Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Lymphotoxin signalling in tertiary lymphoid structures and immunotherapy

Abstract

Tertiary lymphoid structures (TLS) often develop at sites of persistent inflammation, including cancers and autoimmune diseases. In most cases, the presence of TLS correlates with active immune responses. Because of their proximity to pathological loci, TLS are an intriguing target for the manipulation of immune responses. For several years, it has become clear that lymphotoxin (LT) signalling plays critical roles in lymphoid tissue organogenesis and maintenance. In the current review, we will discuss the role of LT signalling in the development of TLS. With a focus on cancers and autoimmune diseases, we will highlight the correlations between TLS and disease progression. We will also discuss the current efforts and potential directions for manipulating TLS for immunotherapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Buckley CD, Barone F, Nayar S, Bénézech C, Caamaño J . Stromal cells in chronic inflammation and tertiary lymphoid organ formation. Annu Rev Immunol 2015; 33: 715–745.

    Article  CAS  PubMed  Google Scholar 

  2. Weinstein AM, Storkus WJ Chapter six—therapeutic lymphoid organogenesis in the tumor microenvironment. In: Xiang-Yang W, Paul BF (eds). Advances in Cancer Research Volume 128. Academic Press: Cambridge, MA, USA,. 2015, pp 197–233.

    Google Scholar 

  3. Ansel KM, Cyster JG . Chemokines in lymphopoiesis and lymphoid organ development. Curr Opin Immunol 2001; 13: 172–179.

    Article  CAS  PubMed  Google Scholar 

  4. Aloisi F, Pujol-Borrell R . Lymphoid neogenesis in chronic inflammatory diseases. Nat Rev Immunol 2006; 6: 205–217.

    Article  CAS  PubMed  Google Scholar 

  5. Ware CF . Network communications: lymphotoxins, LIGHT, and TNF. Annu Rev Immunol 2005; 23: 787–819.

    Article  CAS  PubMed  Google Scholar 

  6. Zhu M, Fu YX . The role of core TNF/LIGHT family members in lymph node homeostasis and remodeling. Immunol Rev 2011; 244: 75–84.

    Article  CAS  PubMed  Google Scholar 

  7. Old L . Tumor necrosis factor (TNF). Science 1985; 230: 630–632.

    Article  CAS  PubMed  Google Scholar 

  8. Beutler B, Cerami A . Cachectin and tumour necrosis factor as two sides of the same biological coin. Nature 1986; 320: 584–588.

    Article  CAS  PubMed  Google Scholar 

  9. Hohmann H-P, Remy R, Pöschl B, Van Loon A . Tumor necrosis factors-alpha and-beta bind to the same two types of tumor necrosis factor receptors and maximally activate the transcription factor NF-kappa B at low receptor occupancy and within minutes after receptor binding. J Biol Chem 1990; 265: 15183–15188.

    CAS  PubMed  Google Scholar 

  10. Wang Y, Zhu M, Miller M, Fu YX . Immunoregulation by tumor necrosis factor superfamily member LIGHT. Immunol Rev 2009; 229: 232–243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Browning JL, French LE . Visualization of lymphotoxin-β and lymphotoxin-β receptor expression in mouse embryos. J Immunol 2002; 168: 5079–5087.

    Article  CAS  PubMed  Google Scholar 

  12. Murphy M, Walter BN, Pike-Nobile L, Fanger NA, Guyre PM, Browning JL et al. Expression of the lymphotoxin receptor on follicular stromal cells in human lymphoid tissues. Cell Death Differ 1998; 5: 497–505.

    Article  CAS  PubMed  Google Scholar 

  13. Mauri DN, Ebner R, Montgomery RI, Kochel KD, Cheung TC, Yu G-L et al. LIGHT, a new member of the TNF superfamily, and lymphotoxin α are ligands for herpesvirus entry mediator. Immunity 1998; 8: 21–30.

    Article  CAS  PubMed  Google Scholar 

  14. De Togni P, Goellner J, Ruddle NH, Streeter PR, Fick A, Mariathasan S et al. Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science 1994; 264: 703–707.

    Article  CAS  PubMed  Google Scholar 

  15. Banks TA, Rouse BT, Kerley MK, Blair PJ, Godfrey VL, Kuklin NA et al. Lymphotoxin-α-deficient mice effects on secondary lymphoid organ development and humoral immune responsiveness. J Immunol 1995; 155: 1685–1693.

    CAS  PubMed  Google Scholar 

  16. Ryffel B, Di Padova F, Schreier MH, Le Hir M, Eugster HP, Quesniaux VFJ . Lack of type 2T cell-independent b cell responses and defect in isotype switching in TNF-lymphotoxin α-deficient mice. J Immunol 1997; 158: 2126–2133.

    CAS  PubMed  Google Scholar 

  17. Matsumoto M, Mariathasan S, Nahm MH, Baranyay F, Peschon JJ, Chaplin DD . Role of lymphotoxin and the type I TNF receptor in the formation of germinal centers. Science 1996; 271: 1289–1291.

