Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The structure, expression, and multifaceted role of immune-checkpoint protein VISTA as a critical regulator of anti-tumor immunity, autoimmunity, and inflammation

Abstract

Among various immunoregulatory molecules, the B7 family of immune-checkpoint receptors consists of highly valuable targets for cancer immunotherapy. Antibodies targeting two B7 family co-inhibitory receptors, CTLA-4 and PD-1, have elicited long-term clinical outcomes in previously refractory cancer types and are considered a breakthrough in cancer therapy. Despite the success, the relatively low response rate (20–30%) warrants efforts to identify and overcome additional immune-suppressive pathways. Among the expanding list of T cell inhibitory regulators, V domain immunoglobulin suppressor of T cell activation (VISTA) is a unique B7 family checkpoint that regulates a broad spectrum of immune responses. Here, we summarize recent advances that highlight the structure, expression, and multi-faceted immunomodulatory mechanisms of VISTA in the context of autoimmunity, inflammation, and anti-tumor immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Topalian SL, Weiner GJ, Pardoll DM. Cancer immunotherapy comes of age. J Clin Oncol 2011; 29: 4828–4836.

    Article  CAS  Google Scholar 

  2. Sharpe AH, Freeman GJ. The B7-CD28 superfamily. Nat Rev Immunol 2002; 2: 116–126.

    Article  CAS  Google Scholar 

  3. Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol 2013; 13: 227–242.

    Article  Google Scholar 

  4. Zou W, Chen L. Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol 2008; 8: 467–477.

    Article  CAS  Google Scholar 

  5. Pardoll D, Drake C. Immunotherapy earns its spot in the ranks of cancer therapy. J Exp Med 2012; 209: 201–209.

    Article  CAS  Google Scholar 

  6. Callahan MK, Postow MA, Wolchok JD. CTLA-4 and PD-1 Pathway Blockade: Combinations in the Clinic. Front Oncol 2015; 4: 385.

    Article  Google Scholar 

  7. Sharma P, Allison JP. The future of immune checkpoint therapy. Science 2015; 348: 56–61.

    Article  CAS  Google Scholar 

  8. Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 2015; 161: 205–214.

    Article  CAS  Google Scholar 

  9. Postow MA, Callahan MK, Wolchok JD. Immune Checkpoint Blockade in Cancer Therapy. J Clin Oncol 2015; 33: 1974–1982.

    Article  CAS  Google Scholar 

  10. Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol 2010; 28: 3167–3175.

    Article  CAS  Google Scholar 

  11. Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010; 363: 711–723.

    Article  CAS  Google Scholar 

  12. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012; 366: 2443–2454.

    Article  CAS  Google Scholar 

  13. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 2012; 366: 2455–2465.

    Article  CAS  Google Scholar 

  14. Postow MA, Chesney J, Pavlick AC, Robert C, Grossmann K, McDermott D et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med 2015; 372: 2006–2017.

    Article  Google Scholar 

  15. Woo SR, Turnis ME, Goldberg MV, Bankoti J, Selby M, Nirschl CJ et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res 2011; 72: 917–927.

    Article  Google Scholar 

  16. Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med 2010; 207: 2187–2194.

    Article  CAS  Google Scholar 

  17. Johnston RJ, Comps-Agrar L, Hackney J, Yu X, Huseni M, Yang Y et al. The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell 2014; 26: 923–937.

    Article  CAS  Google Scholar 

  18. Derre L, Rivals JP, Jandus C, Pastor S, Rimoldi D, Romero P et al. BTLA mediates inhibition of human tumor-specific CD8+ T cells that can be partially reversed by vaccination. J Clin Invest 2010; 120: 157–167.

    Article  CAS  Google Scholar 

  19. Zang X, Thompson RH, Al-Ahmadie HA, Serio AM, Reuter VE, Eastham JA et al. B7-H3 and B7x are highly expressed in human prostate cancer and associated with disease spread and poor outcome. Proc Natl Acad Sci U S A 2007; 104: 19458–19463.

    Article  CAS  Google Scholar 

  20. Sica GL, Choi IH, Zhu G, Tamada K, Wang SD, Tamura H et al. B7-H4, a molecule of the B7 family, negatively regulates T cell immunity. Immunity 2003; 18: 849–861.

