Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

miR-125b-5p and miR-99a-5p downregulate human γδ T-cell activation and cytotoxicity

Abstract

As an important component of innate immunity, human circulating γδ T cells function in rapid responses to infections and tumorigenesis. MicroRNAs (miRNAs) play a critical regulatory role in multiple biological processes and diseases. Therefore, how the functions of circulating human γδ T cells are regulated by miRNAs merits investigation. In this study, we profiled the miRNA expression patterns in human peripheral γδ T cells from 21 healthy donors and identified 14 miRNAs that were differentially expressed between peripheral αβ T cells and γδ T cells. Of the 14 identified genes, 7 miRNAs were downregulated, including miR-150-5p, miR-450a-5p, miR-193b-3p, miR-365a-3p, miR-31-5p, miR-125b-5p and miR-99a-5p, whereas the other 7 miRNAs were upregulated, including miR-34a-5p, miR-16-5p, miR-15b-5p, miR-24-3p, miR-22-3p, miR-22-5p and miR-9-5p, in γδ T cells compared with αβ T cells. In subsequent functional studies, we found that both miR-125b-5p and miR-99a-5p downregulated γδ T cell activation and cytotoxicity to tumor cells. Overexpression of miR-125b-5p or miR-99a-5p in γδ T cells inhibited γδ T cell activation and promoted γδ T cell apoptosis. Additionally, miR-125b-5p knockdown facilitated the cytotoxicity of γδ T cells toward tumor cells in vitro by increasing degranulation and secretion of IFN-γ and TNF-α. Our findings improve the understanding of the regulatory functions of miRNAs in γδ T cell activation and cytotoxicity, which has implications for interventional approaches to γδ T cell-mediated cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Girardi M. Immunosurveillance and immunoregulation by gammadelta T cells. J Invest Dermatol 2006; 126: 25–31.

    CAS  PubMed  Google Scholar 

  2. Cao W, He W. The recognition pattern of gammadelta T cells. Front Biosci 2005; 10: 2676–2700.

    CAS  PubMed  Google Scholar 

  3. Wiest DL. Development of gammadelta T Cells, the Special-Force Soldiers of the Immune System. Methods Mol Biol 2016; 1323: 23–32.

    CAS  PubMed  Google Scholar 

  4. Chen H, He W. Human regulatory γδT cells and their functional plasticity in the tumor microenvironment. Cell Mol Immunol, e-pub ahead of print 28 August 2017 doi:https://doi.org/10.1038/cmi.2017.73.

    Google Scholar 

  5. Mao Y, Yin S, Zhang J, Hu Y, Huang B, Cui L et al. A new effect of IL-4 on human γδ T cells: promoting regulatory Vδ1 T cells via IL-10 production and inhibiting function of Vδ2 T cells. Cell Mol Immunol 2016; 13: 217–228.

    CAS  PubMed  Google Scholar 

  6. Kabelitz D, Glatzel A, Wesch D. Antigen recognition by human gammadelta T lymphocytes. Int Arch Allergy Imm 2000; 122: 1–7.

    CAS  Google Scholar 

  7. Sireci G, Espinosa E, Di Sano C, Dieli F, Fournié JJ, Salerno A et al. Differential activation of human gammadelta cells by nonpeptide phosphoantigens. Eur. J. Immunol 2001; 31: 1628–1635.

    CAS  PubMed  Google Scholar 

  8. Beetz S, Wesch D, Marischen L, Welte S, Oberg HH, Kabelitz D et al. Innate immune functions of human gammadelta T cells. Immunobiology 2008; 213: 173–182.

    CAS  PubMed  Google Scholar 

  9. Kobayashi H, Tanaka Y, Yagi J, Osaka Y, Nakazawa H, Uchiyama T et al. Safety profile and anti-tumor effects of adoptive immunotherapy using gamma-delta T cells against advanced renal cell carcinoma: a pilot study. Cancer Immunol Immunother 2007; 56: 469–476.