    Article  CAS  PubMed  Google Scholar 

  18. Alimzhanov MB, Kuprash DV, Kosco-Vilbois MH, Luz A, Turetskaya RL, Tarakhovsky A et al. Abnormal development of secondary lymphoid tissues in lymphotoxin β- deficient mice. Proc Natl Acad Sci USA 1997; 94: 9302–9307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Koni PA, Sacca R, Lawton P, Browning JL, Ruddle NH, Flavell RA . Distinct roles in lymphoid organogenesis for lymphotoxins α and β revealed in lymphotoxin β-deficient mice. Immunity 1997; 6: 491–500.

    Article  CAS  PubMed  Google Scholar 

  20. Pasparakis M, Alexopoulou L, Episkopou V, Kollias G . Immune and inflammatory responses in TNFα-deficient mice: A critical requirement for TNFα in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response. J Exp Med 1996; 184: 1397–1411.

    Article  CAS  PubMed  Google Scholar 

  21. Marino MW, Dunn A, Grail D, Inglese M, Noguchi Y, Richards E et al. Characterization of tumor necrosis factor-deficient mice. Proc Natl Acad Sci USA 1997; 94: 8093–8098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Neumann B, Luz A, Pfeffer K, Holzmann B . Defective Peyer's patch organogenesis in mice lacking the 55-kD receptor for tumor necrosis factor. J Exp Med 1996; 184: 259–264.

    Article  CAS  PubMed  Google Scholar 

  23. Cyster JG . Chemokines and cell migration in secondary lymphoid organs. Science 1999; 286: 2098–2102.

    Article  CAS  PubMed  Google Scholar 

  24. Schrama D, thor Straten P, Fischer WH, McLellan AD, Bröcker E-B, Reisfeld RA et al. Targeting of lymphotoxin-α to the tumor elicits an efficient immune response associated with induction of peripheral lymphoid-like tissue. Immunity 2001; 14: 111–121.

    Article  CAS  PubMed  Google Scholar 

  25. Lee Y, Chin RK, Christiansen P, Sun Y, Tumanov AV, Wang J et al. Recruitment and activation of naive T cells in the islets by lymphotoxin β receptor-dependent tertiary lymphoid structure. Immunity 2006; 25: 499–509.

    Article  CAS  PubMed  Google Scholar 

  26. Suematsu S, Watanabe T . Generation of a synthetic lymphoid tissue-like organoid in mice. Nat Biotechnol 2004; 22: 1539–1545.

    Article  CAS  PubMed  Google Scholar 

  27. Gräbner R, Lötzer K, Döpping S, Hildner M, Radke D, Beer M et al. Lymphotoxin β receptor signaling promotes tertiary lymphoid organogenesis in the aorta adventitia of aged ApoE−/− mice. J Exp Med 2009; 206: 233–248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hu D, Mohanta SK, Yin C, Peng L, Ma Z, Srikakulapu P et al. Artery tertiary lymphoid organs control aorta immunity and protect against atherosclerosis via vascular smooth muscle cell lymphotoxin β receptors. Immunity 2015; 42: 1100–1115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Srikakulapu P, Hu D, Yin C, Mohanta SK, Bontha SV, Peng L et al. Artery tertiary lymphoid organs control multilayered territorialized atherosclerosis b-cell responses in aged ApoE−/− Mice. Arterioscler Thrombos Vasc Biol 2016; 36: 1174–1185.

    Article  CAS  Google Scholar 

  30. Bénézech C, Mader E, Desanti G, Khan M, Nakamura K, White A et al. Lymphotoxin-β receptor signaling through NF-κB2-RelB pathway reprograms adipocyte precursors as lymph node stromal cells. Immunity 2012; 37: 721–734.

    Article  CAS  PubMed  Google Scholar 

  31. Krautler NJ, Kana V, Kranich J, Tian Y, Perera D, Lemm D et al. Follicular dendritic cells emerge from ubiquitous perivascular precursors. Cell 2012; 150: 194–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Browning JL, Allaire N, Ngam-ek A, Notidis E, Hunt J, Perrin S et al. Lymphotoxin-β receptor signaling is required for the homeostatic control of HEV differentiation and function. Immunity 2005; 23: 539–550.

    Article  CAS  PubMed  Google Scholar 

  33. Onder L, Danuser R, Scandella E, Firner S, Chai Q, Hehlgans T et al. Endothelial cell-specific lymphotoxin-β receptor signaling is critical for lymph node and high endothelial venule formation. J Exp Med 2013; 210: 465–473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Girard J-P, Springer TA . High endothelial venules (HEVs): specialized endothelium for lymphocyte migration. Immunol Today 1995; 16: 449–457.

    Article  CAS  PubMed  Google Scholar 

  35. Miyasaka M, Tanaka T . Lymphocyte trafficking across high endothelial venules: dogmas and enigmas. Nat Rev Immunol 2004; 4: 360–370.