    Article  CAS  Google Scholar 

  21. Kryczek I, Zou L, Rodriguez P, Zhu G, Wei S, Mottram P et al. B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J Exp Med 2006; 203: 871–881.

    Article  CAS  Google Scholar 

  22. Wang L, Rubinstein R, Lines JL, Wasiuk A, Ahonen C, Guo Y et al. VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses. J Exp Med 2011; 208: 577–592.

    Article  CAS  Google Scholar 

  23. Gavrieli M, Sedy J, Nelson CA, Murphy KM. BTLA and HVEM cross talk regulates inhibition and costimulation. Adv Immunol 2006; 92: 157–185.

    Article  CAS  Google Scholar 

  24. Yi KH, Chen L. Fine tuning the immune response through B7-H3 and B7-H4. Immunol Rev 2009; 229: 145–151.

    Article  CAS  Google Scholar 

  25. Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT: Co-inhibitory Receptors with Specialized Functions in Immune Regulation. Immunity 2016; 44: 989–1004.

    Article  CAS  Google Scholar 

  26. Andrews LP, Marciscano AE, Drake CG, Vignali DA. LAG3 (CD223) as a cancer immunotherapy target. Immunol Rev 2017; 276: 80–96.

    Article  CAS  Google Scholar 

  27. Lines JL, Sempere LF, Broughton T, Wang L, Noelle R. VISTA is a novel broad-spectrum negative checkpoint regulator for cancer immunotherapy. Cancer Immunol Res 2014; 2: 510–517.

    Article  CAS  Google Scholar 

  28. Janakiram M, Shah UA, Liu W, Zhao A, Schoenberg MP, Zang X. The third group of the B7-CD28 immune checkpoint family: HHLA2, TMIGD2, B7x, and B7-H3. Immunol Rev 2017; 276: 26–39.

    Article  CAS  Google Scholar 

  29. Aloia L, Parisi S, Fusco L, Pastore L, Russo T. Differentiation of embryonic stem cells 1 (Dies1) is a component of bone morphogenetic protein 4 (BMP4) signaling pathway required for proper differentiation of mouse embryonic stem cells. J Biol Chem 2010; 285: 7776–7783.

    Article  CAS  Google Scholar 

  30. Flies DB, Wang S, Xu H, Chen L. Cutting edge: A monoclonal antibody specific for the programmed death-1 homolog prevents graft-versus-host disease in mouse models. J Immunol 2011; 187: 1537–1541.

    Article  CAS  Google Scholar 

  31. Yoon KW, Byun S, Kwon E, Hwang SY, Chu K, Hiraki M et al. Control of signaling-mediated clearance of apoptotic cells by the tumor suppressor p53. Science 2015; 349: 1261669.

    Article  Google Scholar 

  32. Lines JL, Pantazi E, Mak J, Sempere LF, Wang L, O'Connell S et al. VISTA Is an Immune Checkpoint Molecule for Human T Cells. Cancer Res 2014; 74: 1924–1932.

    Article  CAS  Google Scholar 

  33. Bharaj P, Chahar HS, Alozie OK, Rodarte L, Bansal A, Goepfert PA et al. Characterization of programmed death-1 homologue-1 (PD-1H) expression and function in normal and HIV infected individuals. PLoS One 2014; 9: e109103.

    Article  Google Scholar 

  34. Li N, Xu W, Yuan Y, Ayithan N, Imai Y, Wu X et al. Immune-checkpoint protein VISTA critically regulates the IL-23/IL-17 inflammatory axis. Scientific Reports 2017; 7: 1485.

    Article  Google Scholar 

  35. Parisi S, Battista M, Musto A, Navarra A, Tarantino C, Russo T. A regulatory loop involving Dies1 and miR-125a controls BMP4 signaling in mouse embryonic stem cells. FASEB J 2012; 26: 3957–3968.

    Article  CAS  Google Scholar 

  36. Le Mercier I, Chen W, Lines JL, Day M, Li J, Sergent P et al. VISTA Regulates the Development of Protective Antitumor Immunity. Cancer Res 2014; 74: 1933–1944.

    Article  CAS  Google Scholar 

  37. Oliveira P, Carvalho J, Rocha S, Azevedo M, Reis I, Camilo V et al. Dies1/VISTA expression loss is a recurrent event in gastric cancer due to epigenetic regulation. Sci Rep 2016; 6: 34860.