    CAS  PubMed  Google Scholar 

  10. Brandes M, Willimann K, Moser B. Professional antigen-presentation function by human gammadelta T Cells. Science (New York, N.Y.) 2005; 309: 264–268.

    CAS  Google Scholar 

  11. Zhu Y, Wang H, Xu Y, Hu Y, Chen H, Cui L et al. Human gammadelta T cells augment antigen presentation in Listeria Monocytogenes infection. Mol Med 2016; 22: 737–746.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ambros V. The functions of animal microRNAs. Nature 2004; 431: 350–355.

    CAS  PubMed  Google Scholar 

  13. Huang Y, Shen X, Zou Q, Wang S, Tang S, Zhang G. Biological functions of microRNAs: a review. J Physiol Biochem 2010; 67: 129–139.

    PubMed  Google Scholar 

  14. O'Connell RM, Rao DS, Chaudhuri AA, Baltimore D. Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol 2010; 10: 111–122.

    CAS  PubMed  Google Scholar 

  15. Xiao C, Calado DP, Galler G, Thai TH, Patterson HC, Wang J et al. MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 2007; 131: 146–159.

    CAS  PubMed  Google Scholar 

  16. Li Q, Chau J, Ebert PJ, Sylvester G, Min H, Liu G et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 2007; 129: 147–161.

    CAS  PubMed  Google Scholar 

  17. Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, Soond DR et al. Requirement of bic/microRNA-155 for normal immune function. Science 2007; 316: 608–611.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Malumbres R, Sarosiek KA, Cubedo E, Ruiz JW, Jiang X, Gascoyne RD et al. Differentiation stage-specific expression of microRNAs in B lymphocytes and diffuse large B-cell lymphomas. Blood 2009; 113: 3754–3764.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bousquet M, Harris MH, Zhou B, Lodish HF. MicroRNA miR-125b causes leukemia. Proc Natl Acad Sci USA 2010; 107: 21558–21563.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ooi AG, Sahoo D, Adorno M, Wang Y, Weissman IL, Park CY. MicroRNA-125b expands hematopoietic stem cells and enriches for the lymphoid-balanced and lymphoid-biased subsets. Proc Natl Acad Sci USA 2010; 107: 21505–21510.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Rossi RL, Rossetti G, Wenandy L, Curti S, Ripamonti A, Bonnal RJ et al. Distinct microRNA signatures in human lymphocyte subsets and enforcement of the naive state in CD4+ T cells by the microRNA miR-125b. Nat Immunol 2011; 12.

    CAS  PubMed  Google Scholar 

  22. Kang N, Zhou J, Zhang T, Wang L, Lu F, Cui Y et al. Adoptive immunotherapy of lung cancer with immobilized anti-TCRgammadelta antibody-expanded human gammadelta T-cells in peripheral blood. Cancer Biol Ther 2009; 8: 1540–1549.

    CAS  PubMed  Google Scholar 

  23. Yin S, Zhang J, Mao Y, Hu Y, Cui L, Kang N et al. Vav1-phospholipase C-gamma1 (Vav1-PLC-gamma1) pathway initiated by T cell antigen receptor (TCRgammadelta) activation is required to overcome inhibition by ubiquitin ligase Cbl-b during gammadeltaT cell cytotoxicity. J Biol Chem 2013; 288: 26448–26462.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Xiao B, Wang Y, Li W, Baker M, Guo J, Corbet K et al. Plasma microRNA signature as a noninvasive biomarker for acute graft-versus-host disease. Blood 2013; 122: 3365–3375.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Dai Y, Chen H, Mo C, Cui L, He W. Ectopically expressed human tumor biomarker MutS homologue 2 is a novel endogenous ligand that is recognized by human gammadelta T cells to induce innate anti-tumor/virus immunity. J Biol Chem 2012; 287: 16812–16819.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhou J, Kang N, Cui L, Ba D, He W. Anti-gammadelta TCR antibody-expanded gammadelta T cells: a better choice for the adoptive immunotherapy of lymphoid malignancies. Cell Mol Immunol 2012; 9: 34–44.