    Article  CAS  PubMed  Google Scholar 

  36. Lee M, Kiefel H, LaJevic MD, Macauley MS, Kawashima H, O'Hara E et al. Transcriptional programs of lymphoid tissue capillary and high endothelium reveal control mechanisms for lymphocyte homing. Nat Immunol 2014; 15: 982–995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Barone F, Bombardieri M, Manzo A, Blades M, Morgan P, Challacombe S et al. Association of CXCL13 and CCL21 expression with the progressive organization of lymphoid‐like structures in Sjögren's syndrome. Arthritis Rheum 2005; 52: 1773–1784.

    Article  CAS  PubMed  Google Scholar 

  38. Moussion C, Girard J-P . Dendritic cells control lymphocyte entry to lymph nodes through high endothelial venules. Nature 2011; 479: 542–546.

    Article  CAS  PubMed  Google Scholar 

  39. Chyou S, Ekland EH, Carpenter AC, Tzeng T-CJ, Tian S, Michaud M et al. Fibroblast-type reticular stromal cells regulate the lymph node vasculature. J Immunol 2008; 181: 3887–3896.

    Article  CAS  PubMed  Google Scholar 

  40. Chyou S, Benahmed F, Chen J, Kumar V, Tian S, Lipp M et al. Coordinated regulation of lymph node vascular-stromal growth first by cd11c+ cells and then by T and B cells. J Immunol 2011; 187: 5558–5567.

    Article  CAS  PubMed  Google Scholar 

  41. Wendland M, Willenzon S, Kocks J, Davalos-Misslitz AC, Hammerschmidt SI, Schumann K et al. Lymph node T cell homeostasis relies on steady state homing of dendritic cells. Immunity 2011; 35: 945–957.

    Article  CAS  PubMed  Google Scholar 

  42. Martinet L, Filleron T, Le Guellec S, Rochaix P, Garrido I, Girard J-P . High endothelial venule blood vessels for tumor-infiltrating lymphocytes are associated with Lymphotoxin β-producing dendritic cells in human breast cancer. J Immunol 2013; 191: 2001–2008.

    Article  CAS  PubMed  Google Scholar 

  43. Kim M-Y, Toellner K-M, White A, McConnell FM, Gaspal FM, Parnell SM et al. Neonatal and adult CD4+ CD3− cells share similar gene expression profile, and neonatal cells up-regulate OX40 ligand in response to TL1A (TNFSF15). J Immunol 2006; 177: 3074–3081.

    Article  CAS  PubMed  Google Scholar 

  44. Kim M-Y, McConnell FM, Gaspal FM, White A, Glanville SH, Bekiaris V et al. Function of CD4+ CD3− cells in relation to B-and T-zone stroma in spleen. Blood 2007; 109: 1602–1610.

    Article  CAS  PubMed  Google Scholar 

  45. Ivanov I, Diehl G, Littman D Lymphoid tissue inducer cells in intestinal immunityGut-associated Lymphoid Tissues. Springer: New York, NY, USA,. 2006, pp 59–82.

    Book  Google Scholar 

  46. Lira SA, Martin AP, Marinkovic T, Furtado GC . Mechanisms regulating lymphocytic infiltration of the thyroid in murine models of thyroiditis. Crit Rev Immunol 2005; 25: 251–262.

    Article  CAS  PubMed  Google Scholar 

  47. Meier D, Bornmann C, Chappaz S, Schmutz S, Otten LA, Ceredig R et al. Ectopic lymphoid-organ development occurs through interleukin 7-mediated enhanced survival of lymphoid-tissue-inducer cells. Immunity 2007; 26: 643–654.

    Article  CAS  PubMed  Google Scholar 

  48. Deteix C, Attuil-Audenis V, Duthey A, Patey N, McGregor B, Dubois V et al. Intragraft Th17 infiltrate promotes lymphoid neogenesis and hastens clinical chronic rejection. J Immunol 2010; 184: 5344–5351.

    Article  CAS  PubMed  Google Scholar 

  49. Peters A, Pitcher LA, Sullivan JM, Mitsdoerffer M, Acton SE, Franz B et al. Th17 cells induce ectopic lymphoid follicles in central nervous system tissue inflammation. Immunity 2011; 35: 986–996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rangel-Moreno J, Carragher DM, de la Luz Garcia-Hernandez M, Hwang JY, Kusser K, Hartson L et al. The development of inducible bronchus-associated lymphoid tissue depends on IL-17. Nat Immunol 2011; 12: 639–646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Takemura S, Braun A, Crowson C, Kurtin PJ, Cofield RH, O’Fallon WM et al. Lymphoid neogenesis in rheumatoid synovitis. J Immunol 2001; 167: 1072–1080.

