Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Magnesium ion influx reduces neuroinflammation in Aβ precursor protein/Presenilin 1 transgenic mice by suppressing the expression of interleukin-1β

Abstract

Alzheimer’s disease (AD) has been associated with magnesium ion (Mg2+) deficits and interleukin-1β (IL-1β) elevations in the serum or brains of AD patients. However, the mechanisms regulating IL-1β expression during Mg2+ dyshomeostasis in AD remain unknown. We herein studied the mechanism of IL-1β reduction using a recently developed compound, magnesium-L-threonate (MgT). Using human glioblastoma A172 and mouse brain D1A glial cells as an in vitro model system, we delineated the signaling pathways by which MgT suppressed the expression of IL-1β in glial cells. In detail, we found that MgT incubation stimulated the activity of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and peroxisome proliferator-activated receptor gamma (PPARγ) signaling pathways by phosphorylation, which resulted in IL-1β suppression. Simultaneous inhibition of the phosphorylation of ERK1/2 and PPARγ induced IL-1β upregulation in MgT-stimulated glial cells. In accordance with our in vitro data, the intracerebroventricular (i.c.v) injection of MgT into the ventricles of APP/PS1 transgenic mice and treatment of Aβ precursor protein (APP)/PS1 brain slices suppressed the mRNA and protein expression of IL-1β. These in vivo observations were further supported by the oral administration of MgT for 5 months. Importantly, Mg2+ influx into the ventricles of the mice blocked the effects of IL-1β or amyloid β-protein oligomers in the cerebrospinal fluid. This reduced the stimulation of IL-1β expression in the cerebral cortex of APP/PS1 transgenic mice, which potentially contributed to the inhibition of neuroinflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Shoghi-Jadid K, Small GW, Agdeppa ED, Kepe V, Ercoli LM, Siddarth P et al. Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with Alzheimer disease. Am J Geriatr Psychiatry 2002; 10: 24–35.

    Article  Google Scholar 

  2. Blennow K, Hampel H, Weiner M, Zetterberg H . Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol 2010; 6: 131–144.

    Article  CAS  Google Scholar 

  3. Andrasi E, Pali N, Molnar Z, Kosel S . Brain aluminum, magnesium and phosphorus contents of control and Alzheimer-diseased patients. J Alzheimers Dis 2005; 7: 273–284.

    Article  CAS  Google Scholar 

  4. Cilliler AE, Ozturk S, Ozbakir S . Serum magnesium level and clinical deterioration in Alzheimer's disease. Gerontology 2007; 53: 419–422.

    Article  Google Scholar 

  5. Sugimoto J, Romani AM, Valentin-Torres AM, Luciano AA, Ramirez Kitchen CM, Funderburg N et al. Magnesium decreases inflammatory cytokine production: a novel innate immunomodulatory mechanism. J Immunol 2012; 188: 6338–6346.

    Article  CAS  Google Scholar 

  6. Mrak RE, Griffin WS . Interleukin-1, neuroinflammation, and Alzheimer's disease. Neurobiol Aging 2001; 22: 903–908.

    Article  CAS  Google Scholar 

  7. Kitazawa M, Cheng D, Tsukamoto MR, Koike MA, Wes PD, Vasilevko V et al. Blocking IL-1 signaling rescues cognition, attenuates tau pathology, and restores neuronal beta-catenin pathway function in an Alzheimer's disease model. J Immunol 2011; 187: 6539–6549.

    Article  CAS  Google Scholar 

  8. Wang X, Zheng W, Xie JW, Wang T, Wang SL, Teng WP et al. Insulin deficiency exacerbates cerebral amyloidosis and behavioral deficits in an Alzheimer transgenic mouse model. Mol Neurodegener 2010; 5: 46.

    Article  Google Scholar 

  9. Liu L, Herukka SK, Minkeviciene R, van Groen T, Tanila H . Longitudinal observation on CSF Abeta42 levels in young to middle-aged amyloid precursor protein/presenilin-1 doubly transgenic mice. Neurobiol Dis 2004; 17: 516–523.

    Article  CAS  Google Scholar 

  10. Piermartiri TC, Figueiredo CP, Rial D, Duarte FS, Bezerra SC, Mancini G et al. Atorvastatin prevents hippocampal cell death, neuroinflammation and oxidative stress following amyloid-beta(1-40) administration in mice: evidence for dissociation between cognitive deficits and neuronal damage. Exp Neurol 2010; 226: 274–284.

