Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Guillain–Barré syndrome, transverse myelitis and infectious diseases

Abstract

Guillain–Barré syndrome (GBS) and transverse myelitis (TM) both represent immunologically mediated polyneuropathies of major clinical importance. Both are thought to have a genetic predisposition, but as of yet no specific genetic risk loci have been clearly defined. Both are considered autoimmune, but again the etiologies remain enigmatic. Both may be induced via molecular mimicry, particularly from infectious agents and vaccines, but clearly host factor and co-founding host responses will modulate disease susceptibility and natural history. GBS is an acute inflammatory immune-mediated polyradiculoneuropathy characterized by tingling, progressive weakness, autonomic dysfunction, and pain. Immune injury specifically takes place at the myelin sheath and related Schwann-cell components in acute inflammatory demyelinating polyneuropathy, whereas in acute motor axonal neuropathy membranes on the nerve axon (the axolemma) are the primary target for immune-related injury. Outbreaks of GBS have been reported, most frequently related to Campylobacter jejuni infection, however, other agents such as Zika Virus have been strongly associated. Patients with GBS related to infections frequently produce antibodies against human peripheral nerve gangliosides. In contrast, TM is an inflammatory disorder characterized by acute or subacute motor, sensory, and autonomic spinal cord dysfunction. There is interruption of ascending and descending neuroanatomical pathways on the transverse plane of the spinal cord similar to GBS. It has been suggested to be triggered by infectious agents and molecular mimicry. In this review, we will focus on the putative role of infectious agents as triggering factors of GBS and TM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Wijdicks EF, Klein CJ. Guillain–Barré Syndrome. Mayo Clin Proc 2017; 92: 467–479.

    PubMed  Google Scholar 

  2. Anandan C, Khuder SA, Koffman BM. Prevalence of autonomic dysfunction in hospitalized patients with Guillain-Barré syndrome. Muscle Nerve 2017; 56: 331–333.

    CAS  PubMed  Google Scholar 

  3. Willison HJ, Jacobs BC, van Doorn PA. Guillain-Barré syndrome. Lancet 2016; 388: 717–727.

    PubMed  Google Scholar 

  4. Sejvar JJ, Baughman AL, Wise M, Morgan OW. Population incidence of Guillain-Barré syndrome: a systematic review and meta-analysis. Neuroepidemiology 2011; 36: 123–133.

    PubMed  PubMed Central  Google Scholar 

  5. Heikema AP, Islam Z, Horst-Kreft D, Huizinga R, Jacobs BC, Wagenaar JA et al. Campylobacter jejuni capsular genotypes are related to Guillain-Barré syndrome. Clin Microbiol Infect 2015; 21: 1–24.

    Google Scholar 

  6. Anaya JM, Rodríguez Y, Monsalve DM, Vega D, Ojeda E, González-Bravo D et al. A comprehensive analysis and immunobiology of autoimmune neurological syndromes during the Zika virus outbreak in Cúcuta, Colombia. J Autoimmun 2017; 77: 123–138.

    PubMed  Google Scholar 

  7. Ang CW. Structure of Campylobacter jejuni lipopolysaccharides determines antiganglioside specificity and clinical features of Guillain-Barre and Miller Fisher patients. Infect Immun 2002; 70: 1202–1208.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Nyati KK, Nyati R. Role of Campylobacter jejuni infection in the pathogenesis of Guillain-Barré syndrome: an update. Biomed Res Int 2013; 2013: 852195.

    PubMed  PubMed Central  Google Scholar 

  9. Barnes G, Benjamin S, Bowen JD, Cutter N, De Lateur BJ, Dietrich WD et al. Proposed diagnostic criteria and nosology of acute transverse myelitis. Neurology 2002; 59: 499–505.

    Google Scholar 

  10. Frohman EM, Wingerchuk DM. Transverse myelitis. N Engl J Med 2010; 363: 564–572.

    CAS  PubMed  Google Scholar 

  11. Borchers AT, Gershwin ME. Transverse myelitis. Autoimmun Rev 2012; 11: 231–248.

    CAS  PubMed  Google Scholar 

  12. Islam Z, Jacobs BC, van Belkum A, Mohammad QD, Islam MB, Herbrink P et al. Axonal variant of Guillain-Barre syndrome associated with Campylobacter infection in Bangladesh. Neurology 2010; 74: 581–587.

    CAS  PubMed  Google Scholar 

  13. Hughes RA, Rees JH. Clinical and epidemiologic features of Guillain-Barré syndrome. J Infect Dis 1997; 176: 92–98.

    Google Scholar 

  14. Gardner SP, Kendall KJ, Taveirne ME, Olson JW. Complete genome sequence of Campylobacter jejuni subsp. jejuni ATCC 35925. Genome Announc 2017; 5: 1–2.

    Google Scholar 

  15. Kirkpatrick BD, Tribble DR. Update on human Campylobacter jejuni infections. Curr Opin Gastroenterol 2011; 27: 1–7.

    PubMed  Google Scholar 

  16. Tam CC, Rodrigues LC, Petersen I, Islam A, Hayward A, O’Brien SJ. Incidence of Guillain-Barré syndrome among patients with campylobacter infection: a general practice Research Database Study. J Infect Dis 2006; 194: 95–97.

    PubMed  Google Scholar 

  17. Phongsisay V. The immunobiology of Campylobacter jejuni: Innate immunity and autoimmune diseases. Immunobiology 2016; 221: 535–543.

    CAS  PubMed  Google Scholar 

  18. Varki A, Sharon NHistorical background and overview In:Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR et al 3 eds. Essentials of Glycobiology. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY. 2009 pp 1–22.

  19. Yuki N. Ganglioside mimicry and peripheral nerve disease. Muscle Nerve 2007; 35: 691–711.

    CAS  PubMed  Google Scholar 

  20. Godschalk PCR, Heikema AP, Gilbert M, Komagamine T, Wim Ang C, Glerum J et al. The crucial role of Campylobacter jejuni genes in anti-ganglioside antibody induction in Guillain-Barré syndrome. J Clin Invest 2004; 114: 1659–1665.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Moran AP, Prendergast MM. Molecular mimicry in Campylobacter jejuni and Helicobacter pylori lipopolysaccharides: contribution of gastrointestinal infections to autoimmunity. J Autoimmun 2001; 16: 241–256.

    CAS  PubMed  Google Scholar 

  22. Phongsisay V, Perera VN, Fry BN. Exchange of lipooligosaccharide synthesis genes creates potential Guillain-Barre syndrome-inducible strains of Campylobacter jejuni. Infect Immun 2006; 74: 1368–1372.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Geleijns K, Schreuder GMT, Jacobs BC, Sintnicolaas K, van Koningsveld R, Meulstee J et al. HLA class II alleles are not a general susceptibility factor in Guillain-Barre syndrome. Neurology 2005; 64: 44–49.

    CAS  PubMed  Google Scholar 

  24. Nachamkin I, Liu J, Li M, Ung H, Moran AP, Prendergast MM et al. Campylobacter jejuni from patients with Guillain-Barre syndrome preferentially expresses a GD1a-like epitope. Infect Immun 2002; 70: 5299–5303.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Gilbert M, Karwaski MF, Bernatchez S, Young NM, Taboada E, Michniewicz J et al. The genetic bases for the variation in the lipo-oligosaccharide of the mucosal pathogen, Campylobacter jejuni. Biosynthesis of sialylated ganglioside mimics in the core oligosaccharide. J Biol Chem 2002; 277: 327–337.

