Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Measles virus hemagglutinin triggers intracellular signaling in CD150-expressing dendritic cells and inhibits immune response

A Correction to this article was published on 20 December 2019

This article has been updated

Abstract

Measles virus (MV) is highly contagious pathogen, which causes a profound immunosuppression, resulting in high infant mortality. This virus infects dendritic cells (DCs) following the binding of MV hemagglutinin (MV-H) to CD150 receptor and alters DC functions by a mechanism that is not completely understood. We have analyzed the effect of MV-H interaction with CD150-expressing DCs on the DC signaling pathways and consequent phenotypic and functional changes in the absence of infectious context. We demonstrated that contact between CD150 on human DCs and MV-H expressed on membrane of transfected CHO cells was sufficient to modulate the activity of two major regulatory pathways of DC differentiation and function: to stimulate Akt and inhibit p38 MAPK phosphorylation, without concomitant ERK1/2 activation. Furthermore, interaction with MV-H decreased the expression level of DC activation markers CD80, CD83, CD86, and HLA-DR and strongly downregulated IL-12 production but did not modulate IL-10 secretion. Moreover, contact with MV-H suppressed DC-mediated T-cell alloproliferation, demonstrating profound alteration of DC maturation and functions. Finally, engagement of CD150 by MV-H in mice transgenic for human CD150 decreased inflammatory responses, showing the immunosuppressive effect of CD150–MV-H interaction in vivo. Altogether, these results uncover novel mechanism of MV-induced immunosuppression, implicating modulation of cell signaling pathways following MV-H interaction with CD150-expressing DCs and reveal anti-inflammatory effects of CD150 stimulation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Change history

  • 20 December 2019

    "An amendment to this paper has been published and can be accessed via a link at the top of the paper."

  • 20 December 2019

    "An amendment to this paper has been published and can be accessed via a link at the top of the paper."

  • 20 December 2019

    "An amendment to this paper has been published and can be accessed via a link at the top of the paper."

  • 20 December 2019

    "An amendment to this paper has been published and can be accessed via a link at the top of the paper."

References

  1. Perry RT, Gacic-Dobo M, Dabbagh A et al. Global control and regional elimination of measles, 2000-2012. MMWR Morb Mortal Wkly Rep 2014; 63: 103–107.

    PubMed  PubMed Central  Google Scholar 

  2. Moss WJ, Griffin DE . Measles. Lancet 2012; 379: 153–164.

    Article  PubMed  Google Scholar 

  3. de Swart RL, Ludlow M, de Witte L et al. Predominant infection of CD150+ lymphocytes and dendritic cells during measles virus infection of macaques. PLoS Pathog 2007; 3: e178.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Grosjean I, Caux C, Bella C et al. Measles virus infects human dendritic cells and blocks their allostimulatory properties for CD4+ T cells. J Exp Med 1997; 186: 801–812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schnorr JJ, Xanthakos S, Keikavoussi P, Kampgen E, ter Meulen V, Schneider-Schaulies S . Induction of maturation of human blood dendritic cell precursors by measles virus is associated with immunosuppression, Proc Natl Acad Sci U S A 1997; 94: 5326–5331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fugier-Vivier I, Servet-Delprat C, Rivailler P, Rissoan MC, Liu YJ, Rabourdin-Combe C . Measles virus suppresses cell-mediated immunity by interfering with the survival and functions of dendritic and T cells. J Exp Med 1997; 186: 813–823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Takaki H, Oshiumi H, Matsumoto M, Seya T . Dendritic cell subsets involved in type I IFN induction in mouse measles virus infection models. Int J Biochem Cell Biol 2014; 53C: 329–333.

    Article  Google Scholar 

  8. McChesney MB, Altman A, Oldstone MB . Suppression of T lymphocyte function by measles virus is due to cell cycle arrest in G1. J Immunol 1988; 140: 1269–1273.

    CAS  PubMed  Google Scholar 

  9. Naniche D, Reed SI, Oldstone MB . Cell cycle arrest during measles virus infection: a G0-like block leads to suppression of retinoblastoma protein expression. J Virol 1999; 73: 1894–1901.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. de Witte L, Abt M, Schneider-Schaulies S, van Kooyk Y, Geijtenbeek TB . Measles virus targets DC-SIGN to enhance dendritic cell infection. J Virol 2006; 80: 3477–3486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mesman AW, Zijlstra-Willems EM, Kaptein TM et al. Measles virus suppresses RIG-I-like receptor activation in dendritic cells via DC-SIGN-mediated inhibition of PP1 phosphatases, Cell Host Microbe 2014; 16: 31–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Naniche D, Varior-Krishnan G, Cervoni F et al. Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J Virol 1993; 67: 6025–6032.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Dorig RE, Marcil A, Chopra A, Richardson CD . The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 1993; 75: 295–305.