    Article  CAS  Google Scholar 

  11. Wang P, Zhu F, Konstantopoulos K . Prostaglandin E2 induces interleukin-6 expression in human chondrocytes via cAMP/protein kinase A- and phosphatidylinositol 3-kinase-dependent NF-kappaB activation. Am J Physiol Cell Physiol 2010; 298: C1445–1456.

    Article  CAS  Google Scholar 

  12. Wang P, Zhu F, Konstantopoulos K . The antagonistic actions of endogenous interleukin-1beta and 15-deoxy-delta12,14-prostaglandin J2 regulate the temporal synthesis of matrix metalloproteinase-9 in sheared chondrocytes. J Biol Chem 2012; 287: 31877–31893.

    Article  CAS  Google Scholar 

  13. Xu J, Song D, Bai Q, Zhou L, Cai L, Hertz L et al. Role of glycogenolysis in stimulation of ATP release from cultured mouse astrocytes by transmitters and high K+ concentrations. ASN Neuro 2014; 6: e00132.

    PubMed  PubMed Central  Google Scholar 

  14. Wang P, Zhu F, Lee NH, Konstantopoulos K . Shear-induced interleukin-6 synthesis in chondrocytes: roles of E prostanoid (EP) 2 and EP3 in cAMP/protein kinase A- and PI3-K/Akt-dependent NF-kappa B activation. J Biol Chem 2010; 285: 24793–24804.

    Article  CAS  Google Scholar 

  15. Wang P, Zhu F, Tong Z, Konstantopoulos K . Response of chondrocytes to shear stress: antagonistic effects of the binding partners toll-like receptor 4 and caveolin-1. FASEB J 2011; 25: 3401–3415.

    Article  CAS  Google Scholar 

  16. Wang P, Guan PP, Guo C, Zhu F, Konstantopoulos K, Wang ZY . Fluid shear stress-induced osteoarthritis: roles of cyclooxygenase-2 and its metabolic products in inducing the expression of proinflammatory cytokines and matrix metalloproteinases. FASEB J 2013; 27: 4664–4677.

    Article  CAS  Google Scholar 

  17. De Strooper B . Aph-1, Pen-2, and Nicastrin with Presenilin generate an active gamma-secretase complex. Neuron 2003; 38: 9–12.

    Article  CAS  Google Scholar 

  18. Ikari A, Atomi K, Kinjo K, Sasaki Y, Sugatani J . Magnesium deprivation inhibits a MEK-ERK cascade and cell proliferation in renal epithelial Madin-Darby canine kidney cells. Life Sci 2010; 86: 766–773.

    Article  CAS  Google Scholar 

  19. Lue LF, Rydel R, Brigham EF, Yang LB, Hampel H, Murphy GM Jr, et al. Inflammatory repertoire of Alzheimer's disease and nondemented elderly microglia in vitro. Glia 2001; 35: 72–79.

    Article  CAS  Google Scholar 

  20. Patel NS, Paris D, Mathura V, Quadros AN, Crawford FC, Mullan MJ . Inflammatory cytokine levels correlate with amyloid load in transgenic mouse models of Alzheimer's disease. J Neuroinflammation 2005; 2: 9.

    Article  Google Scholar 

  21. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL et al. Neuroinflammation in Alzheimer's disease. Lancet Neurol 2015; 14: 388–405.

    Article  CAS  Google Scholar 

  22. Gao F, Ding B, Zhou L, Gao X, Guo H, Xu H . Magnesium sulfate provides neuroprotection in lipopolysaccharide-activated primary microglia by inhibiting NF-kappaB pathway. J Surg Res 2013; 184: 944–950.

    Article  Google Scholar 

  23. Johnson AC, Tremble SM, Chan SL, Moseley J, LaMarca B, Nagle KJ et al. Magnesium sulfate treatment reverses seizure susceptibility and decreases neuroinflammation in a rat model of severe preeclampsia. PLoS One 2014; 9: e113670.

    Article  Google Scholar 

  24. Slutsky I, Abumaria N, Wu LJ, Huang C, Zhang L, Li B et al. Enhancement of learning and memory by elevating brain magnesium. Neuron 2010; 65: 165–177.

    Article  CAS  Google Scholar 

  25. Lipinski B, Pretorius E . The role of iron-induced fibrin in the pathogenesis of Alzheimer's disease and the protective role of magnesium. Front Hum Neurosci 2013; 7: 735.

    Article  Google Scholar 

  26. Tam HB, Dowling O, Xue X, Lewis D, Rochelson B, Metz CN . Magnesium sulfate ameliorates maternal and fetal inflammation in a rat model of maternal infection. Am J Obstet Gynecol 2011; 204: 364 e361–368.

