Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A modified HLA-A*0201-restricted CTL epitope from human oncoprotein (hPEBP4) induces more efficient antitumor responses

Abstract

We previously identified human phosphatidylethanolamine-binding protein 4 (hPEBP4) as an antiapoptotic protein with increased expression levels in breast, ovarian and prostate cancer cells, but low expression levels in normal tissues, which makes hPEBP4 an attractive target for immunotherapy. Here, we developed hPEBP4-derived immunogenic peptides for inducing antigen-specific cytotoxic T lymphocytes (CTLs) targeting breast cancer. A panel of hPEBP4-derived peptides predicted by peptide-MHC-binding algorithms was evaluated to characterize their HLA-A2.1 affinity and immunogenicity. We identified a novel immunogenic peptide, P40–48 (TLFCQGLEV), that was capable of eliciting specific CTL responses in HLA-A2.1/Kb transgenic mice, as well as in peripheral blood lymphocytes from breast cancer patients. Furthermore, amino-acid substitutions in the P40–48 sequence improved its immunogenicity against hPEBP4, a self-antigen, thus circumventing tolerance. We designed peptide analogs by preferred auxiliary HLA-A*0201 anchor residue replacement, which induced CTLs that were crossreactive to the native peptide. Several analogs were able to stably bind to HLA-A*0201 and elicit specific CTL responses better than the native sequence. Importantly, adoptive transfer of CTLs induced by vaccination with two analogs more effectively inhibited tumor growth than the native peptide. These data indicate that peptide analogs with high immunogenicity represent promising candidates for peptide-mediated therapeutic cancer vaccines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Kormi SMA, Seghatchian J. Taming the immune system through transfusion in oncology patients. Transfus Apher Sci 2017; 56: 310–316.

    Article  Google Scholar 

  2. Perna F, Berman SH, Soni RK, Mansilla-Soto J, Eyquem J, Hamieh M et al. Integrating proteomics and transcriptomics for systematic combinatorial chimeric antigen receptor therapy of AML. Cancer Cell 2017; 32: 506–519.e5.

    Article  CAS  Google Scholar 

  3. Sadelain M, Rivière I, Riddell S. Therapeutic T cell engineering. Nature 2017; 545: 423–431.

    Article  CAS  Google Scholar 

  4. Mohan JF, Unanue ER. Unconventional recognition of peptides by T cells and the implications for autoimmunity. Nat Rev Immunol 2012; 12: 721–728.

    Article  CAS  Google Scholar 

  5. Li Y, Huang Y, Liang J, Xu Z, Shen Y, Zhang N et al. Immune responses induced in HHD mice by multiepitope HIV vaccine based on cryptic epitope modification. Mol Biol Rep 2013; 40: 2781–2787.

    Article  CAS  Google Scholar 

  6. Zaremba S, Barzaga E, Zhu M, Soares N, Tsang KY, Schlom J. Identification of an enhancer agonist cytotoxic T lymphocyte peptide from human carcinoembryonic antigen. Cancer Res 1997; 57: 4570–4577.

    CAS  PubMed  Google Scholar 

  7. Terasawa H, Tsang KY, Gulley J, Arlen P, Schlom J. Identification and characterization of a human agonist cytotoxic T-lymphocyte epitope of human prostate-specific antigen. Clin Cancer Res 2002; 8: 41–53.

    CAS  PubMed  Google Scholar 

  8. Wang X, Li N, Liu B, Sun H, Chen T, Li H et al. A novel human phosphatidylethanolamine-binding protein resists tumor necrosis factor alpha-induced apoptosis by inhibiting mitogen-activated protein kinase pathway activation and phosphatidylethanolamine externalization. J Biol Chem 2004; 279: 45855–45864.

    Article  CAS  Google Scholar 

  9. Li H, Wang X, Li N, Qiu J, Zhang Y, Cao X. hPEBP4 resists TRAIL-induced apoptosis of human prostate cancer cells by activating Akt and deactivating ERK1/2 pathways. J Biol Chem 2007; 282: 4943–4950.

    Article  CAS  Google Scholar 

  10. Li P, Wang X, Li N, Kong H, Guo Z, Liu S et al. Anti-apoptotic hPEBP4 silencing promotes TRAIL-induced apoptosis of human ovarian cancer cells by activating ERK and JNK pathways. Int J Mol Med 2006; 18: 505–510.

