Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

The IRAK-ERK-p67phox-Nox-2 axis mediates TLR4, 2-induced ROS production for IL-1β transcription and processing in monocytes

A Correction to this article was published on 11 September 2019

Abstract

In monocytic cells, Toll-like receptor 4 (TLR4)- and TLR2-induced reactive oxygen species (ROS) cause oxidative stress and inflammatory response; however, the mechanism is not well understood. The present study investigated the role of interleukin-1 receptor-associated kinase (IRAK), extracellular signal-regulated kinase (ERK), p67phox and Nox-2 in TLR4- and TLR2-induced ROS generation during interleukin-1 beta (IL-1β) transcription, processing, and secretion. An IRAK1/4 inhibitor, U0126, PD98059, an NADPH oxidase inhibitor (diphenyleneiodonium (DPI)), and a free radical scavenger (N-acetyl cysteine (NAC))-attenuated TLR4 (lipopolysaccharide (LPS))- and TLR2 (Pam3csk4)-induced ROS generation and IL-1β production in THP-1 and primary human monocytes. An IRAK1/4 inhibitor and siRNA-attenuated LPS- and Pam3csk4-induced ERK-IRAK1 association and ERK phosphorylation and activity. LPS and Pam3csk4 also induced IRAK1/4-, ERK- and ROS-dependent activation of activator protein-1 (AP-1), IL-1β transcription, and IL-1β processing because significant inhibition in AP-1 activity, IL-1β transcription, Pro- and mature IL-β expression, and caspase-1 activity was observed with PD98059, U0126, DPI, NAC, an IRAK1/4 inhibitor, tanshinone IIa, and IRAK1 siRNA treatment. IRAK-dependent ERK-p67phox interaction, p67phox translocation, and p67phox–Nox-2 interaction were observed. Nox-2 siRNA significantly reduced secreted IL-1β, IL-1β transcript, pro- and mature IL-1β expression, and caspase-1 activity indicating a role for Nox-2 in LPS- and Pam3csk4-induced IL-1β production, transcription, and processing. In the present study, we demonstrate that the TLR4- and TLR2-induced IRAK-ERK pathway cross-talks with p67phox-Nox-2 for ROS generation, thus regulating IL-1β transcription and processing in monocytic cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Lavieri R, Piccioli P, Carta S, Delfino L, Castellani P, Rubartelli A . TLR costimulation causes oxidative stress with unbalance of proinflammatory and anti-inflammatory cytokine production. J Immunol 2014; 192: 5373–5381.

    Article  CAS  PubMed  Google Scholar 

  2. Lucas K, Maes M . Role of the Toll like receptor (TLR) radical cycle in chronic inflammation: possible treatments targeting the TLR4 pathway. Mol Neurobiol 2013; 48: 190–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chandra R, Federici S, Bishwas T, Nemeth ZH, Deitch EA, Thomas JA et al. IRAK1-dependent signaling mediates mortality in polymicrobial sepsis. Inflammation 2013; 36: 1503–1512.

    Article  CAS  PubMed  Google Scholar 

  4. Dinarello CA . Interleukin-1β, interleukin-18, and the interleukin-1β converting enzyme. Ann N Y Acad Sci 1998; 856: 1–11.

    Article  CAS  PubMed  Google Scholar 

  5. Tassi S, Carta S, Vene R, Delfino L, Ciriolo MR, Rubartelli A . Pathogen-induced interleukin-1β processing and secretion is regulated by a biphasic redox response. J Immunol 2009; 183: 1456–1462.

    Article  CAS  PubMed  Google Scholar 

  6. Martinon F, Mayor A, Tschopp J . The inflammasomes: guardians of the body. Annu Rev Immunol 2009; 27: 229–265.

    Article  CAS  PubMed  Google Scholar 

  7. Netea MG, Nold-Petry CA, Nold MF, Joosten LA, Opitz B, van der Meer JH et al. Differential requirement for the activation of the inflammasome for processing and release of IL-1β in monocytes and macrophages. Blood 2009; 113: 2324–2335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Latz E, Xiao TS, Stutz A . Activation and regulation of the inflammasomes. Nat Rev Immunol 2013; 13: 397–411.