    Article  Google Scholar 

  27. Malpuech-Brugere C, Nowacki W, Rock E, Gueux E, Mazur A, Rayssiguier Y . Enhanced tumor necrosis factor-alpha production following endotoxin challenge in rats is an early event during magnesium deficiency. Biochim Biophys Acta 1999; 1453: 35–40.

    Article  CAS  Google Scholar 

  28. Shogi T, Oono H, Nakagawa M, Miyamoto A, Ishiguro S, Nishio A . Effects of a low extracellular magnesium concentration and endotoxin on IL-1beta and TNF-alpha release from, and mRNA levels in, isolated rat alveolar macrophages. Magnes Res 2002; 15: 147–152.

    CAS  PubMed  Google Scholar 

  29. Weglicki WB, Phillips TM, Freedman AM, Cassidy MM, Dickens BF . Magnesium-deficiency elevates circulating levels of inflammatory cytokines and endothelin. Mol Cell Biochem 1992; 110: 169–173.

    Article  CAS  Google Scholar 

  30. Burd I, Breen K, Friedman A, Chai J, Elovitz MA . Magnesium sulfate reduces inflammation-associated brain injury in fetal mice. Am J Obstet Gynecol 2010; 202: 292 e291–299.

    Article  Google Scholar 

  31. Amash A, Holcberg G, Sapir O, Huleihel M . Placental secretion of interleukin-1 and interleukin-1 receptor antagonist in preeclampsia: effect of magnesium sulfate. J Interferon Cytokine Res 2012; 32: 432–441.

    Article  CAS  Google Scholar 

  32. Ji H, Wang H, Zhang F, Li X, Xiang L, Aiguo S . PPARgamma agonist pioglitazone inhibits microglia inflammation by blocking p38 mitogen-activated protein kinase signaling pathways. Inflamm Res 2010; 59: 921–929.

    Article  CAS  Google Scholar 

  33. Valles SL, Dolz-Gaiton P, Gambini J, Borras C, Lloret A, Pallardo FV et al. Estradiol or genistein prevent Alzheimer's disease-associated inflammation correlating with an increase PPAR gamma expression in cultured astrocytes. Brain Res 2010; 1312: 138–144.

    Article  CAS  Google Scholar 

  34. Tjalkens RB, Liu X, Mohl B, Wright T, Moreno JA, Carbone DL et al. The peroxisome proliferator-activated receptor-gamma agonist 1,1-bis(3'-indolyl)-1-(p-trifluoromethylphenyl)methane suppresses manganese-induced production of nitric oxide in astrocytes and inhibits apoptosis in cocultured PC12 cells. J Neurosci Res 2008; 86: 618–629.

    Article  CAS  Google Scholar 

  35. Jahrling JB, Hernandez CM, Denner L, Dineley KT . PPARgamma recruitment to active ERK during memory consolidation is required for Alzheimer's disease-related cognitive enhancement. J Neurosci 2014; 34: 4054–4063.

    Article  Google Scholar 

  36. Denner LA, Rodriguez-Rivera J, Haidacher SJ, Jahrling JB, Carmical JR, Hernandez CM et al. Cognitive enhancement with rosiglitazone links the hippocampal PPARgamma and ERK MAPK signaling pathways. J Neurosci 2012; 32: 16725–16735a.

    Article  CAS  Google Scholar 

  37. Parajuli B, Sonobe Y, Horiuchi H, Takeuchi H, Mizuno T, Suzum A . Oligomeric amyloid beta induces IL-1beta processing via production of ROS: implication in Alzheimer's disease. Cell Death Dis 2013; 4: e975.

    Article  CAS  Google Scholar 

  38. Lindberg C, Selenica ML, Westlind-Danielsson A, Schultzberg M . Beta-amyloid protein structure determines the nature of cytokine release from rat microglia. J Mol Neurosci 2005; 27: 1–12.

    Article  CAS  Google Scholar 

  39. Zhang B, Gaiteri C, Bodea LG, Wang Z, McElwee J, Podtelezhnikov AA et al. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer's disease. Cell 2013; 153; 707–720.

    Article  CAS  Google Scholar 

  40. Schmidt J, Barthel K, Wrede A, Salajegheh M, Bähr M, Dalakas MC . Interrelation of inflammation and APP in sIBM: IL-1 beta induces accumulation of beta-amyloid in skeletal muscle. Brain 2008; 131: 1228–1240.