    Article  CAS  PubMed  Google Scholar 

  14. Tatsuo H, Ono N, Tanaka K, Yanagi Y . SLAM (CDw150) is a cellular receptor for measles virus. Nature 2000; 406: 893–897.

    Article  CAS  PubMed  Google Scholar 

  15. Muhlebach MD, Mateo M, Sinn PL et al. Adherens junction protein nectin-4 is the epithelial receptor for measles virus. Nature 2011; 480: 530–533.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Noyce RS, Bondre DG, Ha MN et al. Tumor cell marker PVRL4 (nectin 4) is an epithelial cell receptor for measles virus. PLoS Pathog 2011; 7: e1002240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cocks BG, Chang CC, Carballido JM, Yssel H, de Vries JE, Aversa G . A novel receptor involved in T-cell activation. Nature 1995; 376: 260–263.

    Article  CAS  PubMed  Google Scholar 

  18. Sidorenko SP, Clark EA . The dual-function CD150 receptor subfamily: the viral attraction. Nat Immunol 2003; 4: 19–24.

    Article  CAS  PubMed  Google Scholar 

  19. Wang N, Satoskar A, Faubion W et al. The cell surface receptor SLAM controls T cell and macrophage functions. J Exp Med 2004; 199: 1255–1264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Howie D, Okamoto S, Rietdijk S, et al. The role of SAP in murine CD150 (SLAM)-mediated T-cell proliferation and interferon gamma production. Blood 2002; 100: 2899–2907.

    Article  CAS  PubMed  Google Scholar 

  21. Latour S, Gish G, Helgason CD, Humphries RK, Pawson T, Veillette A . Regulation of SLAM-mediated signal transduction by SAP, the X-linked lymphoproliferative gene product. Nat Immunol 2001; 2: 681–690.

    Article  CAS  PubMed  Google Scholar 

  22. Mikhalap SV, Shlapatska LM, Yurchenko OV et al. The adaptor protein SH2D1A regulates signaling through CD150 (SLAM) in B cells. Blood 2004; 104: 4063–4070.

    Article  CAS  PubMed  Google Scholar 

  23. Yurchenko M, Shlapatska LM, Romanets OL et al. CD150-mediated Akt signalling pathway in normal and malignant B cells. Exp Oncol 2011; 33: 9–18.

    CAS  PubMed  Google Scholar 

  24. Yurchenko MY, Kovalevska LM, Shlapatska LM, Berdova GG, Clark EA, Sidorenko SP . CD150 regulates JNK1/2 activation in normal and Hodgkin’s lymphoma B cells. Immunol Cell Biol 2010; 88: 565–574.

    Article  CAS  PubMed  Google Scholar 

  25. Cannons JL, Tangye SG, Schwartzberg PL . SLAM family receptors and SAP adaptors in immunity. Annu Rev Immunol 2011; 29: 665–705.

    Article  CAS  PubMed  Google Scholar 

  26. Kerdiles YM, Sellin CI, Druelle J, Horvat B . Immunosuppression caused by measles virus: role of viral proteins. Rev Med Virol 2006; 16: 49–63.

    Article  CAS  PubMed  Google Scholar 

  27. Kouomou DW, Wild TF . Adaptation of wild-type measles virus to tissue culture. J Virol 2002; 76: 1505–1509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schnell MJ, Buonocore L, Kretzschmar E, Johnson E, Rose JK . Foreign glycoproteins expressed from recombinant vesicular stomatitis viruses are incorporated efficiently into virus particles. Proc Natl Acad Sci U S A 1996; 93: 11359–11365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Naniche D, Wild TF, Rabourdin-Combe C, Gerlier D . A monoclonal antibody recognizes a human cell surface glycoprotein involved in measles virus binding. J Gen Virol 1992; 73: 2617–2624.

    Article  CAS  PubMed  Google Scholar 

  30. Giraudon P, Wild TF . Correlation between epitopes on hemagglutinin of measles virus and biological activities: passive protection by monoclonal antibodies is related to their hemagglutination inhibiting activity. Virology 1985; 144: 46–58.

    Article  CAS  PubMed  Google Scholar 

  31. Shingai M, Inoue N, Okuno T et al. Wild-type measles virus infection in human CD46/CD150-transgenic mice: CD11c-positive dendritic cells establish systemic viral infection. J Immunol 2005; 175: 3252–3261.

    Article  CAS  PubMed  Google Scholar 

  32. Marie JC, Astier AL, Rivailler P, Rabourdin-Combe C, Wild TF, Horvat B . Linking innate and acquired immunity: divergent role of CD46 cytoplasmic domains in T cell induced inflammation. Nat Immunol 2002; 3: 659–666.

