Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Type I IFN augments IL-27-dependent TRIM25 expression to inhibit HBV replication

Abstract

Hepatitis B virus (HBV) can cause chronic hepatitis B, which may lead to cirrhosis and liver cancer. Type I interferon (IFN) is an approved drug for the treatment of chronic hepatitis B. However, the fundamental mechanisms of antiviral action by type I IFN and the downstream signaling pathway are unclear. TRIM25 is an IFN-stimulated gene (ISG) that has an important role in RIG-I ubiquitination and activation. Whether TRIM25 is induced in liver cells by type I IFN to mediate anti-HBV function remains unclear. Here we report that interleukin-27 (IL-27) has a critical role in IFN-induced TRIM25 upregulation. TRIM25 induction requires both STAT1 and STAT3. In TRIM25 knockout HepG2 cells, type I IFN production was consistently attenuated and HBV replication was increased, whereas overexpression of TRIM25 in HepG2 cells resulted in elevated IFN production and reduced HBV replication. More interestingly, we found that TRIM25 expression was downregulated in HBV patients and the addition of serum samples from HBV patients could inhibit TRIM25 expression in HepG2 cells, suggesting that HBV might have involved a mechanism to inhibit antiviral ISG expression and induce IFN resistance. Collectively, our results demonstrate that type I IFN -induced TRIM25 is an important factor in inhibiting HBV replication, and the IFN-IL-27-TRIM25 axis may represent a new target for treating HBV infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Mutimer DJ, Lok A . Management of HBV- and HCV-induced end stage liver disease. Gut 2012; 61 (Suppl 1): i59–i67.

    Article  CAS  Google Scholar 

  2. Ivashkiv LB, Donlin LT . Regulation of type I interferon responses. Nat Rev Immunol 2014; 14: 36–49.

    Article  CAS  Google Scholar 

  3. Liu SY, Sanchez DJ, Aliyari R, Lu S, Cheng G . Systematic identification of type I and type II interferon-induced antiviral factors. Proc Natl Acad Sci USA 2012; 109: 4239–4244.

    Article  CAS  Google Scholar 

  4. Liu SY, Aliyari R, Chikere K, Li G, Marsden MD, Smith JK et al. Interferon-inducible cholesterol-25-hydroxylase broadly inhibits viral entry by production of 25-hydroxycholesterol. Immunity 2013; 38: 92–105.

    Article  Google Scholar 

  5. Platanias LC . Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 2005; 5: 375–386.

    Article  CAS  Google Scholar 

  6. Rusinova I, Forster S, Yu S, Kannan A, Masse M, Cumming H et al. Interferome v2.0: an updated database of annotated interferon-regulated genes. Nucleic Acids Res 2013; 41 (Database issue): D1040–D1046.

    CAS  PubMed  Google Scholar 

  7. Iyer SS, Ghaffari AA, Cheng G . Lipopolysaccharide-mediated IL-10 transcriptional regulation requires sequential induction of type I IFNs and IL-27 in macrophages. J Immunol 2010; 185: 6599–6607.

    Article  CAS  Google Scholar 

  8. Yang CH, Wei L, Pfeffer SR, Du Z, Murti A, Valentine WJ et al. Identification of CXCL11 as a STAT3-dependent gene induced by IFN. J Immunol 2007; 178: 986–992.

    Article  CAS  Google Scholar 

  9. Stumhofer JS, Laurence A, Wilson EH, Huang E, Tato CM, Johnson LM et al. Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system. Nat Immunol 2006; 7: 937–945.

    Article  CAS  Google Scholar 

  10. Hunter CA . New IL-12-family members: IL-23 and IL-27, cytokines with divergent functions. Nat Rev Immunol 2005; 5: 521–531.

    Article  CAS  Google Scholar 

  11. Guo B, Chang EY, Cheng G . The type I IFN induction pathway constrains Th17-mediated autoimmune inflammation in mice. J Clin Invest 2008; 118: 1680–1690.

    Article  CAS  Google Scholar 

  12. Stumhofer JS, Silver JS, Laurence A, Porrett PM, Harris TH, Turka LA et al. Interleukins 27 and 6 induce STAT3-mediated T cell production of interleukin 10. Nat Immunol 2007; 8: 1363–1371.

    Article  CAS  Google Scholar 

  13. Basset L, Chevalier S, Danger Y, Arshad MI, Piquet-Pellorce C, Gascan H et al. Interleukin-27 and IFNgamma regulate the expression of CXCL9, CXCL10, and CXCL11 in hepatitis. J Mol Med 2015; 93: 1355–1367.

    Article  CAS  Google Scholar 

  14. Torok M, Etkin LD . Two B or not two B? Overview of the rapidly expanding B-box family of proteins. Differentiation 2001; 67: 63–71.

    Article  CAS  Google Scholar 

  15. Ozato K, Shin DM, Chang TH, Morse HC 3rd . TRIM family proteins and their emerging roles in innate immunity. Nat Rev Immunol 2008; 8: 849–860.

    Article  CAS  Google Scholar 

  16. Rajsbaum R, Garcia-Sastre A, Versteeg GA . TRIMmunity: the roles of the TRIM E3-ubiquitin ligase family in innate antiviral immunity. J Mol Biol 2014; 426: 1265–1284.

    Article  CAS  Google Scholar 

  17. Versteeg GA, Rajsbaum R, Sanchez-Aparicio MT, Maestre AM, Valdiviezo J, Shi M et al. The E3-ligase TRIM family of proteins regulates signaling pathways triggered by innate immune pattern-recognition receptors. Immunity 2013; 38: 384–398.