    Article  CAS  PubMed  Google Scholar 

  52. Lochner M, Ohnmacht C, Presley L, Bruhns P, Si-Tahar M, Sawa S et al. Microbiota-induced tertiary lymphoid tissues aggravate inflammatory disease in the absence of RORγt and LTi cells. J Exp Med 2011; 208: 125–134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dieu-Nosjean M-C, Goc J, Giraldo NA, Sautès-Fridman C, Fridman WH . Tertiary lymphoid structures in cancer and beyond. Trends Immunol 2014; 35: 571–580.

    Article  CAS  PubMed  Google Scholar 

  54. Dieu-Nosjean MC, Giraldo NA, Kaplon H, Germain C, Fridman WH, Sautès‐Fridman C . Tertiary lymphoid structures, drivers of the anti‐tumor responses in human cancers. Immunol Rev 2016; 271: 260–275.

    Article  CAS  PubMed  Google Scholar 

  55. Ladányi A, Kiss J, Somlai B, Gilde K, Fejős Z, Mohos A et al. Density of DC-LAMP+ mature dendritic cells in combination with activated T lymphocytes infiltrating primary cutaneous melanoma is a strong independent prognostic factor. Cancer Immunol Immunother 2007; 56: 1459–1469.

    Article  PubMed  Google Scholar 

  56. Cipponi A, Mercier M, Seremet T, Baurain J-F, Théate I, van den Oord J et al. Neogenesis of lymphoid structures and antibody responses occur in human melanoma metastases. Cancer Res 2012; 72: 3997–4007.

    Article  CAS  PubMed  Google Scholar 

  57. Messina JL, Fenstermacher DA, Eschrich S, Qu X, Berglund AE, Lloyd MC et al. 12-Chemokine gene signature identifies lymph node-like structures in melanoma: potential for patient selection for immunotherapy? Sci Rep 2012; 2: 765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schneider K, Potter KG, Ware CF . Lymphotoxin and LIGHT signaling pathways and target genes. Immunol Rev 2004; 202: 49–66.

    Article  CAS  PubMed  Google Scholar 

  59. Dieu-Nosjean M-C, Antoine M, Danel C, Heudes D, Wislez M, Poulot V et al. Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol 2008; 26: 4410–4417.

    Article  CAS  PubMed  Google Scholar 

  60. Germain C, Gnjatic S, Tamzalit F, Knockaert S, Remark R, Goc J et al. Presence of B cells in tertiary lymphoid structures is associated with a protective immunity in patients with lung cancer. Am J Respir Crit Care Med 2014; 189: 832–844.

    Article  CAS  PubMed  Google Scholar 

  61. Germain C, Gnjatic S, Dieu-Nosjean M-C . Tertiary lymphoid structure-associated B cells are key players in anti-tumor immunity. Front Immunol 2015; 6: 67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Woo S-R, Corrales L, Gajewski TF . The STING pathway and the T cell-inflamed tumor microenvironment. Trends Immunol 2015; 36: 250–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Goc J, Germain C, Vo-Bourgais TKD, Lupo A, Klein C, Knockaert S et al. Dendritic cells in tumor-associated tertiary lymphoid structures signal a Th1 cytotoxic immune contexture and license the positive prognostic value of infiltrating CD8+ T cells. Cancer Res 2014; 74: 705–715.

    Article  CAS  PubMed  Google Scholar 

  64. McMullen T, Lai R, Dabbagh L, Wallace T, De Gara C . Survival in rectal cancer is predicted by T cell infiltration of tumour‐associated lymphoid nodules. Clin Exp Immunol 2010; 161: 81–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Di Caro G, Bergomas F, Grizzi F, Doni A, Bianchi P, Malesci A et al. Occurrence of tertiary lymphoid tissue is associated with T-cell infiltration and predicts better prognosis in early-stage colorectal cancers. Clin Cancer Res 2014; 20: 2147–2158.

    Article  CAS  PubMed  Google Scholar 

  66. Coppola D, Nebozhyn M, Khalil F, Dai H, Yeatman T, Loboda A et al. Unique ectopic lymph node-like structures present in human primary colorectal carcinoma are identified by immune gene array profiling. Am J Pathol 2011; 179: 37–45.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lee HJ, Kim JY, Park IA, Song IH, Yu JH, Ahn J-H et al. Prognostic significance of tumor-infiltrating lymphocytes and the tertiary lymphoid structures in HER2-positive breast cancer treated with adjuvant trastuzumab. Am J Clin Pathol 2015; 144: 278–288.

    Article  CAS  PubMed  Google Scholar 

  68. Martinet L, Garrido I, Filleron T, Le Guellec S, Bellard E, Fournie J-J et al. Human solid tumors contain high endothelial venules: association with T-and B-lymphocyte infiltration and favorable prognosis in breast cancer. Cancer Res 2011; 71: 5678–5687.

    Article  CAS  PubMed  Google Scholar 

  69. Coronella JA, Spier C, Welch M, Trevor KT, Stopeck AT, Villar H et al. Antigen-driven oligoclonal expansion of tumor-infiltrating B cells in infiltrating ductal carcinoma of the breast. J Immunol 2002; 169: 1829–1836.