    CAS  PubMed  Google Scholar 

  26. Koga M, Takahashi M, Masuda M, Hirata K, Yuki N. Campylobacter gene polymorphism as a determinant of clinical features of Guillain-Barré syndrome. Neurology 2005; 65: 1376–1381.

    CAS  PubMed  Google Scholar 

  27. Koga M, Yuki N. Campylobacter jejuni cst-II polymorphisms and association with development of Guillain-Barré syndrome. Neurology 2007; 69: 1727–1728.

    PubMed  Google Scholar 

  28. Yuki N, Susuki K, Koga M, Nishimoto Y, Odaka M, Hirata K et al. Carbohydrate mimicry between human ganglioside GM1 and Campylobacter jejuni lipooligosaccharide causes Guillain-Barre syndrome. Proc Natl Acad Sci USA 2004; 101: 11404–11409.

    CAS  PubMed  Google Scholar 

  29. Houliston RS, Endtz HP, Yuki N, Li J, Jarrell HC, Koga M et al. Identification of a sialate O-acetyltransferase from Campylobacter jejuni: demonstration of direct transfer to the C-9 position of terminalalpha-2, 8-linked sialic acid. J Biol Chem 2006; 281: 11480–11486.

    CAS  PubMed  Google Scholar 

  30. Koga M, Gilbert M, Li J, Yuki N. Complex of GM1- and GD1a-Like Lipo-oligosaccharide mimics GM1b, inducing anti-GM1b antibodies. PLoS ONE 2015; 10: e0124004.

    PubMed  PubMed Central  Google Scholar 

  31. Goodfellow JA. Overexpression of GD1a ganglioside sensitizes motor nerve terminals to anti-GD1a antibody-mediated injury in a model of acute motor axonal neuropathy. J Neurosci 2005; 25: 1620–1628.

    CAS  PubMed  Google Scholar 

  32. Aspinall GO, Fujimoto S, McDonald AG, Pang H, Kurjanczyk LA, Penner JL. Lipopolysaccharides from Campylobacter jejuni associated with Guillain-Barré syndrome patients mimic human gangliosides in structure. Infect Immun 1994; 62: 2122–2125.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Xiang SL, Zhong M, Cai FC, Deng B, Zhang XP. The sialic acid residue is a crucial component of C. jejuni lipooligosaccharide ganglioside mimicry in the induction Guillain–Barré syndrome. J Neuroimmunol 2006; 174: 126–132.

    CAS  PubMed  Google Scholar 

  34. Linton D, Gilbert M, Hitchen PG, Dell A, Morris HR, Wakarchuk WW et al. Phase variation of a β-1,3 galactosyltransferase involved in generation of the ganglioside GM1-like lipo-oligosaccharide of Campylobacter jejuni. Mol Microbiol 2000; 37: 501–514.

    CAS  PubMed  Google Scholar 

  35. Guerry P. Phase variation of Campylobacter jejuni 81-176 lipooligosaccharide affects ganglioside mimicry and invasiveness in vitro. Infect Immun 2002; 70: 787–793.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Godschalk PCR, van Belkum A, van den Braak N, van Netten D, Ang CW, Jacobs BC et al. PCR-restriction fragment length polymorphism analysis of Campylobacter jejuni genes involved in lipooligosaccharide biosynthesis identifies putative molecular markers for Guillain-Barré syndrome. J Clin Microbiol 2007; 45: 2316–2320.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Taboada EN, van Belkum A, Yuki N, Acedillo RR, Godschalk PC, Koga M et al. Comparative genomic analysis of Campylobacter jejuni associated with Guillain-Barré and Miller Fisher syndromes: neuropathogenic and enteritis-associated isolates can share high levels of genomic similarity. BMC Genomics 2007; 8: 359.

    PubMed  PubMed Central  Google Scholar 

  38. Alvarez LAJ, Bourke B, Pircalabioru G, Georgiev AY, Knaus UG, Daff S et al. Cj1411c encodes for a cytochrome P450 involved in Campylobacter jejuni 81-176 pathogenicity. PLoS ONE 2013; 8: e75534.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Fry BN, Feng S, Chen YY, Newell DG, Coloe PJ, Korolik V. The galE gene of Campylobacter jejuni is involved in lipopolysaccharide synthesis and virulence. Infect Immun 2000; 68: 2594–2601.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Shu XM, Cai FC, Zhang XP. Carbohydrate mimicry of Campylobacter jejuni lipooligosaccharide is critical for the induction of anti-GM1 antibody and neuropathy. Muscle Nerve 2006; 33: 225–231.

    CAS  PubMed  Google Scholar 

  41. Schirmer L, Worthington V, Solloch U, Loleit V, Grummel V, Lakdawala N et al. Higher frequencies of HLA DQB1*05:01 and anti-glycosphingolipid antibodies in a cluster of severe Guillain-Barré syndrome. J Neurol 2016; 263: 2105–2113.

    CAS  PubMed  Google Scholar 

  42. Hasan ZN, Zalzala HH, Mohammedsalih HR, Mahdi BM, Abid LA, Shakir ZN et al. Association between human leukocyte antigen-DR and demylinating Guillain-Barre syndrome. Neurosci 2014; 19: 301–305.

    Google Scholar 

  43. Fekih-Mrissa N, Mrad M, Riahi A, Sayeh A, Zaouali J, Gritli N et al. Association of HLA-DR/DQ polymorphisms with Guillain-Barré syndrome in Tunisian patients. Clin Neurol Neurosurg 2014; 121: 19–22.

    PubMed  Google Scholar 

  44. Blum S, Csurhes P, Reddel S, Spies J, McCombe P. Killer immunoglobulin-like receptor and their HLA ligands in Guillain-Barré Syndrome. J Neuroimmunol 2014; 267: 92–96.

    CAS  PubMed  Google Scholar 

  45. Kaslow RA, Sullivan-Bolyai JZ, Hafkin B, Schonberger LB, Kraus L, Moore MJ et al. HLA antigens in Guillain-Barre syndrome. Neurology 1984; 34: 240–242.

    CAS  PubMed  Google Scholar 

  46. Sinha S, Prasad KN, Jain D, Nyati KK, Pradhan S, Agrawal S. Immunoglobulin IgG Fc-receptor polymorphisms and HLA class II molecules in Guillain-Barré syndrome. Acta Neurol Scand 2010; 122: 21–26.

    CAS  PubMed  Google Scholar 

  47. Magira EE, Papaioakim M, Nachamkin I, Asbury AK, Li CY, Ho TW et al. Differential distribution of HLA-DQ /DR epitopes in the two forms of Guillain-Barre syndrome, acute motor axonal neuropathy and acute inflammatory demyelinating polyneuropathy (AIDP): identification of DQ epitopes associated with susceptibility to and pro. J Immunol 2003; 170: 3074–3080.

    CAS  PubMed  Google Scholar 

  48. Guo L, Wang W, Li C, Liu R, Wang G. The association between HLA typing and different subtypes of Guillain Barré syndrome. Zhonghua nei ke za zhi 2002; 41: 381–383 Chinese.

    CAS  PubMed  Google Scholar 

  49. Ma JJ, Nishimura M, Mine H, Kuroki S, Nukina M, Ohta M et al. HLA and T-cell receptor gene polymorphisms in Guillain-Barré syndrome. Neurology 1998; 51: 379–384.