    CAS  PubMed  Google Scholar 

  11. Wang X, Li N, Li H, Liu B, Qiu J, Chen T et al. Silencing of human phosphatidylethanolamine-binding protein 4 sensitizes breast cancer cells to tumor necrosis factor-alpha-induced apoptosis and cell growth arrest. Clin Cancer Res 2005; 11: 7545–7553.

    Article  CAS  Google Scholar 

  12. Wang B, Chen H, Jiang X, Zhang M, Wan T, Li N et al. Identification of an HLA-A*0201-restricted CD8+ T-cell epitope SSp-1 of SARS-CoV spike protein. Blood 2004; 104: 200–206.

    Article  CAS  Google Scholar 

  13. Kissick HT, Sanda MG, Dunn LK, Arredouani MS. Development of a peptide-based vaccine targeting TMPRSS2:ERG fusion-positive prostate cancer. Cancer Immunol Immunother 2013; 62: 1831–1840.

    Article  CAS  Google Scholar 

  14. Marescotti D, Destro F, Baldisserotto A, Marastoni M, Coppotelli G, Masucci M et al. Characterization of an human leucocyte antigen A2-restricted Epstein–Barr virus nuclear antigen-1-derived cytotoxic T-lymphocyte epitope. Immunology 2010; 129: 386–395.

    Article  CAS  Google Scholar 

  15. Eguchi J, Hatano M, Nishimura F, Zhu X, Dusak JE, Sato H et al. Identification of interleukin-13 receptor alpha2 peptide analogues capable of inducing improved antiglioma CTL responses. Cancer Res 2006; 66: 5883–5891.

    Article  CAS  Google Scholar 

  16. Echchakir H, Mami-Chouaib F, Vergnon I, Baurain JF, Karanikas V, Chouaib S et al. A point mutation in the alpha-actinin-4 gene generates an antigenic peptide recognized by autologous cytolytic T lymphocytes on a human lung carcinoma. Cancer Res 2001; 61: 4078–4083.

    CAS  PubMed  Google Scholar 

  17. Ding Y, Guo Z, Liu Y, Li X, Zhang Q, Xu X et al. The lectin Siglec-G inhibits dendritic cell cross-presentation by impairing MHC class I-peptide complex formation. Nat Immunol 2016; 17: 1167–1175.

    Article  CAS  Google Scholar 

  18. Liu J, Han C, Xie B, Wu Y, Liu S, Chen K et al. Rhbdd3 controls autoimmunity by suppressing the production of IL-6 by dendritic cells via K27-linked ubiquitination of the regulator NEMO. Nat Immunol 2014; 15: 612–622.

    Article  CAS  Google Scholar 

  19. Fang H, Ang B, Xu X, Huang X, Wu Y, Sun Y et al. TLR4 is essential for dendritic cell activation and anti-tumor T-cell response enhancement by DAMPs released from chemically stressed cancer cells. Cell Mol Immunol 2014; 11: 150–159.

    Article  CAS  Google Scholar 

  20. Liu S, Yi L, Ling M, Jiang J, Song L, Liu J et alHSP70L1-mediated intracellular priming of dendritic cell vaccination induces more potent CTL response against cancer. Cell Mol Immunol 2016; doi: 10.1038/cmi.2016.33 (E-pub ahead of print).

  21. Liu S, Yu Y, Zhang M, Wang W, Cao X. The involvement of TNF-alpha-related apoptosis-inducing ligand in the enhanced cytotoxicity of IFN-beta-stimulated human dendritic cells to tumor cells. J Immunol 2001; 166: 5407–5415.

    Article  CAS  Google Scholar 

  22. Wu Y, Wan T, Zhou X, Wang B, Yang F, Li N et al. Hsp70-like protein 1 fusion protein enhances induction of carcinoembryonic antigen-specific CD8+ CTL response by dendritic cell vaccine. Cancer Res 2005; 65: 4947–4954.

    Article  CAS  Google Scholar 

  23. Kalathil SG, Lugade AA, Pradhan V, Miller A, Parameswaran GI, Sethi S et al. T-regulatory cells and programmed death 1+ T cells contribute to effector T-cell dysfunction in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2014; 190: 40–50.

    Article  CAS  Google Scholar 

  24. Kumai T, Ishibashi K, Oikawa K, Matsuda Y, Aoki N, Kimura S et al. Induction of tumor-reactive T helper responses by a posttranslational modified epitope from tumor protein p53. Cancer Immunol Immunother 2014; 3: 469–478.