    Article  CAS  PubMed  Google Scholar 

  70. Gu-Trantien C, Loi S, Garaud S, Equeter C, Libin M, De Wind A et al. CD4+ follicular helper T cell infiltration predicts breast cancer survival. J Clin Invest 2013; 123: 2873–2892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lee HJ, Park IA, Song IH, Shin S-J, Kim JY, Yu JH et al. Tertiary lymphoid structures: prognostic significance and relationship with tumour-infiltrating lymphocytes in triple-negative breast cancer. J Clin Pathol 2016; 69: 422–430.

    Article  PubMed  Google Scholar 

  72. Martinet L, Le Guellec S, Filleron T, Lamant L, Meyer N, Rochaix P et al. High endothelial venules (HEVs) in human melanoma lesions: major gateways for tumor-infiltrating lymphocytes. Oncoimmunology 2012; 1: 829–839.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Gobert M, Treilleux I, Bendriss-Vermare N, Bachelot T, Goddard-Leon S, Arfi V et al. Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Res 2009; 69: 2000–2009.

    Article  CAS  PubMed  Google Scholar 

  74. Tang H, Qiao J, Fu Y-X . Immunotherapy and tumor microenvironment. Cancer Lett 2016; 370: 85–90.

    Article  CAS  PubMed  Google Scholar 

  75. Klemm F, Joyce JA . Microenvironmental regulation of therapeutic response in cancer. Trends Cell Biol 2015; 25: 198–213.

    Article  PubMed  Google Scholar 

  76. Spiotto MT, Yu P, Rowley DA, Nishimura MI, Meredith SC, Gajewski TF et al. Increasing tumor antigen expression overcomes ‘ignorance’ to solid tumors via crosspresentation by bone marrow-derived stromal cells. Immunity 2002; 17: 737–747.

    Article  CAS  PubMed  Google Scholar 

  77. Yu P, Lee Y, Liu W, Chin RK, Wang J, Wang Y et al. Priming of naive T cells inside tumors leads to eradication of established tumors. Nat Immunol 2004; 5: 141–149.

    Article  CAS  PubMed  Google Scholar 

  78. Spiotto MT, Rowley DA, Schreiber H . Bystander elimination of antigen loss variants in established tumors. Nat Med 2004; 10: 294–298.

    Article  CAS  PubMed  Google Scholar 

  79. Sautès-Fridman C, Fridman WH . TLS in tumors: what lies within. Trends Immunol 2016; 37: 1–2.

    Article  CAS  PubMed  Google Scholar 

  80. Reisfeld RA, Gillies SD, Mendelsohn J, Varki NM, Becker JC . Involvement of B lymphocytes in the growth inhibition of human pulmonary melanoma metastases in athymic nu/nu mice by an antibody-lymphotoxin fusion protein. Cancer Res 1996; 56: 1707–1712.

    CAS  PubMed  Google Scholar 

  81. Lukashev M, LePage D, Wilson C, Bailly V, Garber E, Lukashin A et al. Targeting the lymphotoxin-β receptor with agonist antibodies as a potential cancer therapy. Cancer Res 2006; 66: 9617–9624.

    Article  CAS  PubMed  Google Scholar 

  82. Hu X, Zimmerman MA, Bardhan K, Yang D, Waller JL, Liles GB et al. Lymphotoxin β receptor mediates caspase-dependent tumor cell apoptosis in vitro and tumor suppression in vivo despite induction of NF-κB activation. Carcinogenesis 2013; 34: 1105–1114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yang D, Ud Din N, Browning DD, Abrams SI, Liu K . Targeting lymphotoxin β receptor with tumor-specific T lymphocytes for tumor regression. Clin Cancer Res 2007; 13: 5202–5210.

    Article  CAS  PubMed  Google Scholar 

  84. Yu P, Lee Y, Wang Y, Liu X, Auh S, Gajewski TF et al. Targeting the primary tumor to generate CTL for the effective eradication of spontaneous metastases. J Immunol. 2007; 179: 1960–1968.

    Article  CAS  PubMed  Google Scholar 

  85. Hu G, Liu Y, Li H, Zhao D, Yang L, Shen J et al. Adenovirus-mediated LIGHT gene modification in murine B-cell lymphoma elicits a potent antitumor effect. Cell Mol Immunol 2010; 7: 296–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yan L, Silva DMD, Verma B, Gray A, Brand HE, Skeate JG et al. Forced LIGHT expression in prostate tumors overcomes Treg mediated immunosuppression and synergizes with a prostate tumor therapeutic vaccine by recruiting effector T lymphocytes. Prostate 2015; 75: 280–291.