    CAS  PubMed  Google Scholar 

  50. Monos DS, Papaioakim M, Ho TW, Li CY, McKhann GM. Differential distribution of HLA alleles in two forms of Guillain-Barre syndrome. J Infect Dis 1997; 176 (Suppl 2): S180–S182.

    PubMed  Google Scholar 

  51. Rees JH, Vaughan RW, Kondeatis E, Hughes RAC. HLA-class II alleles in Guillain-Barré syndrome and Miller Fisher syndrome and their association with preceding Campylobacter jejuni infection. J Neuroimmunol 1995; 62: 53–57.

    CAS  PubMed  Google Scholar 

  52. Yuki N, Sato S, Tsuji S, Ogawa K, Miyatake T. Human leukocyte antigens in Fisher’s syndrome. Ann Neurol 1993; 33: 655–657.

    CAS  PubMed  Google Scholar 

  53. Yuki N, Sato S, Itoh T, Miyatake T. HLA-B35 and acute axonal polyneuropathy following Campylobacter infection. Neurology 1991; 41: 1561–1563.

    CAS  PubMed  Google Scholar 

  54. Hafez M, Nagaty M, Al-Tonbary Y, El-Shennawy FA, El-Mongui A, El-Sallab S et al. HLA-antigens in Guillain-Barre syndrome. J Neurogenet 1985; 2: 285–290.

    CAS  PubMed  Google Scholar 

  55. Gorodezky C, Varela B, Castro-Escobar LE, Chávez-Negrete A, Escobar-Gutiérrez A, Martínez-Mata J. HLA-DR antigens in Mexican patients with Guillain-Barré syndrome. J Neuroimmunol 1983; 4: 1–7.

    CAS  PubMed  Google Scholar 

  56. McCombe PA, Csurhes PA, Greer JM. Studies of HLA associations in male and female patients with Guillain-Barré syndrome (GBS) and chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). J Neuroimmunol 2006; 180: 172–177.

    CAS  PubMed  Google Scholar 

  57. Nyati KK, Prasad KN, Verma A, Singh AK, Rizwan A, Sinha S et al. Association of TLR4 Asp299Gly and Thr399Ile polymorphisms with Guillain-Barré syndrome in Northern Indian population. J Neuroimmunol 2010; 218: 116–119.

    CAS  PubMed  Google Scholar 

  58. Caporale CM, Papola F, Fioroni MA, Aureli A, Giovannini A, Notturno F et al. Susceptibility to Guillain-Barré syndrome is associated to polymorphisms of CD1 genes. J Neuroimmunol 2006; 177: 112–118.

    CAS  PubMed  Google Scholar 

  59. Geleijns K, Laman JD, van Rijs W, Tio-Gillen AP, Hintzen RQ, van Doorn PA et al. Fas polymorphisms are associated with the presence of anti-ganglioside antibodies in Guillain–Barré syndrome. J Neuroimmunol 2005; 161: 183–189.

    CAS  PubMed  Google Scholar 

  60. Jiao H, Wang W, Wang H, Wu Y, Wang L. Tumor necrosis factor alpha 308 G/A polymorphism and Guillain-Barré syndrome risk. Mol Biol Rep 2012; 39: 1537–1540.

    CAS  PubMed  Google Scholar 

  61. Jahan I, Ahammad RU, Farzana KS, Khalid MM, Islam MB, Rahman MI et al. Tumor necrosis factor-alpha -863C/A polymorphism is associated with Guillain-Barré syndrome in Bangladesh. J Neuroimmunol 2017; 310: 46–50.

    CAS  PubMed  Google Scholar 

  62. Kharwar NK, Prasad KN, Singh K, Paliwal VK, Modi DR. Polymorphisms of IL-17 and ICAM-1 and their expression in Guillain-Barré syndrome. Int J Neurosci 2017; 127: 680–687.

    CAS  PubMed  Google Scholar 

  63. Rathinam VAK, Appledorn DM, Hoag KA, Amalfitano A, Mansfield LS. Campylobacter jejuni-induced activation of dendritic cells involves cooperative signaling through toll-like receptor 4 (TLR4)-MyD88 and TLR4-TRIF axes. Infect Immun 2009; 77: 2499–2507.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Chatzipanagiotou S, Michalopoulou M, Marinou I, Boufidou F, Papavasileiou E, Trikka-Graphakos E et al. Investigation of possible cytokine induction in peripheral blood mononuclear cells by heat-stable serotypes of Campylobacter jejuni. Clin Microbiol Infect 2005; 11: 63–65.

    CAS  PubMed  Google Scholar 

  65. Heikema AP, Bergman MP, Richards H, Crocker PR, Gilbert M, Samsom JN et al. Characterization of the specific interaction between sialoadhesin and sialylated Campylobacter jejuni lipooligosaccharides. Infect Immun 2010; 78: 3237–3246.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. von Gunten S, Bochner BS. Basic and clinical immunology of Siglecs. Ann N Y Acad Sci 2008; 1143: 61–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Avril T, Wagner ER, Willison HJ, Crocker PR. Sialic acid-binding immunoglobulin-like lectin 7 mediates selective recognition of sialylated glycans expressed on Campylobacter jejuni lipooligosaccharides. Infect Immun 2006; 74: 4133–4141.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Aspinall GO, McDonald AG, Pang H, Kurjanczyk LA, Penner JL. Lipopolysaccharides of Campylobacter jejuni serotype o-19: structures of core oligosaccharide regions from the serostrain and two bacterial isolates from patients with the Guillain-Barré Syndrome. Biochemistry 1994; 33: 241–249.

    CAS  PubMed  Google Scholar 

  69. Avril T, Floyd H, Lopez F, Vivier E, Crocker PR. The membrane-proximal immunoreceptor tyrosine-based inhibitory motif is critical for the inhibitory signaling mediated by siglecs-7 and -9, CD33-related siglecs expressed on human monocytes and NK Cells. J Immunol 2004; 173: 6841–6849.

    CAS  PubMed  Google Scholar 

  70. Orr SJ, Morgan NM, Buick RJ, Boyd CR, Elliott J, Burrows JF et al. SOCS3 targets Siglec 7 for proteasomal degradation and blocks siglec 7-mediated responses. J Biol Chem 2007; 282: 3418–3422.

    CAS  PubMed  Google Scholar 

  71. Yuki N, Ichihashi Y, Taki T. Subclass of IgG antibody to GM1 epitope-bearing lipopolysaccharide of Campylobacter jejuni in patients with Guillain-Barré syndrome. J Neuroimmunol 1995; 60: 161–164.

    CAS  PubMed  Google Scholar 

  72. Wang Q, Xing C, Hao Y, Shi Q, Qi Z, Lv Z et al. Memory B cells in Guillain-Barré syndrome. J Neuroimmunol 2017; 305: 1–4.

    CAS  PubMed  Google Scholar 

  73. Van Rhijn I, Logtenberg T, Ang CW, Van den Berg LH. Gammadelta T cell non-responsiveness in Campylobacter jejuni-associated Guillain-Barre syndrome patients. Neurology 2003; 61: 994–996.

