Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

CD4+VEGFR1HIGH T cell as a novel Treg subset regulates inflammatory bowel disease in lymphopenic mice

Abstract

Regulatory T cells (Tregs) are a specialized subpopulation of T cells that control the immune response and thereby maintain immune system homeostasis and tolerance to self-antigens. Many subsets of CD4+ Tregs have been identified, including Foxp3+, Tr1, Th3, and Foxp3neg iT(R)35 cells. In this study, we identified a new subset of CD4+VEGFR1high Tregs that have immunosuppressive capacity. CD4+VEGFR1high T cells, which constitute approximately 1.0% of CD4+ T cells, are hyporesponsive to T-cell antigen receptor stimulation. Surface marker and FoxP3 expression analysis revealed that CD4+VEGFR1high T cells are distinct from known Tregs. CD4+VEGFR1high T cells suppressed the proliferation of CD4+CD25 T cell as efficiently as CD4+CD25high natural Tregs in a contact-independent manner. Furthermore, adoptive transfer of CD4+VEGFR1+ T cells from wild type to RAG-2-deficient C57BL/6 mice inhibited effector T-cell-mediated inflammatory bowel disease. Thus, we report CD4+ VEGFR1high T cells as a novel subset of Tregs that regulate the inflammatory response in the intestinal tract.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Sakaguchi S, Yamaguchi T, Nomura T, Ono M . Regulatory T cells and immune tolerance. Cell 2008; 133: 775–787.

    CAS  PubMed  Google Scholar 

  2. Gershon RK, Kondo K . Infectious immunological tolerance. Immunology 1971; 21: 903–914.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Gershon RK, Kondo K . Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology 1970; 18: 723–737.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M . Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995; 155: 1151–1164.

    CAS  PubMed  Google Scholar 

  5. Bennett CL, Brunkow ME, Ramsdell F, O’Briant KC, Zhu Q, Fuleihan RL et al. A rare polyadenylation signal mutation of the FOXP3 gene (AAUAAA→AAUGAA) leads to the IPEX syndrome. Immunogenetics 2001; 53: 435–439.

    Article  CAS  PubMed  Google Scholar 

  6. Fontenot JD, Gavin MA, Rudensky AY . Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003; 4: 330–336.

    Article  CAS  PubMed  Google Scholar 

  7. Hori S, Nomura T, Sakaguchi S . Control of regulatory T cell development by the transcription factor Foxp3. Science 2003; 299: 1057–1061.

    Article  CAS  PubMed  Google Scholar 

  8. Groux H, Bigler M, de Vries JE, Roncarolo MG . Interleukin-10 induces a long-term antigen-specific anergic state in human CD4+ T cells. J Exp Med 1996; 184: 19–29.

    Article  CAS  PubMed  Google Scholar 

  9. Groux H, O’Garra A, Bigler M, Rouleau M, Antonenko S, de Vries JE et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 1997; 389: 737–742.

    Article  CAS  PubMed  Google Scholar 

  10. Roncarolo MG, Bacchetta R, Bordignon C, Narula S, Levings MK . Type 1 T regulatory cells. Immunol Rev 2001; 182: 68–79.

    Article  CAS  PubMed  Google Scholar 

  11. Roncarolo MG, Gregori S, Battaglia M, Bacchetta R, Fleischhauer K, Levings MK . Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol Rev 2006; 212: 28–50.

    Article  CAS  PubMed  Google Scholar 

  12. Levings MK, Sangregorio R, Sartirana C, Moschin AL, Battaglia M, Orban PC et al. Human CD25+CD4+ T suppressor cell clones produce transforming growth factor beta, but not interleukin 10, and are distinct from type 1 T regulatory cells. J Exp Med 2002; 196: 1335–1346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Weiner HL . Induction and mechanism of action of transforming growth factor-beta-secreting Th3 regulatory cells. Immunol Rev 2001; 182: 207–214.

