Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

BRD7 plays an anti-inflammatory role during early acute inflammation by inhibiting activation of the NF-кB signaling pathway

Abstract

Increasing evidence has shown a strong association between tumor-suppressor genes and inflammation. However, the role of BRD7 as a novel tumor suppressor in inflammation remains unknown. In this study, by observing BRD7 knockout mice for 6–12 months, we discovered that compared with BRD7+/+ mice, BRD7−/− mice were more prone to inflammation, such as external inflammation and abdominal abscess. By using mouse embryo fibroblast (MEF) cells from the BRD7 knockout mouse, an in vitro lipopolysaccharide (LPS)-stimulated MEF cell line was established. The mRNA levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), chemokine (C-X-C motif) ligand 1 (CXCL-1) and inducible nitric oxide synthase (iNOS) were significantly increased in BRD7−/− MEF cells compared with BRD7+/+ MEF cells after LPS stimulation for 1 or 6 h. In addition, the cytoplasm-to-nucleus translocation of nuclear factor kappa-B (NF-κB; p65) and an increased NF-κB reporter activity were observed in BRD7−/− MEF cells at the 1 h time point but not at the 6 h time point. Furthermore, an in vivo dextran sodium sulfate (DSS)-induced acute colitis model was created. As expected, the disease activity index (DAI) value was significantly increased in the BRD7−/− mice after DSS treatment for 1–5 days, which was demonstrated by the presence of a significantly shorter colon, splenomegaly and tissue damage. Moreover, higher expression levels of IL-6, TNF-α, p65, CXCL-1 and iNOS, and an increased level of NF-κB (p65) nuclear translocation were also found in the DSS-treated BRD7−/− mice. These findings suggest that BRD7 has an anti-inflammatory role during early acute inflammation by inhibiting activation of the NF-кB signaling pathway, which provides evidence to aid in understanding the therapeutic effects of BRD7 on inflammatory diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Peng C, Liu HY, Zhou M, Zhang LM, Li XL, Shen SR et al. BRD7 suppresses the growth of nasopharyngeal carcinoma cells (HNE1) through negatively regulating beta-catenin and ERK pathways. Mol Cell Biochem 2007; 303: 141–149.

    Article  CAS  PubMed  Google Scholar 

  2. Zhou J, Ma J, Zhang BC, Li XL, Shen SR, Zhu SG et al. BRD7, a novel bromodomain gene, inhibits G1-S progression by transcriptionally regulating some important molecules involved in ras/MEK/ERK and Rb/E2F pathways. J Cell Physiol 2004; 200: 89–98.

    Article  CAS  PubMed  Google Scholar 

  3. Hu K, Liao D, Wu W, Han AJ, Shi HJ, Wang F et al. Targeting the anaphase-promoting complex/cyclosome (APC/C)- bromodomain containing 7 (BRD7) pathway for human osteosarcoma. Oncotarget 2014; 5: 3088–3100.

    PubMed  PubMed Central  Google Scholar 

  4. Park YA, Lee JW, Kim HS, Lee YY, Kim TJ, Choi CH et al. Tumor suppressive effects of bromodomain-containing protein 7 (BRD7) in epithelial ovarian carcinoma. Clin Cancer Res 2014; 20: 565–575.

    Article  CAS  PubMed  Google Scholar 

  5. Zhou M, Peng C, Nie XM, Zhang BC, Zhu SG, Yu Y et al. [Expression of BRD7-interacting proteins,BRD2 and BRD3, in nasopharyngeal carcinoma tissues]. Ai Zheng 2003; 22: 123–127.

    CAS  PubMed  Google Scholar 

  6. Berkovits BD, Wang L, Guarnieri P, Wolgemuth DJ . The testis-specific double bromodomain-containing protein BRDT forms a complex with multiple spliceosome components and is required for mRNA splicing and 3′-UTR truncation in round spermatids. Nucleic Acids Res 2012; 40: 7162–7175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Picaud S, Strocchia M, Terracciano S, Lauro G, Mendez J, Daniels DL et al. 9H-purine scaffold reveals induced-fit pocket plasticity of the BRD9 bromodomain. J Med Chem 2015; 58: 2718–2736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sun H, Liu J, Zhang J, Shen W, Huang H, Xu C et al. Solution structure of BRD7 bromodomain and its interaction with acetylated peptides from histone H3 and H4. Biochem Biophys Res Commun 2007; 358: 435–441.