    Article  CAS  PubMed  Google Scholar 

  9. Gottipati S, Rao NL, Fung-Leung WP . IRAK1: a critical signaling mediator of innate immunity. Cell Signal 2008; 20: 269–276.

    Article  CAS  PubMed  Google Scholar 

  10. Song KW, Talamas FX, Suttmann RT, Olson PS, Barnett JW, Lee SW et al. The kinase activities of interleukin-1 receptor associated kinase (IRAK)-1 and 4 are redundant in the control of inflammatory cytokine expression in human cells. Mol Immunol 2009; 46: 1458–1466.

    Article  CAS  PubMed  Google Scholar 

  11. Cushing L, Stochaj W, Siegel M, Czerwinski R, Dower K, Wright Q et al. Interleukin 1/Toll-like receptor-induced autophosphorylation activates interleukin 1 receptor-associated kinase 4 and controls cytokine induction in a cell type-specific manner. J Biol Chem 2014; 289: 10865–10875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tiwari RL, Singh V, Singh A, Barthwal MK . IL-1R-associated kinase-1 mediates protein kinase Cδ-induced IL-1β production in monocytes. J Immunol 2011; 187: 2632–2645.

    Article  CAS  PubMed  Google Scholar 

  13. Moynagh PN . The Pellino family: IRAK E3 ligases with emerging roles in innate immune signalling. Trends Immunol 2009; 30: 33–42.

    Article  CAS  PubMed  Google Scholar 

  14. Daub K, Langer H, Seizer P, Stellos K, May AE, Goyal P et al. Platelets induce differentiation of human CD34+ progenitor cells into foam cells and endothelial cells. FASEB J 2006; 20: 2559–2561.

    Article  CAS  PubMed  Google Scholar 

  15. Liu W, Yin Y, Zhou Z, He M, Dai Y . OxLDL-induced IL-1β secretion promoting foam cells formation was mainly via CD36 mediated ROS production leading to NLRP3 inflammasome activation. Inflamm Res 2014; 63: 33–43.

    Article  PubMed  Google Scholar 

  16. Hayashi T, Juliet PA, Miyazaki A, Ignarro LJ, Iguchi A . High glucose downregulates the number of caveolae in monocytes through oxidative stress from NADPH oxidase: implications for atherosclerosis. Biochim Biophys Acta 2007; 1772: 364–372.

    Article  CAS  PubMed  Google Scholar 

  17. Kim JH, Na HJ, Kim CK, Kim JY, Ha KS, Lee H et al. The non-provitamin A carotenoid, lutein, inhibits NF-kappaB-dependent gene expression through redox-based regulation of the phosphatidylinositol 3-kinase/PTEN/Akt and NF-kappaB-inducing kinase pathways: role of H(2)O(2) in NF-kappaB activation. Free Radic Biol Med 2008; 45: 885–896.

    Article  CAS  PubMed  Google Scholar 

  18. Bae YS, Lee JH, Choi SH, Kim S, Almazan F, Witztum JL et al. Macrophages generate reactive oxygen species in response to minimally oxidized low-density lipoprotein: toll-like receptor 4- and spleen tyrosine kinase-dependent activation of NADPH oxidase 2. Circ Res 2009; 104: 210–218, 21p following 8.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang X, Shan P, Jiang G, Cohn L, Lee PJ . Toll-like receptor 4 deficiency causes pulmonary emphysema. J Clin Invest 2006; 116: 3050–3059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Repnik U, Knezevic M, Jeras M . Simple and cost-effective isolation of monocytes from buffy coats. J Immunol Methods 2003; 278: 283–292.