    Article  CAS  Google Scholar 

  38. Boger C, Behrens HM, Kruger S, Rocken C. The novel negative checkpoint regulator VISTA is expressed in gastric carcinoma and associated with PD-L1/PD-1: A future perspective for a combined gastric cancer therapy? Oncoimmunology 2017; 6: e1293215.

    Article  Google Scholar 

  39. Wu L, Deng WW, Huang CF, Bu LL, Yu GT, Mao L et al. Expression of VISTA correlated with immunosuppression and synergized with CD8 to predict survival in human oral squamous cell carcinoma. Cancer Immunol Immunother 2017; 66: 627–636.

    Article  CAS  Google Scholar 

  40. Gao J, Ward JF, Pettaway CA, Shi LZ, Subudhi SK, Vence LM et al. VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. Nat Med 2017; 23: 551–555.

    Article  CAS  Google Scholar 

  41. Yamazaki T, Akiba H, Iwai H, Matsuda H, Aoki M, Tanno Y et al. Expression of programmed death 1 ligands by murine T cells and APC. J Immunol 2002; 169: 5538–5545.

    Article  CAS  Google Scholar 

  42. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 2008; 26: 677–704.

    Article  CAS  Google Scholar 

  43. Kinter AL, Godbout EJ, McNally JP, Sereti I, Roby GA, O'Shea MA et al. The common gamma-chain cytokines IL-2, IL-7, IL-15, and IL-21 induce the expression of programmed death-1 and its ligands. J Immunol 2008; 181: 6738–6746.

    Article  CAS  Google Scholar 

  44. Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P et al. PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 2014; 211: 781–790.

    Article  CAS  Google Scholar 

  45. Pauken KE, Wherry EJ. Overcoming T cell exhaustion in infection and cancer. Trends Immunol 2015; 36: 265–276.

    Article  CAS  Google Scholar 

  46. Voron T, Colussi O, Marcheteau E, Pernot S, Nizard M, Pointet AL et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J Exp Med 2015; 212: 139–148.

    Article  CAS  Google Scholar 

  47. Kao C, Oestreich KJ, Paley MA, Crawford A, Angelosanto JM, Ali MA et al. Transcription factor T-bet represses expression of the inhibitory receptor PD-1 and sustains virus-specific CD8+ T cell responses during chronic infection. Nat Immunol 2011; 12: 663–671.

    Article  CAS  Google Scholar 

  48. Staron MM, Gray SM, Marshall HD, Parish IA, Chen JH, Perry CJ et al. The transcription factor FoxO1 sustains expression of the inhibitory receptor PD-1 and survival of antiviral CD8(+) T cells during chronic infection. Immunity 2014; 41: 802–814.

    Article  CAS  Google Scholar 

  49. Austin JW, Lu P, Majumder P, Ahmed R, Boss JM. STAT3, STAT4, NFATc1, and CTCF regulate PD-1 through multiple novel regulatory regions in murine T cells. J Immunol 2014; 192: 4876–4886.

    Article  CAS  Google Scholar 

  50. Stephen TL, Payne KK, Chaurio RA, Allegrezza MJ, Zhu H, Perez-Sanz J et al. SATB1 Expression Governs Epigenetic Repression of PD-1 in Tumor-Reactive T Cells. Immunity 2017; 46: 51–64.

    Article  CAS  Google Scholar 

  51. Nishino M, Ramaiya NH, Hatabu H, Hodi FS. Monitoring immune-checkpoint blockade: response evaluation and biomarker development. Nat Rev Clin Oncol 2017; 14: 655–668.

    Article  CAS  Google Scholar 

  52. Wang L, Le Mercier I, Putra J, Chen W, Liu J, Schenk AD et al. Disruption of the immune-checkpoint VISTA gene imparts a proinflammatory phenotype with predisposition to the development of autoimmunity. Proc Natl Acad Sci USA 2014; 111: 14846–14851.

    Article  CAS  Google Scholar 

  53. Liu J, Yuan Y, Chen W, Putra J, Suriawinata AA, Schenk AD et al. Immune-checkpoint proteins VISTA and PD-1 nonredundantly regulate murine T-cell responses. Proc Natl Acad Sci USA 2015; 112: 6682–6687.

    Article  CAS  Google Scholar 

  54. Flies DB, Han X, Higuchi T, Zheng L, Sun J, Ye JJ et al. Coinhibitory receptor PD-1H preferentially suppresses CD4+ T cell-mediated immunity. J Clin Invest 2014; 124: 1966–1975.