    Article  CAS  PubMed  Google Scholar 

  87. Loeffler M, Le'Negrate G, Krajewska M, Reed JC . Attenuated Salmonella engineered to produce human cytokine LIGHT inhibit tumor growth. Proc Natl Acad Sci USA 2007; 104: 12879–12883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chiang EY, Kolumam GA, Yu X, Francesco M, Ivelja S, Peng I et al. Targeted depletion of lymphotoxin-α-expressing TH1 and TH17 cells inhibits autoimmune disease. Nat Med 2009; 15: 766–773.

    Article  CAS  PubMed  Google Scholar 

  89. Gommerman JL, Giza K, Perper S, Sizing I, Ngam-ek A, Nickerson-Nutter C et al. A role for surface lymphotoxin in experimental autoimmune encephalomyelitis independent of LIGHT. J Clin Invest 2003; 112: 755–767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kennedy WP, Simon JA, Offutt C, Horn P, Herman A, Townsend MJ et al. Efficacy and safety of pateclizumab (anti-lymphotoxin-α) compared to adalimumab in rheumatoid arthritis: a head-to-head phase 2 randomized controlled study (The ALTARA Study). Arthritis Res Ther 2014; 16: 1–9.

    Article  CAS  Google Scholar 

  91. Fava RA, Notidis E, Hunt J, Szanya V, Ratcliffe N, Ngam-ek A et al. A role for the lymphotoxin/LIGHT axis in the pathogenesis of murine collagen-induced arthritis. J Immunol 2003; 171: 115–126.

    Article  CAS  PubMed  Google Scholar 

  92. Mackay F, Browning JL, Lawton P, Shah SA, Comiskey M, Bhan AK et al. Both the lymphotoxin and tumor necrosis factor pathways are involved in experimental murine models of colitis. Gastroenterology 1998; 115: 1464–1475.

    Article  CAS  PubMed  Google Scholar 

  93. Dohi T, Rennert PD, Fujihashi K, Kiyono H, Shirai Y, Kawamura YI et al. Elimination of colonic patches with lymphotoxin β receptor-Ig prevents Th2 cell-type colitis. J Immunol 2001; 167: 2781–2790.

    Article  CAS  PubMed  Google Scholar 

  94. Ettinger R, Munson SH, Chao C-C, Vadeboncoeur M, Toma J, McDevitt HO . A critical role for lymphotoxin-β receptor in the development of diabetes in nonobese diabetic mice. J Exp Med 2001; 193: 1333–1340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wu Q, Salomon B, Chen M, Wang Y, Hoffman LM, Bluestone JA et al. Reversal of spontaneous autoimmune insulitis in nonobese diabetic mice by soluble lymphotoxin receptor. J Exp Med 2001; 193: 1327–1332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gatumu MK, Skarstein K, Papandile A, Browning JL, Fava RA, Bolstad AI . Blockade of lymphotoxin-beta receptor signaling reduces aspects of Sjogren’s syndrome in salivary glands of non-obese diabetic mice. Arthritis Res Ther 2009; 11: R24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Baldassare A, Fiechtner J, Filipowicz-Sosnowska A, Jeka S, O'Gorman J, Weaver M et al. Preliminary safety and efficacy of baminercept (LTBR-Ig, BG9924) in the treatment of rheumatoid arthritis. Arthritis Rheum 2007; 56: S394.

    Google Scholar 

  98. Bienkowska J, Allaire N, Thai A, Goyal J, Plavina T, Nirula A et al. Lymphotoxin-LIGHT pathway regulates the interferon signature in rheumatoid arthritis. PLoS One 2014; 9: e112545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. St Clair WE, Baer AN, Noaiseh G, Parke A, Coca A, Utset T et al. The clinical efficacy and safety of Baminercept, a lymphotoxin-beta receptor fusion protein, in primary Sjögren’s syndrome: results from a randomized, double-blind, placebo-controlled phase II trial. Arthritis Rheumatol 2015; 67: 3844–3845.

    Article  Google Scholar 

  100. Croft M, Benedict CA, Ware CF . Clinical targeting of the TNF and TNFR superfamilies. Nat Rev Drug Discov 2013; 12: 147–168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lejeune F, Lienard D, Leyvraz S, Mirimanoff R . Regional therapy of melanoma. Eur J Cancer 1993; 29: 606–612.

    Article  Google Scholar 

  102. Zou W, Zheng H, He T-C, Chang J, Fu Y-X, Fan W . LIGHT delivery to tumors by mesenchymal stem cells mobilizes an effective antitumor immune response. Cancer Res 2012; 72: 2980–2989.

    Article  CAS  PubMed  Google Scholar 

  103. Tang H, Wang Y, Chlewicki LK, Zhang Y, Guo J, Liang W et al. Facilitating T cell infiltration in tumor microenvironment overcomes resistance to PD-L1 blockade. Cancer cell 2016; 29: 285–296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lo JC, Chin RK, Lee Y, Kang H-S, Wang Y, Weinstock JV et al. Differential regulation of CCL21 in lymphoid/nonlymphoid tissues for effectively attracting T cells to peripheral tissues. J Clin Invest 2003; 112: 1495–1505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cupovic J, Onder L, Gil-Cruz C, Weiler E, Caviezel-Firner S, Perez-Shibayama C et al. Central nervous system stromal cells control local CD8+ T cell responses during virus-induced neuroinflammation. Immunity 2016; 44: 622–633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Novak L, Igoucheva O, Cho S, Alexeev V . Characterization of the CCL21-mediated melanoma-specific immune responses and in situ melanoma eradication. Mol Cancer Ther 2007; 6: 1755–1764.