    CAS  PubMed  Google Scholar 

  27. Tanaka H, Kono E, Tran CP, Miyazaki H, Yamashiro J, Shimomura T et al. Monoclonal antibody targeting of N-cadherin inhibits prostate cancer growth, metastasis and castration resistance. Nat Med 2010; 16: 1414–1420.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hua F, Kang N, Gao Y, Cui L, Ba D, He W et al. Potential regulatory role of in vitro-expanded Vdelta1 T cells from human peripheral blood. Immunolo Res 2013; 56: 172–180.

    CAS  Google Scholar 

  29. Rothenfusser S, Buchwald A, Kock S, Ferrone S, Fisch P. Missing HLA class I expression on Daudi cells unveils cytotoxic and proliferative responses of human gammadelta T lymphocytes. Cell Immunol 2002; 215: 32–44.

    CAS  PubMed  Google Scholar 

  30. Schilbach KE, Geiselhart A, Wessels JT, Niethammer D, Handgretinger R. Human gammadelta T lymphocytes exert natural and IL-2-induced cytotoxicity to neuroblastoma cells. J Immunother 2000; 23: 536–548.

    CAS  PubMed  Google Scholar 

  31. So A, Zhao J, Baltimore D. The Yin and Yang of microRNAs: leukemia and immunity. Immunol Rev 2013; 253: 129–145.

    PubMed  PubMed Central  Google Scholar 

  32. O'Connell RM, Chaudhuri AA, Rao DS, Gibson WS, Balazs AB, Baltimore D. MicroRNAs enriched in hematopoietic stem cells differentially regulate long-term hematopoietic output. Proc Natl Acad Sci USA 2010; 107: 14235–14240.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Puissegur MP, Eichner R, Quelen C, Coyaud E, Mari B, Lebrigand K et al. B-cell regulator of immunoglobulin heavy-chain transcription (Bright)/ARID3a is a direct target of the oncomir microRNA-125b in progenitor B-cells. Leukemia 2012; 26: 2224–2232.

    CAS  PubMed  Google Scholar 

  34. Gururajan M, Haga CL, Das S, Leu CM, Hodson D, Josson S et al. MicroRNA 125b inhibition of B cell differentiation in germinal centers. Int Immunol 2010; 22: 583–592.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Chaudhuri AA, So AY, Sinha N, Gibson WS, Taganov KD, O'Connell RM et al. MicroRNA-125b potentiates macrophage activation. J Immunol 2011; 187: 5062–5068.

    CAS  PubMed  Google Scholar 

  36. Lerman G, Avivi C, Mardoukh C, Barzilai A, Tessone A, Gradus B et al. MiRNA expression in psoriatic skin: reciprocal regulation of hsa-miR-99a and IGF-1R. PLoS ONE 2011; 6: e20916.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Vimalraj S, Selvamurugan N. MicroRNAs expression and their regulatory networks during mesenchymal stem cells differentiation toward osteoblasts. Int J Biol Macromol 2014; 66: 194–202.

    CAS  PubMed  Google Scholar 

  38. Coppola A, Romito A, Borel C, Gehrig C, Gagnebin M, Falconnet E et al. Cardiomyogenesis is controlled by the miR-99a/let-7c cluster and epigenetic modifications. Stem Cell Res 2014; 12: 323–337.

    CAS  PubMed  Google Scholar 

  39. Sun J, Chen Z, Tan X, Zhou F, Tan F, Gao Y et al. MicroRNA-99a/100 promotes apoptosis by targeting mTOR in human esophageal squamous cell carcinoma. Med Oncol 2013; 30: 411.

    PubMed  Google Scholar 

  40. Li X, Luo X, Han B, Duan F, Wei P, Chen Y. MicroRNA-100/99a, deregulated in acute lymphoblastic leukaemia, suppress proliferation and promote apoptosis by regulating the FKBP51 and IGF1R/mTOR signalling pathways. Br J Cancer 2013; 109: 2189–2198.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Mueller AC, Sun D, Dutta A. The miR-99 family regulates the DNA damage response through its target SNF2H. Oncogene 2013; 32: 1164–1172.

