another gene that merits discussion in 
consideration of lung carcinogenesis is cyclooxygenase-2 
(COX-2). It has been shown that growth factor-induced 
COX-2 transcription is mediated through the Ras-MAPK 
signalling pathway and through subsequent activation of 
AP-1 [61]. COX-2 is an inducible enzyme during carci-
nogenesis, and many experimental and clinicopathological 
studies have revealed that COX-2 over-expression is as-
sociated with respiratory epithelium tumorigenesis through 
proliferation enhancement, apoptosis inhibition and trig-
gering of angiogenesis [62]. In this respect, it is important 
to note that CBP/p300 are the predominant co-activators 
in COX-2 transcriptional activation [63].

Collectively, the accumulating evidence indicates that 
CBP/p300 function as general co-regulators of a variety 
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of transcription factors that could have either tumour-sup-
pressing or tumour-enhancing properties. The abundance 
of CBP/p300 and the specific interaction mode between 
CBP/p300 and these various factors as dictated by the 
specific cell type and cellular context are likely of critical 
importance in determining how CBP/p300 might modulate 
cell physiology/pathology and regulate disease pathogen-
esis such as lung carcinogenesis.

The potential of modulating CBP/p300 in lung cancer 
therapeutics

In theory, CBP/p300-mediated signal propagation dur-
ing respiratory epithelium tumorigenesis could be modu-
lated by diverse strategies (Figure 3). For instance, in the 
case when their over-expression constitutes the problem, 
antisense oligodeoxynucleotides and RNA interference 
approaches could be used to reduce their production [64, 
65]. Targeting protein-protein interfaces has emerged as a 
promising anticancer approach, although many theoretical 
caveats have to be tackled [66]. Moreover, new technolo-
gies have recently emerged to selectively block the function 
of critical transcription factors (e.g. structure-based rational 
design of decoy oligonucleotides) [67].

Being one of the key enzymes involved in post-transla-
tional modifications, the acetyl-transferases CBP/p300 hold 
crucial roles in the causal relationship between dysfunction 
of the acetylation/deacetylation equilibrium and respira-
tory epithelium carcinogenesis. During the last decade, 
a number of HDAC inhibitors have been identified that 
induce apoptosis in cultured tumour cells and have entered 
clinical testing [68]. Pharmacologic inhibition of HDACs 
might restore the distorted epigenetic network and have 
therapeutic effect throughout the carcinogenesis process. 
A proof of principle of this assumption was the recent ap-
proval of the HDAC inhibitor suberoylanilide hydroxamic 
acid for patients with progressive, persistent or recurrent 
forms of cutaneous T-cell lymphoma [68].

Although substantial progress has been made in the 
study of HDAC inhibitors, very little has been achieved 
in the area of acetyl-transferase inhibitors. Long before, 
polyamine-CoA conjugates were found to inhibit the 
acetyl-transferase activity of cell extracts [69]. Availabil-
ity of recombinant acetyl-transferases (p300 and p/CAF) 
rendered it possible to synthesise and test more targeted 
and specific inhibitors, Lys-CoA for p300 and H3-CoA for 
p/CAF [70]. The major problem with these compounds was 
their lack of cellular permeability. In an effort to overcome 
this limitation, truncated derivatives were designed, syn-
thesised and assessed as p300 inhibitors, with, however, 
disappointing results [71]. Two substituted derivatives that 
show about four-fold increased potency compared to the 

parental compound Lys-CoA have recently been identified 
and are currently being evaluated [72].

High-throughput screening of random chemical librar-
ies for specific inhibitors of CBP/p300 acetyl-transferase 
activity is another way of identifying compounds that could 
then be further modified by medicinal chemistry method-
ologies to develop drugs suitable for clinical application. 
Recently, the first naturally occurring acetyl-transferase 
inhibitor, anacardic acid, was found. This substance inhibits 
very effectively, in a non-competitive manner, the activity 
of both p300 and p/CAF [73], and it has been also shown 
to increase in vitro the sensitivity of tumours to radiation 
therapy [74]. By using this molecule as a synthon, a syn-
thetic amine derivative of anacardic acid (CTPB) has been 
generated [75]. However, again cells were impermeable 
or poorly permeable to both anacardic acid and CTPB. 
Nevertheless, these and other natural products might offer 
valuable “probes” for identifying potential clinically effec-
tive remedies. For example, curcumin was recently shown 
to exert a specific inhibitory activity towards CBP/p300 
[76]. The first cell permeable acetyl-transferase inhibitor 
has also been reported. It is garcinol, a polyisoprenylated 
benzophenone derivative of Garcinia indica fruit rind, and 
has demonstrated potent inhibitory activity towards histone 
acetyl-transferases (HATs) both in vitro and in vivo [77]. In 
addition, a series of isothiazolone-based acetyl-transferase 
interfering agents were recently reported as being potential 
small-molecular-mass inhibitors for acetyl-transferases 
[78].

Conclusion

Developing an integrated picture of the role of CBP/p300 
in lung carcinogenesis is a challenging task that awaits fur-
ther exploration. CBP/p300 are considered multi-functional 
transcriptional co-activators participating in a broad spec-
trum of intracellular processes under normal and pathologic 
conditions. However, many questions remain unanswered. 
Further genetic and functional studies of CBP/p300 would 
aid at unravelling their prominent activities, thus generat-
ing new options for intervention during the formation of 
lung tumours.

Acetylation is a feature of active genes and its inhibi-
tion in vivo would repress majority of the genes, including 
those that are aberrantly expressed. Therefore, a systematic 
investigation of the effect of compounds targeting acetyl-
transferase activity on normal and cancerous cell lines is a 
prerequisite to define their potential utility in lung cancer 
therapeutics. Further modifications of these compounds 
in conjunction with continued research for new molecules 
could lead to the development of potential novel agents 
targeting acetyl-transferases. Since acetylation and other 
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post-translational modifications (e.g. methylation, phos-
phorylation) are highly co-regulated and functionally 
interdependent, the effect of acetyl-transferase modula-
tors should also be evaluated in this vein. The resulting 
information could be very useful to design combinatorial 
therapeutics targeting both HATs and other important en-
zymatic activities.
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