    CAS  PubMed  Google Scholar 

  74. Bowes T, Wagner ER, Boffey J, Nicholl D, Cochrane L, Benboubetra M et al. Tolerance to self gangliosides is the major factor restricting the antibody response to lipopolysaccharide core oligosaccharides in Campylobacter jejuni strains associated with Guillain-Barré syndrome. Infect Immun 2002; 70: 5008–5018.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Jung S, Zimmer S, Lüneberg E, Frosch M, Karch H, Korn T et al. Lipooligosaccharide of Campylobacter jejuni prevents myelin-specific enteral tolerance to autoimmune neuritis—a potential mechanism in Guillain-Barré syndrome? Neurosci Lett 2005; 381: 175–178.

    CAS  PubMed  Google Scholar 

  76. Hafer-Macko C, Hsieh S-T, Ho TW, Sheikh K, Cornblath DR, Li CY et al. Acute motor axonal neuropathy: An antibody-mediated attack on axolemma. Ann Neurol 1996; 40: 635–644.

    CAS  PubMed  Google Scholar 

  77. Susuki K, Rasband MN, Tohyama K, Koibuchi K, Okamoto S, Funakoshi K et al. Anti-GM1 antibodies cause complement-mediated disruption of sodium channel clusters in peripheral motor nerve fibers. J Neurosci 2007; 27: 3956–3967.

    CAS  PubMed  Google Scholar 

  78. Notturno F, Luciani M, Caporale CM, Ciarelli A, Uncini A. Antibodies to ganglioside complexes in Guillain-Barré syndrome: clinical correlates, fine specificity and complement activation. Int J Immunopathol Pharmacol 2009; 22: 437–445.

    CAS  PubMed  Google Scholar 

  79. Yuki N, Yoshino H, Sato S, Miyatake T. Acute axonal polyneuropathy associated with anti-GM1 antibodies following Campylobacter enteritis. Neurology 1990; 40: 1900–1902.

    CAS  PubMed  Google Scholar 

  80. Willison HJ. Ganglioside complexes: new autoantibody targets in Guillain–Barré syndromes. Nat Clin Pract Neurol 2005; 1: 2–3.

    CAS  PubMed  Google Scholar 

  81. Piao H, Minohara M, Kawamura N, Li W, Matsushita T, Yamasaki R et al. Tissue binding patterns and in vitro effects of campylobacter jejuni DNA-binding protein from starved cells. Neurochem Res 2011; 36: 58–66.

    CAS  PubMed  Google Scholar 

  82. Kawamura N, Piao H, Minohara M, Matsushita T, Kusunoki S, Matsumoto H et al. Campylobacter jejuni DNA-binding protein from starved cells in Guillain-Barré syndrome patients. J Neuroimmunol 2011; 240–241: 74–78.

    PubMed  Google Scholar 

  83. Ben-Smith A, Gaston JS, Barber PC, Winer JB. Isolation and characterisation of T lymphocytes from sural nerve biopsies in patients with Guillain-Barré syndrome and chronic inflammatory demyelinating polyneuropathy. J Neurol Neurosurg Psychiatry 1996; 61: 362–368.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Scelsa SN, Ghali V, Herskovitz S, Bieri P, Shank DL, MacGowan DDJ et al. Blood γδ T cells, Campylobacter jejuni, and GM1 titers in Guillain-Barré syndrome. Muscle Nerve 2004; 30: 423–432.

    PubMed  Google Scholar 

  85. Khalili-Shirazi A, Hughes RAC, Brostoff SW, Linington C, Gregson N. T cell responses to myelin proteins in Guillain-Barré syndrome. J Neurol Sci 1992; 111: 200–203.

    CAS  PubMed  Google Scholar 

  86. Cooper JC, Hughes S, Ben-Smith A, Savage COS, Winer JB. T cell recognition of a non-protein antigen preparation of Campylobacter jejuni in patients with Guillain-Barré syndrome. J Neurol Neurosurg Psychiatry 2002; 72: 413–414.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Born W, Cady C, Jones-Carson J, Mukasa A, Lahn M, O’Brien R. Immunoregulatory functions of gamma delta T cells. Adv Immunol 1999; 71: 77–144.

    CAS  PubMed  Google Scholar 

  88. Ben-Smith A, Goodall JC, Gaston JS, Winer JB. Stimulation of peripheral blood lymphocytes with Campylobacter jejuni generates a gammadelta T cell response in patients with Guillain-Barré syndrome. Clin Exp Immunol 1997; 109: 121–126.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Koga M, Yuki N, Tsukada Y, Hirata K, Matsumoto Y. CDR3 spectratyping analysis of the T cell receptor repertoire in Guillain-Barre and Fisher syndromes. J Neuroimmunol 2003; 141: 112–117.

    CAS  PubMed  Google Scholar 

  90. Susuki K, Odaka M, Mori M, Hirata K, Yuki N. Acute motor axonal neuropathy after Mycoplasma infection: Evidence of molecular mimicry. Neurology 2004; 62: 949–956.

    CAS  PubMed  Google Scholar 

  91. Kusunoki S, Chiba A, Hitoshi S, Takizawa H, Kanazawa I. Anti-gal-C antibody in autoimmune neuropathies subsequent to mycoplasma infection. Muscle Nerve 1995; 18: 409–413.

    CAS  PubMed  Google Scholar 

  92. Kusunoki S, Shiina M, Kanazawa I. Anti-Gal-C antibodies in GBS subsequent to mycoplasma infection: evidence of molecular mimicry. Neurology 2001; 57: 736–738.

    CAS  PubMed  Google Scholar 

  93. Ang CW, Tio-Gillen AP, Groen J, Herbrink P, Jacobs BC, Van Koningsveld R et al. Cross-reactive anti-galactocerebroside antibodies and Mycoplasma pneumoniae infections in Guillain-Barre syndrome. J Neuroimmunol 2002; 130: 179–183.

    CAS  PubMed  Google Scholar 

  94. Yoshino H, Inuzuka T, Miyatake T. IgG antibody against GM1, GD1b and asialo-GM1 in chronic polyneuropathy following Mycoplasma pneumoniae infection. Eur Neurol 1992; 32: 28–31.

    CAS  PubMed  Google Scholar 

  95. Koga M, Gilbert M, Li J, Koike S, Takahashi M, Furukawa K et al. Antecedent infections in Fisher syndrome: a common pathogenesis of molecular mimicry. Neurology 2005; 64: 1605–1611.

    CAS  PubMed  Google Scholar 

  96. Kusunoki S, Takizawa H, Kanazawa I. Infection by Mycoplasma pneumoniae induces serum antibody against Gal-C. Muscle Nerve 1996; 19: 257–258.

    CAS  PubMed  Google Scholar 

  97. Nishimura M, Saida T, Kuroki S, Kawabata T, Obayashi H, Saida K et al. Post-infectious encephalitis with anti-galactocerebroside antibody subsequent to Mycoplasma pneumoniae infection. J Neurol Sci 1996; 140: 91–95.

    CAS  PubMed  Google Scholar 

  98. Kuwahara M, Samukawa M, Ikeda T, Morikawa M, Ueno R, Hamada Y et al. Characterization of the neurological diseases associated with Mycoplasma pneumoniae infection and anti-glycolipid antibodies. J Neurol 2017; 264: 467–475.

    CAS  PubMed  Google Scholar 

  99. Guleria R, Nisar N, Chawla TC, Biswas NR. Mycoplasma pneumoniae and central nervous system complications: a review. J. Lab. Clin. Med. 2005; 146: 55–63.