    Article  CAS  PubMed  Google Scholar 

  107. Sharma S, Stolina M, Luo J, Strieter RM, Burdick M, Zhu LX et al. Secondary lymphoid tissue chemokine mediates T cell-dependent antitumor responses in vivo. J Immunol 2000; 164: 4558–4563.

    Article  CAS  PubMed  Google Scholar 

  108. Yang S-C, Hillinger S, Riedl K, Zhang L, Zhu L, Huang M et al. Intratumoral administration of dendritic cells overexpressing CCL21 generates systemic antitumor responses and confers tumor immunity. Clin Cancer Res 2004; 10: 2891–2901.

    Article  CAS  PubMed  Google Scholar 

  109. Shields JD, Kourtis IC, Tomei AA, Roberts JM, Swartz MA . Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21. Science 2010; 328: 749–752.

    Article  CAS  PubMed  Google Scholar 

  110. Forster R, Davalos-Misslitz AC, Rot A . CCR7 and its ligands: balancing immunity and tolerance. Nat Rev Immunol 2008; 8: 362–371.

    Article  CAS  PubMed  Google Scholar 

  111. Bardi G, Lipp M, Baggiolini M, Loetscher P . The T cell chemokine receptor CCR7 is internalized on stimulation with ELC, but not with SLC. Eur J Immunol 2001; 31: 3291–3297.

    Article  CAS  PubMed  Google Scholar 

  112. Gao J-Q, Sugita T, Kanagawa N, Iida K, Okada N, Mizuguchi H et al. Anti-tumor responses induced by chemokine CCL19 transfected into an ovarian carcinoma model via fiber-mutant adenovirus vector. Biol Pharm Bull 2005; 28: 1066–1070.

    Article  CAS  PubMed  Google Scholar 

  113. Hillinger S, Yang S, Batra R, Strieter R, Weder W, Dubinett S et al. CCL19 reduces tumour burden in a model of advanced lung cancer. Br J Cancer 2006; 94: 1029–1034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hillinger S, Yang S-C, Zhu L, Huang M, Duckett R, Atianzar K et al. EBV-induced molecule 1 ligand chemokine (ELC/CCL19) promotes IFN-γ-dependent antitumor responses in a lung cancer model. J Immunol 2003; 171: 6457–6465.

    Article  CAS  PubMed  Google Scholar 

  115. Braun SE, Chen K, Foster RG, Kim CH, Hromas R, Kaplan MH et al. The CC chemokine CKβ-11/MIP-3β/ELC/Exodus 3 mediates tumor rejection of murine breast cancer cells through NK cells. J Immunol 2000; 164: 4025–4031.

    Article  CAS  PubMed  Google Scholar 

  116. Crespo J, Sun H, Welling TH, Tian Z, Zou W . T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr Opin Immunol 2013; 25: 214–221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gunn MD, Kyuwa S, Tam C, Kakiuchi T, Matsuzawa A, Williams LT et al. Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J Exp Med 1999; 189: 451–460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ueno T, Hara K, Willis MS, Malin MA, Höpken UE, Gray DH et al. Role for CCR7 ligands in the emigration of newly generated T lymphocytes from the neonatal thymus. Immunity 2002; 16: 205–218.

    Article  CAS  PubMed  Google Scholar 

  119. Young CL, Adamson TC, Vaughan JH, Fox RI . Immunohistologic characterization of synovial membrane lymphocytes in rheumatoid arthritis. Arthritis Rheum 1984; 27: 32–39.

    Article  CAS  PubMed  Google Scholar 

  120. Schröder AE, Greiner A, Seyfert C, Berek C . Differentiation of B cells in the nonlymphoid tissue of the synovial membrane of patients with rheumatoid arthritis. Proc Natl Acad Sci USA 1996; 93: 221–225.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Humby F, Bombardieri M, Manzo A, Kelly S, Blades MC, Kirkham B et al. Ectopic lymphoid structures support ongoing production of class-switched autoantibodies in rheumatoid synovium. PLoS Med. 2009; 6: e1.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Thurlings RM, Wijbrandts CA, Mebius RE, Cantaert T, Dinant HJ, van der Pouw‐Kraan TC et al. Synovial lymphoid neogenesis does not define a specific clinical rheumatoid arthritis phenotype. Arthritis Rheum 2008; 58: 1582–1589.