    Article  CAS  PubMed  Google Scholar 

  14. Collison LW, Chaturvedi V, Henderson AL, Giacomin PR, Guy C, Bankoti J et al. IL-35-mediated induction of a potent regulatory T cell population. Nat Immunol 2010; 11: 1093–1101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tang Q, Bluestone JA . The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat Immunol 2008; 9: 239–244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vignali DA, Collison LW, Workman CJ . How regulatory T cells work. Nat Rev Immunol 2008; 8: 523–532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ferrara N, Davis-Smyth T . The biology of vascular endothelial growth factor. Endocr Rev 1997; 18: 4–25.

    Article  CAS  PubMed  Google Scholar 

  18. Ferrara N, Gerber HP, LeCouter J . The biology of VEGF and its receptors. Nat Med 2003; 9: 669–676.

    Article  CAS  PubMed  Google Scholar 

  19. Carmeliet P, Moons L, Luttun A, Vincenti V, Compernolle V, De Mol M et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 2001; 7: 575–583.

    Article  CAS  PubMed  Google Scholar 

  20. Clauss M, Weich H, Breier G, Knies U, Röckl W, Waltenberger J et al. The vascular endothelial growth factor receptor Flt-1 mediates biological activities. Implications for a functional role of placenta growth factor in monocyte activation and chemotaxis. J Biol Chem 1996; 271: 17629–17634.

    Article  CAS  PubMed  Google Scholar 

  21. Barleon B, Sozzani S, Zhou D, Weich HA, Mantovani A, Marme D . Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 1996; 87: 3336–3343.

    CAS  PubMed  Google Scholar 

  22. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005; 438: 820–827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dikov MM, Ohm JE, Ray N, Tchekneva EE, Burlison J, Moghanaki D et al. Differential roles of vascular endothelial growth factor receptors 1 and 2 in dendritic cell differentiation. J Immunol 2005; 174: 215–222.

    Article  CAS  PubMed  Google Scholar 

  24. Shin JY, Yoon IH, Kim JS, Kim B, Park CG . Vascular endothelial growth factor-induced chemotaxis and IL-10 from T cells. Cell Immunol 2009; 256: 72–78.

    Article  CAS  PubMed  Google Scholar 

  25. McHugh RS, Whitters MJ, Piccirillo CA, Young DA, Shevach EM, Collins M et al. CD4(+)CD25(+) immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity 2002; 16: 311–323.

    Article  CAS  PubMed  Google Scholar 

  26. Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 2000; 192: 303–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S . Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 2002; 3: 135–142.

    Article  CAS  PubMed  Google Scholar 

  28. Fohse L, Suffner J, Suhre K, Wahl B, Lindner C, Lee CW et al. High TCR diversity ensures optimal function and homeostasis of Foxp3+ regulatory T cells. Eur J Immunol 2011; 41: 3101–3113.

    Article  PubMed  Google Scholar 

  29. Dumitriu IE, Mohr W, Kolowos W, Kern P, Kalden JR, Herrmann M . 5,6-carboxyfluorescein diacetate succinimidyl ester-labeled apoptotic and necrotic as well as detergent-treated cells can be traced in composite cell samples. Anal Biochem 2001; 299: 247–252.

    Article  CAS  PubMed  Google Scholar 

  30. Takeda I, Ine S, Killeen N, Ndhlovu LC, Murata K, Satomi S et al. Distinct roles for the OX40-OX40 ligand interaction in regulatory and nonregulatory T cells. J Immunol 2004; 172: 3580–3589.

    Article  CAS  PubMed  Google Scholar 

  31. Brimnes J, Reimann J, Nissen M, Claesson M . Enteric bacterial antigens activate CD4(+) T cells from scid mice with inflammatory bowel disease. Eur J Immunol 2001; 31: 23–31.

    Article  CAS  PubMed  Google Scholar 

  32. Ohm JE, Gabrilovich DI, Sempowski GD, Kisseleva E, Parman KS, Nadaf S et al. VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression. Blood 2003; 101: 4878–4886.

    Article  CAS  PubMed  Google Scholar 

  33. Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 1996; 380: 439–442.

    Article  CAS  PubMed  Google Scholar 

  34. Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 1995; 376: 62–66.

    Article  CAS  PubMed  Google Scholar 

  35. Fong GH, Rossant J, Gertsenstein M, Breitman ML . Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 1995; 376: 66–70.