    PubMed  Google Scholar 

  100. Meyer Sauteur PM, Jacobs BC, Spuesens EBM, Jacobs E, Nadal D, Vink C et al. Antibody responses to Mycoplasma pneumoniae: role in pathogenesis and diagnosis of encephalitis? PLoS Pathog 2014; 10: e1003983.

    PubMed  PubMed Central  Google Scholar 

  101. Koga M, Yuki N, Tai T, Hirata K. Miller Fisher syndrome and Haemophilus influenzae infection. Neurology 2001; 57: 686–691.

    CAS  PubMed  Google Scholar 

  102. Koga M, Yuki N, Hirata K, Morimatsu M, Mori M, Kuwabara S. Anti-GM1 antibody IgG subclass: a clinical recovery predictor in Guillain-Barre syndrome. Neurology 2003; 60: 1514–1518.

    CAS  PubMed  Google Scholar 

  103. Yuki N, Shahrizaila N. How do we identify infectious agents that trigger Guillain–Barré syndrome, Fisher syndrome and Bickerstaff brainstem encephalitis? J Neurol Sci 2011; 302: 1–5.

    PubMed  Google Scholar 

  104. Mori M, Kuwabara S, Miyake M, Dezawa M, Adachi-Usami E, Kuroki H et al. Haemophilus influenzae has a GM1 ganglioside-like structure and elicits Guillain-Barré syndrome. Neurology 1999; 52: 1282–1284.

    CAS  PubMed  Google Scholar 

  105. Houliston RS, Koga M, Li J, Jarrell HC, Richards JC, Vitiazeva V et al. A Haemophilus influenzae strain associated with fisher syndrome expresses a novel disialylated ganglioside mimic. Biochemistry 2007; 46: 8164–8171.

    CAS  PubMed  Google Scholar 

  106. Vieira MADCES, Cruz ACR, Barros ANM, Costa DL, Silva EVPD, Batista FMA et al. Guillain-Barré syndrome and dengue-like disease in 2015: temporal relationship in Piauí state and implications on Zika virus surveillance. Rev Inst Med Trop Sao Paulo 2017; 59: e22.

    PubMed  PubMed Central  Google Scholar 

  107. Bate SL, Dollard SC, Cannon MJ. Cytomegalovirus Seroprevalence in the United States: The National Health and Nutrition Examination Surveys, 1988–2004. Clin Infect Dis 2010; 50: 1439–1447.

    PubMed  Google Scholar 

  108. Arias-Murillo YR, Osorio-Arango K, Cortés JA, Beltrán M. Seroprevalencia de citomegalovirus en donantes de órganos y receptores de trasplante renal, Colombia, 2010-2014. Biomédica 2016; 36: 187.

    PubMed  Google Scholar 

  109. Limaye AP, Kirby KA, Rubenfeld GD, Leisenring WM, Bulger EM, Neff MJ et al. Cytomegalovirus reactivation in critically Ill immunocompetent patients. JAMA 2008; 300: 413.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Klemola E, Weckman N, Haltia K, Kääriäinen L. The Guillain-Barré syndrome associated with acquired Cytomegalovirus infection. Acta Med Scand 2009; 181: 603–607.

    Google Scholar 

  111. Orlikowski D, Porcher R, Sivadon-Tardy V, Quincampoix JC, Raphaël JC, Durand MC et al. Guillain-barré syndrome following primary cytomegalovirus infection: A prospective cohort study. Clin Infect Dis 2011; 52: 837–844.

    PubMed  Google Scholar 

  112. Steininger C, Seiser A, Gueler N, Puchhammer-Stöckl E, Aberle SW, Stanek G et al. Primary cytomegalovirus infection in patients with Guillain-Barré syndrome. J Neuroimmunol 2007; 183: 214–219.

    CAS  PubMed  Google Scholar 

  113. Lunn M, Hughes R. The relationship between Cytomegalovirus infection and Guillain-Barre syndrome. Clin Infect Dis 2011; 52: 845–847.

    PubMed  Google Scholar 

  114. Visser LH, van der Meché FG, Meulstee J, Rothbarth PP, Jacobs BC, Schmitz PI et al. Cytomegalovirus infection and Guillain-Barré syndrome: the clinical, electrophysiologic, and prognostic features. Dutch Guillain-Barré Study Group. Neurology 1996; 47: 668–673.

    CAS  PubMed  Google Scholar 

  115. Kobori S, Kubo T, Otani M, Muramatsu K, Fujino Y, Adachi H et al. Coexisting infectious diseases on admission as a risk factor for mechanical ventilation in patients with Guillaine-Barré syndrome. J Epidemiol 2017; 27: 311–316.

    PubMed  PubMed Central  Google Scholar 

  116. Hughes R, Atkinson P, Coates P, Hall S, Leibowitz S. Sural nerve biopsies in Guillain-Barre syndrome: axonal degeneration and macrophage-associated demyelination and absence of cytomegalovirus genome. Muscle Nerve 1992; 15: 568–575.

    CAS  PubMed  Google Scholar 

  117. Irie S, Saito T, Nakamura K, Kanazawa N, Ogino M, Nukazawa T et al. Association of anti-GM2 antibodies in Guillain-Barre syndrome with acute cytomegalovirus infection. J Neuroimmunol 1996; 68: 19–26.

    CAS  PubMed  Google Scholar 

  118. Yuki N, Tagawa Y. Acute cytomegalovirus infection and IgM anti-GM2 antibody. J Neurol Sci 1998; 154: 14–17.

    CAS  PubMed  Google Scholar 

  119. Kaida K, Kusunoki S, Kamakura K, Motoyoshi K, Kanazawa I. Guillain-Barré syndrome with IgM antibody to the ganglioside GalNAc-GD1a. J Neuroimmunol 2001; 113: 260–267.

    CAS  PubMed  Google Scholar 

  120. Haase CG, Schmidt S. Detection of brain-specific autoantibodies to myelin oligodendrocyte glycoprotein, S100beta and myelin basic protein in patients with Devic’s neuromyelitis optica. Neurosci Lett 2001; 307: 131–133.

    CAS  PubMed  Google Scholar 

  121. Britt W Virus Entry Into Host, Establishment Of Infection, Spread in Host, Mechanisms of Tissue Damage. Cambridge 2007.

  122. Svennerholm L, Fredman P. Antibody detection in Guillain-Barre syndrome. Ann Neurol 1990; 27 (Suppl): 36–40.

    Google Scholar 

  123. Tsukaguchi M, Tagawa Y, Takeuchi H, Yuki N. IgM anti-GM2 antibody in a patient with Guillain-Barré syndrome subsequent to cytomegalovirus hepatitis cross reacts with N-acetylgalactosaminyl GD1a. J Neurol Neurosurg Psychiatry 1998; 65: 407–408.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Nakamura K, Irie S, Kanazawa N, Saito T, Tamai Y. Anti-GM2 antibodies in Guillain-Barré syndrome with acute cytomegalovirus infection. Ann N Y Acad Sci 1998; 845: 423.

    CAS  PubMed  Google Scholar 

  125. Ang CW, Jacobs BC, Brandenburg AH, Laman JD, van der Meché FG, Osterhaus AD et al. Cross-reactive antibodies against GM2 and CMV-infected fibroblasts in Guillain-Barré syndrome. Neurology 2000; 54: 1453–1458.

    CAS  PubMed  Google Scholar 

  126. Adelmann M, Linington C. Molecular mimicry and the autoimmune response to the peripheral nerve myelin P0 glycoprotein. Neurochem Res 1992; 17: 887–891.