    Article  CAS  PubMed  Google Scholar 

  9. Zhou M, Liu H, Xu X, Zhou H, Li X, Peng C et al. Identification of nuclear localization signal that governs nuclear import of BRD7 and its essential roles in inhibiting cell cycle progression. J Cell Biochem 2006; 98: 920–930.

    Article  CAS  PubMed  Google Scholar 

  10. Kaeser MD, Aslanian A, Dong MQ, Yates JR, Emerson BM . BRD7, a novel PBAF-specific SWI/SNF subunit, is required for target gene activation and repression in embryonic stem cells. J Biol Chem 2008; 283: 32254–32263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hugo HJ, Saunders C, Ramsay RG, Thompson EW . New insights on COX-2 in chronic inflammation driving breast cancer growth and metastasis. J Mammary Gland Biol Neoplasia 2015; e-pub ahead of print 21 July 2015 doi:10.1007/s10911-015-9333-4.

    Article  PubMed  Google Scholar 

  12. Ma X, Aoki T, Tsuruyama T, Narumiya S . Definition of prostaglandin E2-EP2 Signals in the colon tumor microenvironment that amplify inflammation and tumor growth. Cancer Res 2015; 75: 2822–2832.

    Article  CAS  PubMed  Google Scholar 

  13. Fernandes JV, Cobucci RN, Jatoba CA, de Medeiros FT, de Azevedo JW, de Araujo JM . The role of the mediators of inflammation in cancer development. Pathol Oncol Res 2015; 21: 527–534.

    Article  CAS  PubMed  Google Scholar 

  14. Dong ZW, Ren CG, Xia Y, Su D, Du TT, Fan HB et al. Pten regulates homeostasis and inflammation-induced migration of myelocytes in zebrafish. J Hematol Oncol 2014; 7: 17.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cooks T, Harris CC, Oren M . Caught in the cross fire: p53 in inflammation. Carcinogenesis 2014; 35: 1680–1690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schmid T, Bajer MM, Blees JS, Eifler LK, Milke L, Rubsamen D et al. Inflammation-induced loss of Pdcd4 is mediated by phosphorylation-dependent degradation. Carcinogenesis 2011; 32: 1427–1433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xu Y, Cao W, Zhou M, Li C, Luo Y, Wang H et al. Inactivation of BRD7 results in impaired cognitive behavior and reduced synaptic plasticity of the medial prefrontal cortex. Behav Brain Res 2015; 286: 1–10.

    Article  CAS  PubMed  Google Scholar 

  18. Wang H, Zhao R, Guo C, Jiang S, Yang J, Xu Y et al. Knockout of BRD7 results in impaired spermatogenesis and male infertility. Sci Rep 2016; 6: 21776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tominaga K, Kirikae T, Nakano M . Lipopolysaccharide (LPS)-induced IL-6 production by embryonic fibroblasts isolated and cloned from LPS-responsive and LPS-hyporesponsive mice. Mol Immunol 1997; 34: 1147–1156.

    Article  CAS  PubMed  Google Scholar 

  20. Ren T, Tian T, Feng X, Ye S, Wang H, Wu W et al. An adenosine A3 receptor agonist inhibits DSS-induced colitis in mice through modulation of the NF-kappaB signaling pathway. Sci Rep 2015; 5: 9047.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wirtz S, Neufert C, Weigmann B, Neurath MF . Chemically induced mouse models of intestinal inflammation. Nat Protoc 2007; 2: 541–546.

    Article  CAS  PubMed  Google Scholar 

  22. Cooper HS, Murthy SN, Shah RS, Sedergran DJ . Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest 1993; 69: 238–249.

    CAS  PubMed  Google Scholar 

  23. Rani P, Pal D, Hegde RR, Hashim SR . Acetamides: chemotherapeutic agents for inflammation-associated cancers. J Chemother 2015 e-pub ahead of print 21 July 2015 doi:10.1179/1973947815Y.0000000060.

    Article  CAS  PubMed  Google Scholar 

  24. Mao F, Wang M, Wang J, Xu WR . The role of 15-LOX-1 in colitis and colitis-associated colorectal cancer. Inflamm Res 2015; 64: 661–669.

    Article  CAS  PubMed  Google Scholar 

  25. Fernandes JV, Cobucci RN, Jatoba CA, de Medeiros FT, de Azevedo JW, de Araujo JM . The role of the mediators of inflammation in cancer development. Pathol Oncol Res 2015; 21: 527–534.