    Article  CAS  PubMed  Google Scholar 

  36. Kondo S, Asano M, Matsuo K, Ohmori I, Suzuki H . Vascular endothelial growth factor/vascular permeability factor is detectable in the sera of tumor-bearing mice and cancer patients. Biochim Biophys Acta 1994; 1221: 211–214.

    Article  CAS  PubMed  Google Scholar 

  37. Scaldaferri F, Vetrano S, Sans M, Arena V, Straface G, Stigliano E et al. VEGF-A links angiogenesis and inflammation in inflammatory bowel disease pathogenesis. Gastroenterology 2009; 136: 585–595.

    Article  CAS  PubMed  Google Scholar 

  38. Huang Y, Chen X, Dikov MM, Novitskiy SV, Mosse CA, Yang L et al. Distinct roles of VEGFR-1 and VEGFR-2 in the aberrant hematopoiesis associated with elevated levels of VEGF. Blood 2007; 110: 624–631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hattori K, Heissig B, Wu Y, Dias S, Tejada R, Ferris B et al. Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment. Nat Med 2002; 8: 841–849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Clark RA, Chong B, Mirchandani N, Brinster NK, Yamanaka K, Dowgiert RK et al. The vast majority of CLA+ T cells are resident in normal skin. J Immunol 2006; 176: 4431–4439.

    Article  CAS  PubMed  Google Scholar 

  41. Ganusov VV, De Boer RJ . Do most lymphocytes in humans really reside in the gut? Trends Immunol 2007; 28: 514–518.

    Article  CAS  PubMed  Google Scholar 

  42. Park MJ, Shin JS, Kim YH, Hong SH, Yang SH, Shin JY et al. Murine mesenchymal stem cells suppress T lymphocyte activation through IL-2 receptor alpha (CD25) cleavage by producing matrix metalloproteinases. Stem Cell Rev 2011; 7: 381–393.

    Article  CAS  Google Scholar 

  43. Wang H, Keiser JA . Vascular endothelial growth factor upregulates the expression of matrix metalloproteinases in vascular smooth muscle cells: role of flt-1. Circ Res 1998; 83: 832–840.

    Article  CAS  PubMed  Google Scholar 

  44. Fulda S, Debatin KM . Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 2006; 25: 4798–4811.

    Article  CAS  PubMed  Google Scholar 

  45. Walczak H, Krammer PH . The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems. Exp Cell Res 2000; 256: 58–66.

    Article  CAS  PubMed  Google Scholar 

  46. Siegmund D, Mauri D, Peters N, Juo P, Thome M, Reichwein M et al. Fas-associated death domain protein (FADD) and caspase-8 mediate up-regulation of c-Fos by Fas ligand and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) via a FLICE inhibitory protein (FLIP)-regulated pathway. J Biol Chem 2001; 276: 32585–32590.

    Article  CAS  PubMed  Google Scholar 

  47. Wajant H . CD95L/FasL and TRAIL in tumour surveillance and cancer therapy. Cancer Treat Res 2006; 130: 141–165.

    Article  CAS  PubMed  Google Scholar 

  48. Medema JP, Toes RE, Scaffidi C, Zheng TS, Flavell RA, Melief CJ et al. Cleavage of FLICE (caspase-8) by granzyme B during cytotoxic T lymphocyte-induced apoptosis. Eur J Immunol 1997; 27: 3492–3498.

    Article  CAS  PubMed  Google Scholar 

  49. Asseman C, Mauze S, Leach MW, Coffman RL, Powrie F . An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med 1999; 190: 995–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Powrie F, Carlino J, Leach MW, Mauze S, Coffman RL . A critical role for transforming growth factor-beta but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RB(low) CD4+ T cells. J Exp Med 1996; 183: 2669–2674.

    Article  CAS  PubMed  Google Scholar 

  51. Collison LW, Pillai MR, Chaturvedi V, Vignali DA . Regulatory T cell suppression is potentiated by target T cells in a cell contact, IL-35- and IL-10-dependent manner. J Immunol 2009; 182: 6121–6128.

    Article  CAS  PubMed  Google Scholar 

  52. Collison LW, Workman CJ, Kuo TT, Boyd K, Wang Y, Vignali KM et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 2007; 450: 566–569.