    CAS  PubMed  Google Scholar 

  127. Milner P, Lovelidge CA, Taylor WA, Hughes RAC. P0 myelin protein produces experimental allergic neuritis in Lewis rats. J Neurol Sci 1987; 79: 275–285.

    CAS  PubMed  Google Scholar 

  128. Gatto CL, Walker BJ, Lambert S. Local ERM activation and dynamic growth cones at schwann cell tips implicated in efficient formation of nodes of Ranvier. J Cell Biol 2003; 162: 489–498.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Scherer SS, Xu T, Crino P, Arroyo EJ, Gutmann DH. Ezrin, radixin, and moesin are components of Schwann cell microvilli. J Neurosci Res 2001; 65: 150–164.

    CAS  PubMed  Google Scholar 

  130. Miyaji K, Devaux J, Yuki N. WriteClick Editor’s Choice: Moesin is a possible target molecule for cytomegalovirus-related Guillain-Barré syndrome. Neurology 2014; 83: 2314–2315.

    PubMed  Google Scholar 

  131. Iontcheva I, Amar S, Zawawi KH, Kantarci A, Van Dyke TE. Role for moesin in lipopolysaccharide-stimulated signal transduction. Infect Immun 2004; 72: 2312–2320.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Willison H, Scherer SS. Ranvier revisited: novel nodal antigens stimulate interest in GBS pathogenesis. Neurology 2014; 83: 106–108.

    PubMed  Google Scholar 

  133. Tsukita S, Yonemura S. Cortical actin organization: lessons from ERM (Ezrin/Radixin/Moesin) proteins. J Biol Chem 1999; 274: 34507–34510.

    CAS  PubMed  Google Scholar 

  134. Sawai S, Satoh M, Mori M, Misawa S, Sogawa K, Kazami T et al. Moesin is a possible target molecule for cytomegalovirus-related Guillain-Barre syndrome. Neurology 2014; 83: 113–117.

    CAS  PubMed  Google Scholar 

  135. Sindern E, Oreja-Guevara C, Raulf-Heimsoth M, Baur X, Pierre Malin J. A longitudinal study of circulating lymphocyte subsets in the peripheral blood during the acute stage of Guillain-Barré syndrome. J Neurol Sci 1997; 151: 29–34.

    CAS  PubMed  Google Scholar 

  136. Pangault C, Le Tulzo Y, Minjolle S, Le Page E, Sebti Y, Guilloux V et al. HLA-G Expression in Guillain-Barré Syndrome Is Associated with Primary Infection with Cytomegalovirus. Viral Immunol 2004; 17: 123–125.

    CAS  PubMed  Google Scholar 

  137. Gerken G, Trautmann F, Köhler H, Falke D, Bohl J, Nix W et al. Rare association of herpes simplex virus IgM-specific antibodies and Guillain-Barré syndrome successfully treated with plasma exchange and immunosuppression. Klin Wochenschr 1985; 63: 468–474.

    CAS  PubMed  Google Scholar 

  138. Dilena R, Strazzer S, Esposito S, Paglialonga F, Tadini L, Barbieri S et al. Locked-in-like fulminant infantile Guillain-Barré syndrome associated with herpes simplex virus 1 infection. Muscle Nerve 2016; 53: 140–143.

    PubMed  Google Scholar 

  139. Ntziora F, Euthimiou A, Tektonidou M, Andreopoulos A, Konstantopoulos K. Guillain-Barre syndrome presenting with sensory disturbance following a herpes virus infection: a case report. J Med Case Rep 2011; 5: 563.

    PubMed  PubMed Central  Google Scholar 

  140. Yuki N, Susuki K, Odaka M, Hirata K. Overlapping Guillain-Barre syndrome and Bickerstaff’s brainstem encephalitis associated with anti-GQ1b IgG antibody after herpes simplex virus infection. Acta Neurol Scand 2001; 104: 57–60.

    CAS  PubMed  Google Scholar 

  141. Jacobs BC, Rothbarth PH, van der Meché FG, Herbrink P, Schmitz PI, de Klerk MA et al. The spectrum of antecedent infections in Guillain-Barré syndrome: a case-control study. Neurology 1998; 51: 1110–1115.

    CAS  PubMed  Google Scholar 

  142. Miyaji K, Furukawa J, Suzuki Y, Yamamoto N, Shinohara Y, Yuki N. Altered gene expression of glycosyltransferases and sialyltransferases and total amount of glycosphingolipids following herpes simplex virus infection. Carbohydr Res 2016; 434: 37–43.

    CAS  PubMed  Google Scholar 

  143. Hart IK, Kennedy PG. Guillain-Barre syndrome associated with herpes zoster. Postgrad Med J 1987; 63: 1087–1088.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Sanders EA, Peters AC, Gratana JW, Hughes RA. Guillain-Barré syndrome after varicella-zoster infection. Report of two cases. J Neurol 1987; 234: 437–439.

    CAS  PubMed  Google Scholar 

  145. Rabbani MU, Gupta D. Guillain Barré syndrome following herpes zoster: a case report and review of literature. Jpn J Med 1990; 29: 397–398.

    CAS  PubMed  Google Scholar 

  146. Kang J-H, Sheu J-J, Lin H-C. Increased Risk of Guillain-Barré syndrome following recent herpes zoster: A Population-Based Study across Taiwan. Clin Infect Dis 2010; 51: 525–530.

    PubMed  Google Scholar 

  147. Galvan M, Rotola A, Govoni V, Granieri E, Cassai E, Di Luca D. Simultaneous Guillain-Barré syndrome and active human herpesvirus 6 infection in the central nervous system. J Clin Virol 2007; 38: 271–272.

    CAS  PubMed  Google Scholar 

  148. Merelli E, Sola P, Faglioni P, Poggi M, Montorsi M, Torelli G. Newest human herpesvirus (HHV-6) in the Guillain-Barré syndrome and other neurological diseases. Acta Neurol Scand 2009; 85: 334–336.

    Google Scholar 

  149. Gustafsson R, Reitsma R, Strålfors A, Lindholm A, Press R, Fogdell-Hahn A. Incidence of human herpesvirus 6 in clinical samples from Swedish patients with demyelinating diseases. J Microbiol Immunol Infect 2014; 47: 418–421.

    CAS  PubMed  Google Scholar 

  150. Corssmit EP, Leverstein-van Hall MA, Portegies P, Bakker P. Severe neurological complications in association with Epstein-Barr virus infection. J Neurovirol 1997; 3: 460–464.

    CAS  PubMed  Google Scholar 

  151. Nikkels AF, Debrus S, Sadzot-Delvaux C, Piette J, Delvenne P, Rentier B et al. Comparative immunohistochemical study of herpes simplex and varicella-zoster infections. Virchows Arch A Pathol Anat Histopathol 1993; 422: 121–126.

    CAS  PubMed  Google Scholar 

  152. Schnorf H, Rathgeb JP, Kohler A. Anti-GQ1b-positive Miller Fisher syndrome in a patient with acute Epstein-Barr virus infection and negative Campylobacter serology. Eur Neurol 1998; 40: 177.

    CAS  PubMed  Google Scholar 

  153. Caudie C, Quittard Pinon A, Taravel D, Sivadon-Tardy V, Orlikowski D, Rozenberg F et al. Preceding infections and anti-ganglioside antibody profiles assessed by a dot immunoassay in 306 French Guillain–Barré syndrome patients. J Neurol 2011; 258: 1958–1964.