    Article  CAS  PubMed  Google Scholar 

  21. Mehta VB, Hart J, Wewers MD . ATP-stimulated release of interleukin (IL)-1β and IL-18 requires priming by lipopolysaccharide and is independent of caspase-1 cleavage. J Biol Chem 2001; 276: 3820–3826.

    Article  CAS  PubMed  Google Scholar 

  22. Li Z, Younger K, Gartenhaus R, Joseph AM, Hu F, Baer MR et al. Inhibition of IRAK1/4 sensitizes T cell acute lymphoblastic leukemia to chemotherapies. J Clin Invest 2015; 125: 1081–1097.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Barthwal MK, Sathyanarayana P, Kundu CN, Rana B, Pradeep A, Sharma C et al. Negative regulation of mixed lineage kinase 3 by protein kinase B/AKT leads to cell survival. J Biol Chem 2003; 278: 3897–3902.

    Article  CAS  PubMed  Google Scholar 

  24. Grube E, Buellesfeld L . Rapamycin analogs for stent-based local drug delivery. Everolimus- and tacrolimus-eluting stents. Herz 2004; 29: 162–166.

    Article  PubMed  Google Scholar 

  25. Berthier A, Lemaire-Ewing S, Prunet C, Monier S, Athias A, Bessede G et al. Involvement of a calcium-dependent dephosphorylation of BAD associated with the localization of Trpc-1 within lipid rafts in 7-ketocholesterol-induced THP-1 cell apoptosis. Cell Death Differ 2004; 11: 897–905.

    Article  CAS  PubMed  Google Scholar 

  26. Kumar S, Barthwal MK, Dikshit M . Cdk2 nitrosylation and loss of mitochondrial potential mediate NO-dependent biphasic effect on HL-60 cell cycle. Free Radic Biol Med 2010; 48: 851–861.

    Article  CAS  PubMed  Google Scholar 

  27. Singh V, Jain M, Prakash P, Misra A, Khanna V, Tiwari RL et al. A time course study on prothrombotic parameters and their modulation by anti-platelet drugs in hyperlipidemic hamsters. J Physiol Biochem 2011; 67: 205–216.

    Article  CAS  PubMed  Google Scholar 

  28. Garcia-Calvo M, Peterson EP, Leiting B, Ruel R, Nicholson DW, Thornberry NA . Inhibition of human caspases by peptide-based and macromolecular inhibitors. J Biol Chem 1998; 273: 32608–32613.

    Article  CAS  PubMed  Google Scholar 

  29. Shanmugam N, Reddy MA, Guha M, Natarajan R . High glucose-induced expression of proinflammatory cytokine and chemokine genes in monocytic cells. Diabetes 2003; 52: 1256–1264.

    Article  CAS  PubMed  Google Scholar 

  30. Forsberg M, Druid P, Zheng L, Stendahl O, Sarndahl E . Activation of Rac2 and Cdc42 on Fc and complement receptor ligation in human neutrophils. J Leukoc Biol 2003; 74: 611–619.

    Article  CAS  PubMed  Google Scholar 

  31. Kyriakis JM, Avruch J . Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 2001; 81: 807–869.

    Article  CAS  PubMed  Google Scholar 

  32. Bedard K, Krause KH . The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007; 87: 245–313.

    Article  CAS  PubMed  Google Scholar 

  33. Padgett LE, Burg AR, Lei W, Tse HM . Loss of NADPH oxidase-derived superoxide skews macrophage phenotypes to delay type 1 diabetes. Diabetes 2014; 64: 937–946.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Toshchakov V, Jones BW, Perera PY, Thomas K, Cody MJ, Zhang S et al. TLR4, but not TLR2, mediates IFN-β-induced STAT1alpha/beta-dependent gene expression in macrophages. Nat Immunol 2002; 3: 392–398.