    Article  Google Scholar 

  41. Schmitt TL, Steiner E, Klinger P, Sztankay A, Grubeck-Loebenstein B . The production of an amyloidogenic metabolite of the Alzheimer amyloid beta precursor protein (APP) in thyroid cells is stimulated by interleukin 1 beta, but inhibited by interferon gamma. J Clin Endocrinol Metab 1996; 81: 1666–1669.

    CAS  PubMed  Google Scholar 

  42. Grilli M, Goffi F, Memo M, Spano P . Interleukin-1beta and glutamate activate the NF-kappaB/Rel binding site from the regulatory region of the amyloid precursor protein gene in primary neuronal cultures. J Biol Chem 1996; 271: 15002–15007.

    Article  CAS  Google Scholar 

  43. Liao YF, Wang BJ, Cheng HT, Kuo LH, Wolfe MS . Tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma stimulate gamma-secretase-mediated cleavage of amyloid precursor protein through a JNK-dependent MAPK pathway. J Biol Chem 2004; 279: 49523–49532.

    Article  CAS  Google Scholar 

  44. Kong Q, Peterson TS, Baker O, Stanley E, Camden J, Seye CI et al. Interleukin-1beta enhances nucleotide-induced and alpha-secretase-dependent amyloid precursor protein processing in rat primary cortical neurons via up-regulation of the P2Y(2) receptor. J Neurochem 2009; 109: 1300–1310.

    Article  CAS  Google Scholar 

  45. Ma G, Chen S, Wang X, Ba M, Yang H, Lu G . Short-term interleukin-1(beta) increases the release of secreted APP(alpha) via MEK1/2-dependent and JNK-dependent alpha-secretase cleavage in neuroglioma U251 cells. J Neurosci Res 2005; 80: 683–692.

    Article  CAS  Google Scholar 

  46. Tachida Y, Nakagawa K, Saito T, Saido TC, Honda T, Saito Y et al. Interleukin-1 beta up-regulates TACE to enhance alpha-cleavage of APP in neurons: resulting decrease in Abeta production. J Neurochem 2008; 104: 1387–1393.

    Article  CAS  Google Scholar 

  47. Matousek SB, Ghosh S, Shaftel SS, Kyrkanides S, Olschowka JA, O' Banion MK et al. Chronic IL-1beta-mediated neuroinflammation mitigates amyloid pathology in a mouse model of Alzheimer's disease without inducing overt neurodegeneration. J Neuroimmune Pharmacol 2012; 7: 156–164.

    Article  Google Scholar 

  48. Cacabelos R, Barquero M, Garcia P, Alvarez XA, Varela de Seijas E . Cerebrospinal fluid interleukin-1 beta (IL-1 beta) in Alzheimer's disease and neurological disorders. Methods Find Exp Clin Pharmacol 1991; 13: 455–458.

    CAS  PubMed  Google Scholar 

  49. Forlenza OV, Diniz BS, Talib LL, Mendonça VA, Ojopi EB, Gattaz WF et al. Increased serum IL-1beta level in Alzheimer's disease and mild cognitive impairment. Dement Geriatr Cogn Disord 2009; 28: 507–512.

    Article  CAS  Google Scholar 

  50. Ghosh S, Wu MD, Shaftel SS, Kyrkanides S, LaFerla FM, Olschowka JA et al. Sustained interleukin-1β overexpression exacerbates tau pathology despite reduced amyloid burden in an Alzheimer's mouse model. The Journal of Neuroscience 2013; 33(11): 5053–5064.

    Article  CAS  Google Scholar 

  51. Cacabelos R, Alvarez XA, Fernández-Novoa L, Franco A, Mangues R, Pellicer A et al. Brain interleukin-1 beta in Alzheimer's disease and vascular dementia. Methods Find Exp Clin Pharmacol 1994; 16: 141–151.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part or in whole by the National Natural Science Foundation of China (CN) (31571064, 81500934, 31300777, and 31371091), the National Natural Science Foundation of Liaoning, China (2015020662) the Fundamental Research Funds of China (N142004002 and N130120002) and the Liaoning Provincial Talent Support Program (LJQ2013029). We would like to acknowledge Andrew C. McCourt for critical reading and linguistic revision of the manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Yu, X., Guan, PP. et al. Magnesium ion influx reduces neuroinflammation in Aβ precursor protein/Presenilin 1 transgenic mice by suppressing the expression of interleukin-1β. Cell Mol Immunol 14, 451–464 (2017). https://doi.org/10.1038/cmi.2015.93

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2015.93

Keywords

This article is cited by

Search

Quick links