    CAS  PubMed  Google Scholar 

  154. Penner E, Maida E, Mamoli B, Gangl A. Serum and cerebrospinal fluid immune complexes containing hepatitis B surface antigen in Guillain-Barré syndrome. Gastroenterology 1982; 82: 576–580.

    CAS  PubMed  Google Scholar 

  155. Tabor E. Guillain-Barré syndrome and other neurologic syndromes in hepatitis A, B, and non-A, non-B. J Med Virol 1987; 21: 207–216.

    CAS  PubMed  Google Scholar 

  156. Perseghin P, Balduini CL, Piccolo G, Bertolino G, Bellusci M, Scelsi R et al. Guillain-Barré syndrome with autoimmune hemolytic anemia following acute viral hepatitis. Ital J Neurol Sci 1985; 6: 447–450.

    CAS  PubMed  Google Scholar 

  157. Goust JM, Chenais F, Carnes JE, Hames CG, Fudenberg HH, Hogan EL. Abnormal T cell subpopulations and circulating immune complexes in the Guillain-Barré syndrome and multiple sclerosis. Neurology 1978; 28: 421–425.

    CAS  PubMed  Google Scholar 

  158. Fujinami R, Oldstone M. Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. Science 1985; 230: 1043–1045.

    CAS  PubMed  Google Scholar 

  159. Zhou X, Huang F, Xu L, Lin Z, de Vrij FMS, Ayo-Martin AC et al. Hepatitis E virus infects neurons and brains. J Infect Dis 2017; 215: 1197–1206.

    CAS  PubMed  Google Scholar 

  160. Shukla P, Nguyen HT, Faulk K, Mather K, Torian U, Engle RE et al. Adaptation of a genotype 3 hepatitis E virus to efficient growth in cell culture depends on an inserted human gene segment acquired by recombination. J Virol 2012; 86: 5697–5707.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Dalton HR, Kamar N, van Eijk JJJ, Mclean BN, Cintas P, Bendall RP et al. Hepatitis E virus and neurological injury. Nat Rev Neurol 2015; 12: 77–85.

    PubMed  Google Scholar 

  162. Cronin S, McNicholas R, Kavanagh E, Reid V, O’Rourke K. Anti-glycolipid GM2-positive Guillain-Barre syndrome due to hepatitis E infection. Ir J Med Sci 2011; 180: 255–257.

    CAS  PubMed  Google Scholar 

  163. Maurissen I, Jeurissen A, Strauven T, Sprengers D, De Schepper B. First case of anti-ganglioside GM1-positive Guillain–Barré syndrome due to hepatitis E virus infection. Infection 2012; 40: 323–326.

    CAS  PubMed  Google Scholar 

  164. De Castro G, Bastos PG, Martinez R, Figueiredo JFDC. Episodes of Guillain-Barré syndrome associated with the acute phase of HIV-1 infection and with recurrence of viremia. Arq Neuropsiquiatr 2006; 64: 606–608.

    PubMed  Google Scholar 

  165. Keswani SC, Polley M, Pardo CA, Griffin JW, McArthur JC, Hoke A. Schwann cell chemokine receptors mediate HIV-1 gp120 toxicity to sensory neurons. Ann Neurol 2003; 54: 287–296.

    CAS  PubMed  Google Scholar 

  166. Nishijima T, Tsukada K, Takeuchi S, Chiba A, Honda M, Teruya K et al. Antiretroviral therapy for treatment-naïve chronic HIV-1 infection with an axonal variant of Guillain-Barré syndrome positive for anti-ganglioside antibody: a case report. Intern Med 2011; 50: 2427–2429.

    PubMed  Google Scholar 

  167. Brannagan TH, Zhou Y. HIV-associated Guillain-Barré syndrome. J Neurol Sci 2003; 208: 39–42.

    PubMed  Google Scholar 

  168. Chen TY, Lee CT. Guillain-Barré syndrome following dengue fever. Ann Emerg Med 2007; 50: 94–95.

    PubMed  Google Scholar 

  169. Puccioni-Sohler M, Soares CN, Papaiz-Alvarenga R, Castro MJC, Faria LC, Peralta JM. Neurologic dengue manifestations associated with intrathecal specific immune response. Neurology 2009; 73: 1413–1417.

    CAS  PubMed  Google Scholar 

  170. Lum LCS, Lam SK, Choy YS, George R, Harun F. Dengue encephalitis: A true entity? Am J Trop Med Hyg 1996; 54: 256–259.

    CAS  PubMed  Google Scholar 

  171. Carod-Artal FJ, Wichmann O, Farrar J, Gascón J. Neurological complications of dengue virus infection. Lancet Neurol 2013; 12: 906–919.

    PubMed  Google Scholar 

  172. Oishi K, Saito M, Mapua CA, Natividad FF. Dengue illness: clinical features and pathogenesis. J Infect Chemother 2007; 13: 125–133.

    PubMed  Google Scholar 

  173. Verma R, Sahu R, Holla V. Neurological manifestations of dengue infection: a review. J Neurol Sci 2014; 346: 26–34.

    PubMed  Google Scholar 

  174. Wielanek AC, De Monredon J, El Amrani M, Roger JC, Serveaux JP. Guillain-Barré syndrome complicating a Chikungunya virus infection. Neurology 2007; 69: 2105–2107.

    CAS  PubMed  Google Scholar 

  175. Tournebize P, Charlin C, Lagrange M. Neurological manifestations in Chikungunya: about 23 cases collected in Reunion Island. Rev Neurol (Paris) 2009; 165: 48–51.

    CAS  Google Scholar 

  176. Jaffar-Bandjee MC, Ramful D, Gauzere BA, Hoarau JJ, Krejbich-Trotot P, Robin S et al. Emergence and clinical insights into the pathology of Chikungunya virus infection. Expert Rev Anti Infect Ther 2010; 8: 987–996.

    PubMed  Google Scholar 

  177. Couderc T, Chrétien F, Schilte C, Disson O, Brigitte M, Guivel-Benhassine F et al. A mouse model for Chikungunya: young age and inefficient type-I interferon signaling are risk factors for severe disease. PLoS Pathog 2008; 4: e29.

    PubMed  PubMed Central  Google Scholar 

  178. Metsky HC, Matranga CB, Wohl S, Schaffner SF, Freije CA, Winnicki SM et al. Zika virus evolution and spread in the Americas. Nature 2017; 546: 411–415.

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Mlakar J, Korva M, Tul N, Popović M, Poljšak-Prijatelj M, Mraz J et al. Zika virus associated with microcephaly. N Engl J Med 2016; 374: 951–958.

    CAS  PubMed  Google Scholar 

  180. Grant A, Ponia SS, Tripathi S, Balasubramaniam V, Miorin L, Sourisseau M et al. Zika Virus targets human STAT2 to inhibit type I interferon signaling. Cell Host Microbe 2016; 19: 882–890.

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Donald CL, Brennan B, Cumberworth SL, Rezelj VV, Clark JJ, Cordeiro MT et al. Full genome sequence and sfRNA interferon antagonist activity of Zika virus from Recife, Brazil. PLoS Negl Trop Dis 2016; 10: e0005048.

    PubMed  PubMed Central  Google Scholar 

  182. Meertens L, Labeau A, Dejarnac O, Cipriani S, Sinigaglia L, Bonnet-Madin L et al. Axl mediates ZIKA virus entry in human glial cells and modulates innate immune responses. Cell Rep 2017; 18: 324–333.