    CAS  PubMed  Google Scholar 

  42. Rane JK, Erb HH, Nappo G, Mann VM, Simms MS, Collins AT et al. Inhibition of the glucocorticoid receptor results in an enhanced miR-99a/100-mediated radiation response in stem-like cells from human prostate cancers. Oncotarget 2016; 7: 51965–51980.

    PubMed  PubMed Central  Google Scholar 

  43. Liang L, Wong CM, Ying Q, Fan DN, Huang S, Ding J et al. MicroRNA-125b suppressesed human liver cancer cell proliferation and metastasis by directly targeting oncogene LIN28B2. Hepatology 2010; 52: 1731–1740.

    CAS  PubMed  Google Scholar 

  44. Gong J, Zhang JP, Li B, Zeng C, You K, Chen M et al. MicroRNA-125b promotes apoptosis by regulating the expression of Mcl-1, Bcl-w and IL-6R. Oncogene 2013; 32: 3071–3079.

    CAS  PubMed  Google Scholar 

  45. Liu L, Li H, Li JP, Zhong H, Zhang H, Chen J et al. miR-125b suppresses the proliferation and migration of osteosarcoma cells through down-regulation of STAT3. Biochem Biophys Res Commun 2011; 416: 31–38.

    CAS  PubMed  Google Scholar 

  46. Klusmann JH, Li Z, Böhmer K, Maroz A, Koch ML, Emmrich S et al. miR-125b-2 is a potential oncomiR on human chromosome 21 in megakaryoblastic leukemia. Genes Dev 2010; 24: 478–490.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Le M, Shyh-Chang N, Khaw SL, Chin L, Teh C, Tay J et al. Conserved regulation of p53 network dosage by microRNA-125b occurs through evolving miRNA-target gene pairs. PLoS genetics 2011; 7: e1002242.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Li Q, Wu Y, Zhang Y, Sun H, Lu Z, Du K et al. miR-125b regulates cell progression in chronic myeloid leukemia via targeting BAK1. Am J Transl Res 2016; 8: 447–4592016.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Tili E, Michaille JJ, Cimino A, Costinean S, Dumitru CD, Adair B et al. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 2007; 179: 5082–5089.

    CAS  PubMed  Google Scholar 

  50. Lin K, Ye H, Han B, Wang W, Wei P, He B et al. Genome-wide screen identified let-7c/miR-99a/miR-125b regulating tumor progression and stem-like properties in cholangiocarcinoma. Oncogene 2016; 35: 3376–3386.

    CAS  PubMed  Google Scholar 

  51. Chen H, Z M, Teng D, Hu Y, Zhang J, He W. Profiling the pattern of the human T cell receptor γδ complementary determinant region 3 repertoire in patients with lung carcinoma via high-throughput sequencing analysis. Cell Mol Immunol 2018 in press.

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31500725, 81673010, 91542117, 81471574 and 31471016), CAMS Central Public Welfare Scientific Research Institute Basal Research Expenses (2016ZX310180-5 and 2017PT31004), the CAMS Initiative for Innovative Medicine (2016-I2M-1-008), the National Key Research and Development Program of China (2016YFA0101001 and 2016YFC0903900), Peking Union Medical College Foundation (No. 3332015111), and Peking Union Medical College Science Foundation for Young Scientists (No. 3332015109). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. We thank Dr Austin Cape at ASJ Editors for the editing and comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianmin Zhang or Wei He.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Zhang, S., Li, Z. et al. miR-125b-5p and miR-99a-5p downregulate human γδ T-cell activation and cytotoxicity. Cell Mol Immunol 16, 112–125 (2019). https://doi.org/10.1038/cmi.2017.164

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2017.164

This article is cited by

Search

Quick links