    Article  CAS  Google Scholar 

  55. Liu H, Li X, Hu L, Zhu M, He B, Luo L et al. A crucial role of the PD-1H coinhibitory receptor in suppressing experimental asthma. Cell Mol Immunol 2017; doi:https://doi.org/10.1038/cmi.2017.16.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Flies DB, Higuchi T, Chen L. Mechanistic Assessment of PD-1H Coinhibitory Receptor-Induced T Cell Tolerance to Allogeneic Antigens. J Immunol 2015; 194: 5294–5304.

    Article  CAS  Google Scholar 

  57. Yang W, Padkjaer SB, Wang J, Sun Z, Shan B, Yang L et al. Construction of a versatile expression library for all human single-pass transmembrane proteins for receptor pairings by high throughput screening. J Biotechnol 2017; 260: 18–30.

    Article  CAS  Google Scholar 

  58. Prodeus A, Abdul-Wahid A, Sparkes A, Fischer NW, Cydzik M, Chiang N et al. VISTA.COMP—an engineered checkpoint receptor agonist that potently suppresses T cell-mediated immune responses. JCI Insight 2017; 2: 94308.

    Article  Google Scholar 

  59. Ceeraz S, Sergent PA, Plummer SF, Schned AR, Pechenick D, Burns CM et al. VISTA Deficiency Accelerates the Development of Fatal Murine Lupus Nephritis. Arthritis Rheumatol 2017; 69: 814–825.

    Article  CAS  Google Scholar 

  60. Sergent PA, Plummer SF, Pettus J, Mabaera R, DeLong JK, Pechenick DA et al. Blocking the VISTA pathway enhances disease progression in (NZB x NZW) F1 female mice. Lupus 2017; 961203317716322.

  61. Ceeraz S, Eszterhas SK, Sergent PA, Armstrong DA, Ashare A, Broughton T et al. VISTA deficiency attenuates antibody-induced arthritis and alters macrophage gene expression in response to simulated immune complexes. Arthritis Res Ther 2017; 19: 270.

    Article  Google Scholar 

  62. Dankort D, Curley DP, Cartlidge RA, Nelson B, Karnezis AN, Damsky WE Jr. et al. Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat Genet 2009; 41: 544–552.

    Article  CAS  Google Scholar 

  63. Green KA, Wang L, Noelle RJ, Green WR. Selective Involvement of the Checkpoint Regulator VISTA in Suppression of B-Cell, but Not T-Cell, Responsiveness by Monocytic Myeloid-Derived Suppressor Cells from Mice Infected with an Immunodeficiency-Causing Retrovirus. J Virol 2015; 89: 9693–9698.

    Article  CAS  Google Scholar 

  64. Kondo Y, Ohno T, Nishii N, Harada K, Yagita H, Azuma M. Differential contribution of three immune checkpoint (VISTA, CTLA-4, PD-1) pathways to antitumor responses against squamous cell carcinoma. Oral Oncol 2016; 57: 54–60.

    Article  CAS  Google Scholar 

  65. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 2013; 369: 122–133.

    Article  CAS  Google Scholar 

  66. Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 1995; 3: 541–547.

    Article  CAS  Google Scholar 

  67. Waterhouse P, Penninger JM, Timms E, Wakeham A, Shahinian A, Lee KP et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 1995; 270: 985–988.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by research funding from NCI R01 CA164225 (LW), Advancing A Healthier Wisconsin Research and Education Program (AHW REP) fund (LW), the Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Cancer Research Program under Award No. W81XWH-14-1-0587 (LW), Cancer Research Institute CLIP Grant (LW), pilot grant 504057 from the Melanoma Research Alliance (LW), Worldwide Cancer Research grant 16-1161 (LW and SM), NIH R01 AI102893 (SM), NCI R01 CA179363 (SM), the Nicholas Family Foundation (SM), and the Gardetto Family endowment (SM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Hiếu, T., Malarkannan, S. et al. The structure, expression, and multifaceted role of immune-checkpoint protein VISTA as a critical regulator of anti-tumor immunity, autoimmunity, and inflammation. Cell Mol Immunol 15, 438–446 (2018). https://doi.org/10.1038/cmi.2017.148

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2017.148

This article is cited by

Search

Quick links