    Article  CAS  PubMed  Google Scholar 

  53. Chaturvedi V, Collison LW, Guy CS, Workman CJ, Vignali DA . Cutting edge: human regulatory T cells require IL-35 to mediate suppression and infectious tolerance. J Immunol 2011; 186: 6661–6666.

    Article  CAS  PubMed  Google Scholar 

  54. Wirtz S, Billmeier U, McHedlidze T, Blumberg RS, Neurath MF . Interleukin-35 mediates mucosal immune responses that protect against T-cell-dependent colitis. Gastroenterology 2011; 141: 1875–1886.

    Article  CAS  PubMed  Google Scholar 

  55. Shen P, Roch T, Lampropoulou V, O’Connor RA, Stervbo U, Hilgenberg E et al. IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases. Nature 2014; 507: 366–370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Abusamra AJ, Zhong Z, Zheng X, Li M, Ichim TE, Chin JL et al. Tumor exosomes expressing Fas ligand mediate CD8+ T-cell apoptosis. Blood Cells Mol Dis 2005; 35: 169–173.

    Article  CAS  PubMed  Google Scholar 

  57. Stenqvist AC, Nagaeva O, Baranov V, Mincheva-Nilsson L . Exosomes secreted by human placenta carry functional Fas ligand and TRAIL molecules and convey apoptosis in activated immune cells, suggesting exosome-mediated immune privilege of the fetus. J Immunol 2013; 191: 5515–5523.

    Article  CAS  PubMed  Google Scholar 

  58. Okoye IS, Coomes SM, Pelly VS, Czieso S, Papayannopoulos V, Tolmachova T et al. MicroRNA-containing T-regulatory-cell-derived exosomes suppress pathogenic T helper 1 cells. Immunity 2014; 41: 89–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rudolphi A, Boll G, Poulsen SS, Claesson MH, Reimann J . Gut-homing CD4+ T cell receptor alpha beta+ T cells in the pathogenesis of murine inflammatory bowel disease. Eur J Immunol 1994; 24: 2803–2812.

    Article  CAS  PubMed  Google Scholar 

  60. Morrissey PJ, Charrier K, Braddy S, Liggitt D, Watson JD . CD4+ T cells that express high levels of CD45RB induce wasting disease when transferred into congenic severe combined immunodeficient mice. Disease development is prevented by cotransfer of purified CD4+ T cells. J Exp Med 1993; 178: 237–244.

    Article  CAS  PubMed  Google Scholar 

  61. Powrie F, Leach MW, Mauze S, Caddle LB, Coffman RL . Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 scid mice. Int Immunol 1993; 5: 1461–1471.

    Article  CAS  PubMed  Google Scholar 

  62. Claesson MH, Rudolphi A, Kofoed S, Poulsen SS, Reimann J . CD4+ T lymphocytes injected into severe combined immunodeficient (SCID) mice lead to an inflammatory and lethal bowel disease. Clin Exp Immunol 1996; 104: 491–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Blumberg RS, Saubermann LJ, Strober W . Animal models of mucosal inflammation and their relation to human inflammatory bowel disease. Curr Opin Immunol 1999; 11: 648–656.

    Article  CAS  PubMed  Google Scholar 

  64. Powrie F, Leach MW, Mauze S, Menon S, Caddle LB, Coffman RL . Inhibition of Th1 responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4+ T cells. Immunity 1994; 1: 553–562.

    Article  CAS  PubMed  Google Scholar 

  65. Liu ZJ, Yadav PK, Su JL, Wang JS, Fei K . Potential role of Th17 cells in the pathogenesis of inflammatory bowel disease. World J Gastroenterol 2009; 15: 5784–5788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Abraham C, Cho J . Interleukin-23/Th17 pathways and inflammatory bowel disease. Inflamm Bowel Dis 2009; 15: 1090–1100.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health &Welfare, Republic of Korea (Grant NO HI13C0954).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, JY., Yoon, IH., Lim, JH. et al. CD4+VEGFR1HIGH T cell as a novel Treg subset regulates inflammatory bowel disease in lymphopenic mice. Cell Mol Immunol 12, 592–603 (2015). https://doi.org/10.1038/cmi.2015.71

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2015.71

Keywords

This article is cited by

Search

Quick links