    Article  CAS  PubMed  Google Scholar 

  26. Jiang Y, Gao Q, Wang L, Guo C, Zhu F, Wang B et al. Deficiency of programmed cell death 4 results in increased IL-10 expression by macrophages and thereby attenuates atherosclerosis in hyperlipidemic mice. Cell Mol Immunol 2015 e-pub ahead of print 13 July 2015 doi:10.1038/cmi.2015.47.

    Article  Google Scholar 

  27. Hilliard A, Hilliard B, Zheng SJ, Sun H, Miwa T, Song W et al. Translational regulation of autoimmune inflammation and lymphoma genesis by programmed cell death 4. J Immunol 2006; 177: 8095–8102.

    Article  CAS  PubMed  Google Scholar 

  28. Gallagher SJ, Mijatov B, Gunatilake D, Gowrishankar K, Tiffen J, James W et al. Control of NF-kB activity in human melanoma by bromodomain and extra-terminal protein inhibitor I-BET151. Pigment Cell Melanoma Res 2014; 27: 1126–1137.

    Article  CAS  PubMed  Google Scholar 

  29. Wienerroither S, Rauch I, Rosebrock F, Jamieson AM, Bradner J, Muhar M et al. Regulation of NO synthesis, local inflammation, and innate immunity to pathogens by BET family proteins. Mol Cell Biol 2014; 34: 415–427.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Park BS, Song DH, Kim HM, Choi BS, Lee H, Lee JO . The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 2009; 458: 1191–1195.

    Article  CAS  PubMed  Google Scholar 

  31. Sun H, Gulbagci NT, Taneja R . Analysis of growth properties and cell cycle regulation using mouse embryonic fibroblast cells. Methods Mol Biol 2007; 383: 311–319.

    CAS  PubMed  Google Scholar 

  32. Fleischer V, Sieber J, Fleischer SJ, Shock A, Heine G, Daridon C et al. Epratuzumab inhibits the production of the proinflammatory cytokines IL-6 and TNF-alpha, but not the regulatory cytokine IL-10, by B cells from healthy donors and SLE patients. Arthritis Res Ther 2015; 17: 185.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yamaguchi Y, Hihara J, Hironaka K, Ohshita A, Okita R, Okawaki M et al. Postoperative immunosuppression cascade and immunotherapy using lymphokine-activated killer cells for patients with esophageal cancer: possible application for compensatory anti-inflammatory response syndrome. Oncol Rep 2006; 15: 895–901.

    CAS  PubMed  Google Scholar 

  34. Baker BJ, Park KW, Qin H, Ma X, Benveniste EN . IL-27 inhibits OSM-mediated TNF-alpha and iNOS gene expression in microglia. Glia 2010; 58: 1082–1093.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lu W, Xu Y, Shao X, Gao F, Li Y, Hu J et al. Uric acid produces an inflammatory response through activation of NF-kappaB in the hypothalamus: implications for the pathogenesis of metabolic disorders. Sci Rep 2015; 5: 12144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schuliga M . NF-kappaB signaling in chronic inflammatory airway disease. Biomolecules 2015; 5: 1266–1283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Berdyshev AG, Kosiakova HV, Onopchenko OV, Panchuk RR, Stoika RS, Hula NM . N-Stearoylethanolamine suppresses the pro-inflammatory cytokines production by inhibition of NF-kappaB translocation. Prostaglandins Other Lipid Mediat 2015; 121: 91–96.

    Article  CAS  PubMed  Google Scholar 

  38. Jian CX, Li MZ, Zheng WY, He Y, Ren Y, Wu ZM et al. Tormentic acid inhibits LPS-induced inflammatory response in human gingival fibroblasts via inhibition of TLR4-mediated NF-kappaB and MAPK signalling pathway. Arch Oral Biol 2015; 60: 1327–1332.

    Article  CAS  PubMed  Google Scholar 

  39. Russell JA . Management of sepsis. N Engl J Med 2006; 355: 1699–1713.

    Article  CAS  PubMed  Google Scholar 

  40. Collins T, Cybulsky MI . NF-kappaB: pivotal mediator or innocent bystander in atherogenesis? J Clin Invest 2001; 107: 255–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen F . Is NF-kappaB a culprit in type 2 diabetes? Biochem Biophys Res Commun 2005; 332: 1–3.