    Article  CAS  PubMed  Google Scholar 

  35. Barrenschee M, Lex D, Uhlig S . Effects of the TLR2 agonists MALP-2 and Pam3Cys in isolated mouse lungs. PLoS One 2010; 5: e13889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sabroe I, Prince LR, Jones EC, Horsburgh MJ, Foster SJ, Vogel SN et al. Selective roles for Toll-like receptor (TLR)2 and TLR4 in the regulation of neutrophil activation and life span. J Immunol 2003; 170: 5268–5275.

    Article  CAS  PubMed  Google Scholar 

  37. Yang CS, Shin DM, Kim KH, Lee ZW, Lee CH, Park SG et al. NADPH oxidase 2 interaction with TLR2 is required for efficient innate immune responses to mycobacteria via cathelicidin expression. J Immunol 2009; 182: 3696–3705.

    Article  CAS  PubMed  Google Scholar 

  38. Wang J, Ouyang Y, Guner Y, Ford HR, Grishin AV . Ubiquitin-editing enzyme A20 promotes tolerance to lipopolysaccharide in enterocytes. J Immunol 2009; 183: 1384–1392.

    Article  CAS  PubMed  Google Scholar 

  39. Yang CS, Shin DM, Lee HM, Son JW, Lee SJ, Akira S et al. ASK1-p38 MAPK-p47phox activation is essential for inflammatory responses during tuberculosis via TLR2-ROS signalling. Cell Microbiol 2008; 10: 741–754.

    Article  CAS  PubMed  Google Scholar 

  40. Mendez-Samperio P, Perez A, Alba L . Reactive oxygen species-activated p38/ERK 1/2 MAPK signaling pathway in the Mycobacterium bovis bacillus Calmette Guerin (BCG)-induced CCL2 secretion in human monocytic cell line THP-1. Arch Med Res 2010; 41: 579–585.

    Article  CAS  PubMed  Google Scholar 

  41. Dewas C, Fay M, Gougerot-Pocidalo MA, El-Benna J . The mitogen-activated protein kinase extracellular signal-regulated kinase 1/2 pathway is involved in formyl-methionyl-leucyl-phenylalanine-induced p47phox phosphorylation in human neutrophils. J Immunol 2000; 165: 5238–5244.

    Article  CAS  PubMed  Google Scholar 

  42. Carta S, Tassi S, Pettinati I, Delfino L, Dinarello CA, Rubartelli A . The rate of interleukin-1β secretion in different myeloid cells varies with the extent of redox response to Toll-like receptor triggering. J Biol Chem 2011; 286: 27069–27080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. MacGillivray MK, Cruz TF, McCulloch CA . The recruitment of the interleukin-1 (IL-1) receptor-associated kinase (IRAK) into focal adhesion complexes is required for IL-1β-induced ERK activation. J Biol Chem 2000; 275: 23509–23515.

    Article  CAS  PubMed  Google Scholar 

  44. Gaestel M, Kotlyarov A, Kracht M . Targeting innate immunity protein kinase signalling in inflammation. Nat Rev Drug Discov 2009; 8: 480–499.

    Article  CAS  PubMed  Google Scholar 

  45. Kogut MH, Genovese KJ, He H . Flagellin and lipopolysaccharide stimulate the MEK-ERK signaling pathway in chicken heterophils through differential activation of the small GTPases, Ras and Rap1. Mol Immunol 2007; 44: 1729–1736.

    Article  CAS  PubMed  Google Scholar 

  46. Koziczak-Holbro M, Gluck A, Tschopp C, Mathison JC, Gram H . IRAK-4 kinase activity-dependent and -independent regulation of lipopolysaccharide-inducible genes. Eur J Immunol 2008; 38: 788–796.

    Article  CAS  PubMed  Google Scholar 

  47. Kollewe C, Mackensen AC, Neumann D, Knop J, Cao P, Li S et al. Sequential autophosphorylation steps in the interleukin-1 receptor-associated kinase-1 regulate its availability as an adapter in interleukin-1 signaling. J Biol Chem 2004; 279: 5227–5236.