    Article  Google Scholar 

  25. Piñeyro PE, Kenney SP, Giménez-Lirola LG, Heffron CL, Matzinger SR, Opriessnig T et al. Expression of antigenic epitopes of porcine reproductive and respiratory syndrome virus (PRRSV) in a modified live-attenuated porcine circovirus type 2 (PCV2) vaccine virus (PCV1-2a) as a potential bivalent vaccine against both PCV2 and PRRSV. Virus Res 2015; 210: 154–164.

    Article  Google Scholar 

  26. Rekoske BT, Smith HA, Olson BM, Maricque BB, McNeel DG. PD-1 or PD-L1 blockade restores antitumor efficacy following SSX2 epitope-modified DNA vaccine immunization. Cancer Immunol Res 2015; 3: 946–955.

    Article  CAS  Google Scholar 

  27. Francis JN, Bunce CJ, Horlock C, Watson JM, Warrington SJ, Georges B et al. A novel peptide-based pan-influenza A vaccine: a double blind, randomised clinical trial of immunogenicity and safety. Vaccine 2015; 33: 396–402.

    Article  CAS  Google Scholar 

  28. Amato RJ, Hawkins RE, Kaufman HL, Thompson JA, Tomczak P, Szczylik C et al. Vaccination of metastatic renal cancer patients with MVA-5T4: a randomized, double-blind, placebo-controlled phase III study. Clin Cancer Res 2010; 16: 5539–5547.

    Article  CAS  Google Scholar 

  29. Casalegno-Garduño R, Schmitt A, Schmitt M. Clinical peptide vaccination trials for leukemia patients. Expert Rev Vaccines 2011; 10: 785–799.

    Article  Google Scholar 

  30. Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 2017; 547: 217–221.

    Article  CAS  Google Scholar 

  31. Sawada A, Inoue M, Kondo O, Yamada-Nakata K, Ishihara T, Kuwae Y et al. Feasibility of cancer immunotherapy with WT1 peptide vaccination for solid and hematological malignancies in children. Pediatr Blood Cancer 2016; 63: 234–241.

    Article  CAS  Google Scholar 

  32. Geynisman DM, Zha Y, Kunnavakkam R, Aklilu M, Catenacci DV, Polite BN et al. A randomized pilot phase I study of modified carcinoembryonic antigen (CEA) peptide (CAP1-6D)/montanide/GM-CSF-vaccine in patients with pancreatic adenocarcinoma. J Immunother Cancer 2013; 1: 8.

    Article  Google Scholar 

  33. Borbulevych OY, Do P, Baker BM. Structures of native and affinity-enhanced WT1 epitopes bound to HLA-A*0201: implications for WT1-based cancer therapeutics. Mol Immunol 2010; 47: 2519–2524.

    Article  CAS  Google Scholar 

  34. Hoppes R, Oostvogels R, Luimstra JJ, Wals K, Toebes M, Bies L et al. Altered peptide ligands revisited: vaccine design through chemically modified HLA-A2-restricted T cell epitopes. J Immunol 2014; 193: 4803–4813.

    Article  CAS  Google Scholar 

  35. Huang YH, Terabe M, Pendleton CD, Stewart Khursigara D, Bera TK, Pastan I et al. Identification and enhancement of HLA-A2.1-restricted CTL epitopes in a new human cancer antigen-POTE. PLoS One 2013; 8: e64365.

    Article  CAS  Google Scholar 

  36. Linette GP, Stadtmauer EA, Maus MV, Rapoport AP, Levine BL, Emery L et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood 2013; 122: 863–871.

    Article  CAS  Google Scholar 

  37. Wu YH, Gao YF, He YJ, Shi RR, Zhai MX, Wu ZY et al. A novel cytotoxic T lymphocyte epitope analogue with enhanced activity derived from cyclooxygenase-2. Scand J Immunol 2012; 76: 278–285.

    Article  CAS  Google Scholar 

  38. Filipazzi P, Pilla L, Mariani L, Patuzzo R, Castelli C, Camisaschi C et al. Limited induction of tumor cross-reactive T cells without a measurable clinical benefit in early melanoma patients vaccinated with human leukocyte antigen class I-modified peptides. Clin Cancer Res 2012; 18: 6485–6496.