    Article  CAS  PubMed  Google Scholar 

  42. Karin M, Cao Y, Greten FR, Li ZW . NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2002; 2: 301–310.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang DK, Cheng LN, Huang XL, Shi W, Xiang JY, Gan HT . Tetrandrine ameliorates dextran-sulfate-sodium-induced colitis in mice through inhibition of nuclear factor -kappaB activation. Int J Colorectal Dis 2009; 24: 5–12.

    Article  PubMed  Google Scholar 

  44. Tai EK, Wu WK, Wong HP, Lam EK, Yu L, Cho CH . A new role for cathelicidin in ulcerative colitis in mice. Exp Biol Med (Maywood) 2007; 232: 799–808.

    CAS  Google Scholar 

  45. Vieira EL, Leonel AJ, Sad AP, Beltrao NR, Costa TF, Ferreira TM et al. Oral administration of sodium butyrate attenuates inflammation and mucosal lesion in experimental acute ulcerative colitis. J Nutr Biochem 2012; 23: 430–436.

    Article  CAS  PubMed  Google Scholar 

  46. Koon HW, Shih DQ, Chen J, Bakirtzi K, Hing TC, Law I et al. Cathelicidin signaling via the Toll-like receptor protects against colitis in mice. Gastroenterology 2011; 141: 1852–63.e1-3.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang H, Porro G, Orzech N, Mullen B, Liu M, Slutsky AS . Neutrophil defensins mediate acute inflammatory response and lung dysfunction in dose-related fashion. Am J Physiol Lung Cell Mol Physiol 2001; 280: L947–L954.

    Article  CAS  PubMed  Google Scholar 

  48. Jiang Y, Yang D, Li W, Wang B, Jiang Z, Li M . Antiviral activity of recombinant mouse beta-defensin 3 against influenza A virus in vitro and in vivo. Antivir Chem Chemother 2012; 22: 255–262.

    Article  CAS  PubMed  Google Scholar 

  49. Rivas-Santiago B, Rivas SC, Castaneda-Delgado JE, Leon-Contreras JC, Hancock RE, Hernandez-Pando R . Activity of LL-37, CRAMP and antimicrobial peptide-derived compounds E2, E6 and CP26 against Mycobacterium tuberculosis. Int J Antimicrob Agents 2013; 41: 143–148.

    Article  CAS  PubMed  Google Scholar 

  50. Schlusselhuber M, Torelli R, Martini C, Leippe M, Cattoir V, Leclercq R et al. The equine antimicrobial peptide eCATH1 is effective against the facultative intracellular pathogen Rhodococcus equi in mice. Antimicrob Agents Chemother 2013; 57: 4615–4621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hibi T, Inoue N, Ogata H, Naganuma M . Introduction and overview: recent advances in the immunotherapy of inflammatory bowel disease. J Gastroenterol 2003; 38 (Suppl 15): 36–42.

    CAS  PubMed  Google Scholar 

  52. Polgar A, Brozik M, Toth S, Holub M, Hegyi K, Kadar A et al. Soluble interleukin-6 receptor in plasma and in lymphocyte culture supernatants of healthy individuals and patients with systemic lupus erythematosus and rheumatoid arthritis. Med Sci Monit 2000; 6: 13–18.

    CAS  PubMed  Google Scholar 

  53. van Deventer SJ . [Immunology in medical practice. IV. Inflammatory bowel diseases: pathogenic starting points for specific therapy]. Ned Tijdschr Geneeskd 1997; 141: 1956–1959.

    CAS  PubMed  Google Scholar 

  54. Hyams JS, Lerer T, Griffiths A, Pfefferkorn M, Kugathasan S, Evans J et al. Long-term outcome of maintenance infliximab therapy in children with Crohn’s disease. Inflamm Bowel Dis 2009; 15: 816–822.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (grant nos 81071686, 81328019 and 81572748) and the Free Exploration Program of Central South University (grant no. 2015zzts097). We thank the Shanghai Research Center for Biomodel Organisms (Shanghai, China) for their excellent technical assistance in generating the BRD7−/− mice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Zhou.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information for this article can be found on the Cellular & Molecular Immunology website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, R., Liu, Y., Wang, H. et al. BRD7 plays an anti-inflammatory role during early acute inflammation by inhibiting activation of the NF-кB signaling pathway. Cell Mol Immunol 14, 830–841 (2017). https://doi.org/10.1038/cmi.2016.31

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2016.31

Keywords

This article is cited by

Search

Quick links