    Article  CAS  Google Scholar 

  18. Uchil PD, Hinz A, Siegel S, Coenen-Stass A, Pertel T, Luban J et al. TRIM protein-mediated regulation of inflammatory and innate immune signaling and its association with antiretroviral activity. J Virol 2013; 87: 257–272.

    Article  CAS  Google Scholar 

  19. Yang C, Zhao X, Sun D, Yang L, Chong C, Pan Y et al. Interferon alpha (IFNalpha)-induced TRIM22 interrupts HCV replication by ubiquitinating NS5A. Cell Mol Immunol 2016; 13: 94–102.

    Article  CAS  Google Scholar 

  20. Zhang S, Guo JT, Wu JZ, Yang G . Identification and characterization of multiple TRIM proteins that inhibit hepatitis B virus transcription. PLoS One 2013; 8: e70001.

    Article  CAS  Google Scholar 

  21. Gack MU, Shin YC, Joo CH, Urano T, Liang C, Sun L et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 2007; 446: 916–920.

    Article  CAS  Google Scholar 

  22. Tan G, Niu J, Shi Y, Ouyang H, Wu ZH . NF-kappaB-dependent microRNA-125b up-regulation promotes cell survival by targeting p38alpha upon ultraviolet radiation. J Biol Chem 2012; 287: 33036–33047.

    Article  CAS  Google Scholar 

  23. Tan G, Shi Y, Wu ZH . MicroRNA-22 promotes cell survival upon UV radiation by repressing PTEN. Biochem Biophys Res Commun 2012; 417: 546–551.

    Article  CAS  Google Scholar 

  24. Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J . The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature 2004; 427: 848–853.

    Article  CAS  Google Scholar 

  25. Gao B, Duan Z, Xu W, Xiong S . Tripartite motif-containing 22 inhibits the activity of hepatitis B virus core promoter, which is dependent on nuclear-located RING domain. Hepatology 2009; 50: 424–433.

    Article  CAS  Google Scholar 

  26. Sato S, Li K, Kameyama T, Hayashi T, Ishida Y, Murakami S et al. The RNA sensor RIG-I dually functions as an innate sensor and direct antiviral factor for hepatitis B virus. Immunity 2015; 42: 123–132.

    Article  CAS  Google Scholar 

  27. Teles RM, Kelly-Scumpia KM, Sarno EN, Rea TH, Ochoa MT, Cheng G et al. IL-27 Suppresses antimicrobial activity in human leprosy. J Invest Dermatol 2015; 135: 2410–2417.

    Article  CAS  Google Scholar 

  28. Yoshimura T, Takeda A, Hamano S, Miyazaki Y, Kinjyo I, Ishibashi T et al. Two-sided roles of IL-27: induction of Th1 differentiation on naive CD4+ T cells versus suppression of proinflammatory cytokine production including IL-23-induced IL-17 on activated CD4+ T cells partially through STAT3-dependent mechanism. J Immunol 2006; 177: 5377–5385.

    Article  CAS  Google Scholar 

  29. Bender H, Wiesinger MY, Nordhoff C, Schoenherr C, Haan C, Ludwig S et al. Interleukin-27 displays interferon-gamma-like functions in human hepatoma cells and hepatocytes. Hepatology 2009; 50: 585–591.

    Article  CAS  Google Scholar 

  30. Xu F, Song H, Li N, Tan G . HBsAg blocks TYPE I IFN induced up-regulation of A3G through inhibition of STAT3. Biochem Biophys Res Commun 2016; 473: 219–223.

    Article  CAS  Google Scholar 

  31. Levy DE, Lee CK . What does Stat3 do? J Clin Invest 2002; 109: 1143–1148.

    Article  CAS  Google Scholar 

  32. Wang WB, Levy DE, Lee CK . STAT3 negatively regulates type I IFN-mediated antiviral response. J Immunol 2011; 187: 2578–2585.

    Article  CAS  Google Scholar 

  33. Ho HH, Ivashkiv LB . Role of STAT3 in type I interferon responses. Negative regulation of STAT1-dependent inflammatory gene activation. J Biol Chem 2006; 281: 14111–14118.

    Article  CAS  Google Scholar 

  34. Wu J, Meng Z, Jiang M, Pei R, Trippler M, Broering R et al. Hepatitis B virus suppresses toll-like receptor-mediated innate immune responses in murine parenchymal and nonparenchymal liver cells. Hepatology 2009; 49: 1132–1140.

    Article  CAS  Google Scholar 

  35. Liu S, Peng N, Xie J, Hao Q, Zhang M, Zhang Y et al. Human hepatitis B virus surface and e antigens inhibit major vault protein signaling in interferon induction pathways. J Hepatol 2015; 62: 1015–1023.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation, China, Jilin Provincial Science and Technology Department of the Youth Fund Project, and Jilin University Bethune training program (grant no. 81401290, 20160520161JH, 470110000456 to GT). CAMS Initiative for Innovative Medicine (no. CAMS-I2M) to FXQ and GC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pujun Gao, F Xiao-Feng Qin or Genhong Cheng.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information for this article can be found on the Cellular & Molecular Immunology website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, G., Xiao, Q., Song, H. et al. Type I IFN augments IL-27-dependent TRIM25 expression to inhibit HBV replication. Cell Mol Immunol 15, 272–281 (2018). https://doi.org/10.1038/cmi.2016.67

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2016.67

Keywords

This article is cited by

Search

Quick links