    CAS  PubMed  Google Scholar 

  183. Morris G, Barichello T, Stubbs B, Köhler CA, Carvalho AF, Maes M. Zika virus as an emerging neuropathogen: mechanisms of neurovirulence and neuro-immune interactions. Mol Neurobiol 2017;: 1–25.

  184. Bayless NL, Greenberg RS, Swigut T, Wysocka J, Blish CA. Zika virus infection induces cranial neural crest cells to produce cytokines at levels detrimental for neurogenesis. Cell Host Microbe 2016; 20: 423–428.

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Cumberworth SL, Barrie JA, Cunningham ME, de Figueiredo DPG, Schultz V, Wilder-Smith AJ et al. Zika virus tropism and interactions in myelinating neural cell cultures: CNS cells and myelin are preferentially affected. Acta Neuropathol Commun 2017; 5: 50.

    PubMed  PubMed Central  Google Scholar 

  186. Lucchese G, Kanduc D. Zika virus and autoimmunity: from microcephaly to Guillain-Barré syndrome, and beyond. Autoimmun. Rev. 2016; 15: 801–808.

    CAS  PubMed  Google Scholar 

  187. Monel B, Compton AA, Bruel T, Amraoui S, Burlaud-Gaillard J, Roy N et al. Zika virus induces massive cytoplasmic vacuolization and paraptosis-like death in infected cells. EMBO J 2017; 36: 1653–1668.

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Lessler J, Chaisson LH, Kucirka LM, Bi Q, Grantz K, Salje H et al. Assessing the global threat from Zika virus. Science 2016; 353: aaf8160–aaf8160.

    PubMed  PubMed Central  Google Scholar 

  189. Gorman MJ, Poddar S, Farzan M, Diamond MS. The interferon-stimulated gene Ifitm3 restricts west nile virus infection and pathogenesis. J Virol 2016; 90: 8212–8225.

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Everitt AR, Clare S, Pertel T, John SP, Wash RS, Smith SE et al. IFITM3 restricts the morbidity and mortality associated with influenza. Nature 2012; 484: 519–523.

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Li G, Poulsen M, Fenyvuesvolgyi C, Yashiroda Y, Yoshida M, Simard JM et al. Characterization of cytopathic factors through genome-wide analysis of the Zika viral proteins in fission yeast. Proc Natl Acad Sci USA 2017; 114: E376–E385.

    CAS  PubMed  Google Scholar 

  192. Aid M, Abbink P, Larocca RA, Boyd M, Nityanandam R, Nanayakkara O et al. Zika virus persistence in the central nervous system and lymph nodes of rhesus monkeys. Cell 2017; 169: 610–620.

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Flipse J, Wilschut J, Smit JM. Molecular mechanisms involved in antibody-dependent enhancement of dengue virus infection in humans. Traffic 2013; 14: 25–35.

    CAS  PubMed  Google Scholar 

  194. Paul LM, Carlin ER, Jenkins MM, Tan AL, Barcellona CM, Nicholson CO et al. Dengue virus antibodies enhance Zika virus infection. Clin Transl Immunol 2016; 5: 1–12.

    Google Scholar 

  195. Freire CCM, Iamarino A, Neto DFL, Sall AA, Marinho P, Zanotto A. Spread of the pandemic Zika virus lineage is associated with NS1 codon usage adaptation in humans. bioRxiv 2015; 2015: 1–8.

    Google Scholar 

  196. Sá MJ. Acute transverse myelitis: a practical reappraisal. Autoimmun Rev 2009; 9: 128–131.

    PubMed  Google Scholar 

  197. Kaplin AI, Krishnan C, Deshpande DM, Pardo CA, Kerr DA. Diagnosis and management of acute myelopathies. Neurologist 2005; 11: 2–18.

    PubMed  Google Scholar 

  198. Komagamine T, Yuki N. Ganglioside mimicry as a cause of Guillain-Barré syndrome. CNS Neurol Disord Drug Targets 2006; 5: 391–400.

    CAS  PubMed  Google Scholar 

  199. Baar I, Jacobs BC, Govers N, Jorens PG, Parizel PM, Cras P. Campylobacter jejuni-induced acute transverse myelitis. Spinal Cord 2007; 45: 690–694.

    CAS  PubMed  Google Scholar 

  200. Csábi G, Komáromy H, Hollódy K. Transverse myelitis as a rare, serious complication of Mycoplasma pneumoniae infection. Pediatr Neurol 2009; 41: 312–313.

    PubMed  Google Scholar 

  201. Renard JL, Guillamo JS, Ramirez JM, Taillia H, Felten D, Buisson Y. Acute transverse cervical myelitis following hepatitis B vaccination. Evolution of anti-HBs antibodies. Press Med 1999; 28: 1290–1292.

    CAS  Google Scholar 

  202. Matsui M, Kakigi R, Watanabe S, Kuroda Y. Recurrent demyelinating transverse myelitis in a high titer HBs-antigen carrier. J Neurol Sci 1996; 139: 235–237.

    CAS  PubMed  Google Scholar 

  203. Zhang J, Vandevyver C, Stinissen P, Mertens N, van den Berg-Loonen E, Raus J. Activation and clonal expansion of human myelin basic protein-reactive T cells by bacterial superantigens. J Autoimmun 1995; 8: 615–632.

    CAS  PubMed  Google Scholar 

  204. Hong SC, Waterbury G, Janeway CA. Different superantigens interact with distinct sites in the Vbeta domain of a single T cell receptor. J Exp Med 1996; 183: 1437–1446.

    CAS  PubMed  Google Scholar 

  205. Vanderlugt CL, Begolka WS, Neville KL, Katz-Levy Y, Howard LM, Eagar TN et al. The functional significance of epitope spreading and its regulation by co-stimulatory molecules. Immunol Rev 1998; 164: 63–72.

    CAS  PubMed  Google Scholar 

  206. Reindl M, Linington C, Brehm U, Egg R, Dilitz E, Deisenhammer F et al. Antibodies against the myelin oligodendrocyte glycoprotein and the myelin basic protein in multiple sclerosis and other neurological diseases: a comparative study. Brain 1999; 122 (Pt 1): 2047–2056.

    PubMed  Google Scholar 

  207. Mota MT, Estofolete CF, Zini N, Terzian ACB, Gongora DVN, Maia IL et al. Transverse myelitis as an unusual complication of dengue fever. Am J Trop Med Hyg 2017; 96: 380–381.

    PubMed  PubMed Central  Google Scholar 

  208. Drulovic J, Dujmovic I, Stojsavlevic N, Tripkovic I, Apostolski S, Levic Z et al. Transverse myelopathy in the antiphospholipid antibody syndrome: pinworm infestation as a trigger? J Neurol Neurosurg. Psychiatry 2000; 68: 249.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We express our gratitude to Julián Barahona-Correa for his help in the earliest stages of the preparation of the manuscript. This work was supported by Universidad del Rosario (ABN011), and Colciencias (747–2016), Bogotá, Colombia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan-Manuel Anaya.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez, Y., Rojas, M., Pacheco, Y. et al. Guillain–Barré syndrome, transverse myelitis and infectious diseases. Cell Mol Immunol 15, 547–562 (2018). https://doi.org/10.1038/cmi.2017.142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2017.142

This article is cited by

Search

Quick links