    Article  CAS  PubMed  Google Scholar 

  48. Pauls E, Nanda SK, Smith H, Toth R, Arthur JS, Cohen P . Two phases of inflammatory mediator production defined by the study of IRAK2 and IRAK1 knock-in mice. J Immunol 2013; 191: 2717–2730.

    Article  CAS  PubMed  Google Scholar 

  49. Li S, Strelow A, Fontana EJ, Wesche H . IRAK-4: a novel member of the IRAK family with the properties of an IRAK-kinase. Proc Natl Acad Sci USA 2002; 99: 5567–5572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pedram A, Razandi M, Levin ER . Extracellular signal-regulated protein kinase/Jun kinase cross-talk underlies vascular endothelial cell growth factor-induced endothelial cell proliferation. J Biol Chem 1998; 273: 26722–26728.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang W, Liu HT . MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 2002; 12: 9–18.

    Article  CAS  PubMed  Google Scholar 

  52. Jeon YJ, Han SH, Lee YW, Lee M, Yang KH, Kim HM . Dexamethasone inhibits IL-1β gene expression in LPS-stimulated RAW 264.7 cells by blocking NF-kappa B/Rel and AP-1 activation. Immunopharmacology 2000; 48: 173–183.

    Article  CAS  PubMed  Google Scholar 

  53. Cruz CM, Rinna A, Forman HJ, Ventura AL, Persechini PM, Ojcius DM . ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J Biol Chem 2007; 282: 2871–2879.

    Article  CAS  PubMed  Google Scholar 

  54. Fernandes-Alnemri T, Kang S, Anderson C, Sagara J, Fitzgerald KA, Alnemri ES . Cutting edge: TLR signaling licenses IRAK1 for rapid activation of the NLRP3 inflammasome. J Immunol 2013; 191: 3995–3999.

    Article  CAS  PubMed  Google Scholar 

  55. Lin KM, Hu W, Troutman TD, Jennings M, Brewer T, Li X et al. IRAK-1 bypasses priming and directly links TLRs to rapid NLRP3 inflammasome activation. Proc Natl Acad Sci USA 2014; 111: 775–780.

    Article  CAS  PubMed  Google Scholar 

  56. Cathcart MK . Regulation of superoxide anion production by NADPH oxidase in monocytes/macrophages: contributions to atherosclerosis. Arterioscler Thromb Vasc Biol 2004; 24: 23–28.

    Article  CAS  PubMed  Google Scholar 

  57. Obenauer JC, Cantley LC, Yaffe MB . Scansite 2.0: Proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res 2003; 31: 3635–3641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kampfrath T, Maiseyeu A, Ying Z, Shah Z, Deiuliis JA, Xu X et al. Chronic fine particulate matter exposure induces systemic vascular dysfunction via NADPH oxidase and TLR4 pathways. Circ Res 2011; 108: 716–726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the technical help provided by Mr. C.P. Pandey, Mrs. M. Chaturvedi, and Mr. A.L. Vishwakarma. Funding from THUNDER BSC0102 CSIR Network project to Manoj Kumar Barthwal is gratefully acknowledged. Fellowships from University Grants Commission to Ankita Singh and Council of Scientific and Industrial Research to Vishal Singh and Rajiv L Tiwari are acknowledged. CDRI communication number: 9008.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no commercial or financial conflict of interest.

Additional information

Supplementary information of this article can be found on Cellular & Molecular Immunology website: http://www.nature.com/cmi.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Singh, V., Tiwari, R. et al. The IRAK-ERK-p67phox-Nox-2 axis mediates TLR4, 2-induced ROS production for IL-1β transcription and processing in monocytes. Cell Mol Immunol 13, 745–763 (2016). https://doi.org/10.1038/cmi.2015.62

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2015.62

Keywords

This article is cited by

Search

Quick links