    Article  CAS  Google Scholar 

  39. Grossmann ME, Davila T, Celis T. Avoiding tolerance against prostatic antigens with subdominant peptide epitopes. J Immunother 2001; 24: 237–241.

    Article  CAS  Google Scholar 

  40. Colella TA, Bullock TN, Russell LB, Mullins DW, Overwijk WW, Luckey CJ et al. Self-tolerance to the murine homologue of a tyrosinase-derived melanoma antigen: implications for tumor immunotherapy. J Exp Med 2000; 191: 1221–1232.

    Article  CAS  Google Scholar 

  41. Mullins DW, Bullock TN, Colella TA, Robila VV, Engelhard VH. Immune responses to the HLA-A*0201-restricted epitopes of tyrosinase and glycoprotein 100 enable control of melanoma outgrowth in HLA-A*0201-transgenic mice. J Immunol 2001; 167: 4853–4860.

    Article  CAS  Google Scholar 

  42. Hu Q, Bazemore Walker CR, Girao C, Opferman JT, Sun J, Shabanowitz J et al. Specific recognition of thymic self-peptides induces the positive selection of cytotoxic T lymphocytes. Immunity 1997; 7: 221–231.

    Article  CAS  Google Scholar 

  43. Sant'Angelo DB, Waterbury PG, Cohen BE, Martin WD, Van Kaer L, Hayday AC et al. The imprint of intrathymic self-peptides on the mature T cell receptor repertoire. Immunity 1997; 7: 517–524.

    Article  CAS  Google Scholar 

  44. Gritzapis AD, Mahaira LG, Perez SA, Cacoullos NT, Papamichail M, Baxevanis CN. Vaccination with human HER-2/neu (435-443) CTL peptide induces effective antitumor immunity against HER-2/neu-expressing tumor cells in vivo. Cancer Res 2006; 66: 5452–5460.

    Article  CAS  Google Scholar 

  45. Dong S, Xu T, Wang P, Zhao P, Chen M. Engineering of a self-adjuvanted iTEP-delivered CTL vaccine. Acta Pharmacol Sin 2017; 38: 914–923.

    Article  CAS  Google Scholar 

  46. Obara W, Karashima T, Takeda K, Kato R, Kato Y, Kanehira M et al. Effective induction of cytotoxic T cells recognizing an epitope peptide derived from hypoxia-inducible protein 2 (HIG2) in patients with metastatic renal cell carcinoma. Cancer Immunol Immunother 2017; 66: 17–24.

    Article  CAS  Google Scholar 

  47. Obara W, Sato F, Takeda K, Kato R, Kato Y, Kanehira M et al. Phase I clinical trial of cell division associated 1 (CDCA1) peptide vaccination for castration resistant prostate cancer. Cancer Sci 2017; 108: 1452–1457.

    Article  CAS  Google Scholar 

  48. Overwijk WW, Restifo NP. Autoimmunity and the immunotherapy of cancer: targeting the ‘self’ to destroy the ‘other’. Crit Rev Immunol 2000; 20: 433–450.

    Article  CAS  Google Scholar 

  49. Overwijk WW, Lee DS, Surman DR, Irvine KR, Touloukian CE, Chan CC et al. Vaccination with a recombinant vaccinia virus encoding a ‘self’ antigen induces autoimmune vitiligo and tumor cell destruction in mice: requirement for CD4(+) T lymphocytes. Proc Natl Acad Sci USA 1999; 96: 2982–2987.

    Article  CAS  Google Scholar 

  50. Van Parijs L, Abbas AK. Homeostasis and self-tolerance in the immune system: turning lymphocytes off. Science 1998; 280: 243–248.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs Xiaojian Wang, Zhenhong Guo, Hongzhe Li, Liyun Shi and Jianming Qiu for helpful discussions. This work was supported by grants from the National Key Basic Research Program of China (2013CB530502) (to NL), the National Natural Science Foundation of China (81672798 to NL, 81672736 to YL, 31670875 to SL, 81671644 to YW, 81788104 to XC) and the Shanghai Committee of Science and Technology (09QH1402800, 09SG35) (to NL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Shi, J., Wu, J. et al. A modified HLA-A*0201-restricted CTL epitope from human oncoprotein (hPEBP4) induces more efficient antitumor responses. Cell Mol Immunol 15, 768–781 (2018). https://doi.org/10.1038/cmi.2017.155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2017.155

Keywords

This article is cited by

Search

Quick links