    Article  PubMed  Google Scholar 

  123. Chang A, Henderson SG, Brandt D, Liu N, Guttikonda R, Hsieh C et al. In situ B cell-mediated immune responses and tubulointerstitial inflammation in human lupus nephritis. J Immunol 2011; 186: 1849–1860.

    Article  CAS  PubMed  Google Scholar 

  124. Nacionales DC, Kelly KM, Lee PY, Zhuang H, Li Y, Weinstein JS et al. Type I interferon production by tertiary lymphoid tissue developing in response to 2,6,10,14-tetramethyl-pentadecane (Pristane). Am J Pathol 2006; 168: 1227–1240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Browning JL . Inhibition of the lymphotoxin pathway as a therapy for autoimmune disease. Immunol Rev 2008; 223: 202–220.

    Article  CAS  PubMed  Google Scholar 

  126. Nakae S, Nambu A, Sudo K, Iwakura Y . Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J Immunol 2003; 171: 6173–6177.

    Article  CAS  PubMed  Google Scholar 

  127. Chiang EY, Kolumam G, McCutcheon KM, Young J, Lin Z, Balazs M et al. In vivo depletion of lymphotoxin-alpha expressing lymphocytes inhibits xenogeneic graft-versus-host-disease. PLoS One 2012; 7: e33106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Emu B, Luca D, Offutt C, Grogan JL, Rojkovich B, Williams MB et al. Safety, pharmacokinetics, and biologic activity of pateclizumab, a novel monoclonal antibody targeting lymphotoxin a: results of a phase I randomized, placebo-controlled trial. Arthritis Res Ther 2012; 144: R6.

    Article  CAS  Google Scholar 

  129. Nayar S, Campos J, Chung MM, Navarro-Núñez L, Chachlani M, Steinthal N et al. Bimodal expansion of the lymphatic vessels is regulated by the sequential expression of IL-7 and lymphotoxin α1β2 in newly formed tertiary lymphoid structures. J Immunol 2016; 197: 1957–1967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Force WR, Walter BN, Hession C, Tizard R, Kozak CA, Browning JL et al. Mouse lymphotoxin-beta receptor. Molecular genetics, ligand binding, and expression. J Immunol 1995; 155: 5280–5288.

    CAS  PubMed  Google Scholar 

  131. Luther SA, Lopez T, Bai W, Hanahan D, Cyster JG . BLC expression in pancreatic islets causes B cell recruitment and lymphotoxin-dependent lymphoid neogenesis. Immunity 2000; 12: 471–481.

    Article  CAS  PubMed  Google Scholar 

  132. Luther SA, Bidgol A, Hargreaves DC, Schmidt A, Xu Y, Paniyadi J et al. Differing activities of homeostatic chemokines CCL19, CCL21, and CXCL12 in lymphocyte and dendritic cell recruitment and lymphoid neogenesis. J Immunol 2002; 169: 424–433.

    Article  CAS  PubMed  Google Scholar 

  133. Marinkovic T, Garin A, Yokota Y, Fu Y-X, Ruddle NH, Furtado GC et al. Interaction of mature CD3+ CD4+ T cells with dendritic cells triggers the development of tertiary lymphoid structures in the thyroid. J Clin Invest 2006; 116: 2622–2632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Columba-Cabezas S, Griguoli M, Rosicarelli B, Magliozzi R, Ria F, Serafini B et al. Suppression of established experimental autoimmune encephalomyelitis and formation of meningeal lymphoid follicles by lymphotoxin β receptor-Ig fusion protein. J Neuroimmunol 2006; 179: 76–86.

    Article  CAS  PubMed  Google Scholar 

  135. Brennan FM, McInnes IB . Evidence that cytokines play a role in rheumatoid arthritis. J Clin Invest 2008; 118: 3537–3545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Couzin-Frankel J . Cancer immunotherapy. Science 2013; 342: 1432–1433.

    Article  CAS  PubMed  Google Scholar 

  137. Porter DL, Levine BL, Kalos M, Bagg A, June CH . Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 2011; 365: 725–733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Brahmer JR, Tykodi SS, Chow LQ, Hwu W-J, Topalian SL, Hwu P et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 2012; 366: 2455–2465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012; 366: 2443–2454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

YXF holds the Mary Nell and Ralph B. Rogers Professorship in Immunology. This work was supported in part by the US National Institutes of Health through National Cancer Institute grants CA141975 and CA97296, CPRIT grant RR150072, grants from the Chinese Academy of Sciences (XDA09030303), and grants from the Chinese Ministry of Science and Technology (2012ZX10002006, 2011DFA31250 and 2012AA020701) to YXF and a Cancer Resarch Institute Irvington Fellowship to HT.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haidong Tang or Yang-Xin Fu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, H., Zhu, M., Qiao, J. et al. Lymphotoxin signalling in tertiary lymphoid structures and immunotherapy. Cell Mol Immunol 14, 809–818 (2017). https://doi.org/10.1038/cmi.2017.13

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2017.13

Keywords

This article is cited by

Search

Quick links