    Article  CAS  PubMed  Google Scholar 

  33. Avota E, Avots A, Niewiesk S et al. Disruption of Akt kinase activation is important for immunosuppression induced by measles virus. Nat Med 2001; 7: 725–731.

    Article  CAS  PubMed  Google Scholar 

  34. Marie JC, Kehren J, Trescol-Biemont MC et al. Mechanism of measles virus-induced suppression of inflammatory immune responses. Immunity 2001; 14: 69–79.

    Article  CAS  PubMed  Google Scholar 

  35. Marie JC, Saltel F, Escola JM, Jurdic P, Wild TF, Horvat B . Cell surface delivery of the measles virus nucleoprotein: a viral strategy to induce immunosuppression. J Virol 2004; 78: 11952–11961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bieback K, Lien E, Klagge IM et al. Hemagglutinin protein of wild-type measles virus activates toll-like receptor 2 signaling. J Virol 2002; 76: 8729–8736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Geijtenbeek TB, Torensma R, van Vliet SJ et al. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 2000; 100: 575–585.

    Article  CAS  Google Scholar 

  38. Nakahara T, Moroi Y, Uchi H, Furue M . Differential role of MAPK signaling in human dendritic cell maturation and Th1/Th2 engagement. J Dermatol Sci 2006; 42: 1–11.

    Article  CAS  PubMed  Google Scholar 

  39. Caparrós E, Munoz P, Sierra-Filardi E et al. DC-SIGN ligation on dendritic cells results in ERK and PI3K activation and modulates cytokine production. Blood 2006; 107: 3950–3958.

    Article  PubMed  Google Scholar 

  40. Trinchieri G . Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 2003; 3: 133–146.

    Article  CAS  PubMed  Google Scholar 

  41. Grabbe S, Schwarz T . Immunoregulatory mechanisms involved in elicitation of allergic contact hypersensitivity. Immunol Today 1998; 19: 37–44.

    Article  CAS  PubMed  Google Scholar 

  42. Tamashiro VG, Perez HH, Griffin DE . Prospective study of the magnitude and duration of changes in tuberculin reactivity during uncomplicated and complicated measles. Pediatr Infect Dis J 1987; 6: 451–454.

    Article  CAS  PubMed  Google Scholar 

  43. de Witte L, de Vries RD, van der Vlist M et al. DC-SIGN and CD150 have distinct roles in transmission of measles virus from dendritic cells to T-lymphocytes. PLoS Pathog 2008; 4: e1000049.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Murabayashi N, Kurita-Taniguchi M, Ayata M, Matsumoto M, Ogura H, Seya T . Susceptibility of human dendritic cells (DCs) to measles virus (MV) depends on their activation stages in conjunction with the level of CDw150: role of Toll stimulators in DC maturation and MV amplification. Microbes Infect 2002; 4: 785–794.

    Article  CAS  PubMed  Google Scholar 

  45. Hahm B, Arbour N, Oldstone MB . Measles virus interacts with human SLAM receptor on dendritic cells to cause immunosuppression. Virology 2004; 323: 292–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rethi B, Gogolak P, Szatmari I et al. SLAM/SLAM interactions inhibit CD40-induced production of inflammatory cytokines in monocyte-derived dendritic cells. Blood 2006; 107: 2821–2829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Qeska V, Barthel Y, Herder V et al. Canine distemper virus infection leads to an inhibitory phenotype of monocyte-derived dendritic cells in vitro with reduced expression of co-stimulatory molecules and increased interleukin-10 transcription. PLoS One 2014; 9: e96121.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Atabani SF, Byrnes AA, Jaye A et al. Natural measles causes prolonged suppression of interleukin-12 production. J Infect Dis 2001; 184: 1–9.

    Article  CAS  PubMed  Google Scholar 

  49. Polack FP, Hoffman SJ, Moss WJ, Griffin DE . Altered synthesis of interleukin-12 and type 1 and type 2 cytokinesin rhesus macaques during measles and atypical measles. J Infect Dis 2002; 185: 13–19.

    Article  CAS  PubMed  Google Scholar 

  50. Hahm B, Cho JH, Oldstone MB . Measles virus-dendritic cell interaction via SLAM inhibits innate immunity: selective signaling through TLR4 but not other TLRs mediates suppression of IL-12 synthesis. Virology 2007; 358: 251–257.

    Article  CAS  Google Scholar 

  51. Karp CL, Wysocka M, Wahl LM et al. Mechanism of suppression of cell-mediated immunity by measles virus. Science 1996; 273: 228–231.

    Article  CAS  Google Scholar 

  52. Waggoner SN, Cruise MW, Kassel R, Hahn YS . gC1q receptor ligation selectively down-regulates human IL-12 production through activation of the phosphoinositide 3-kinase pathway. J Immunol 2005; 175: 4706–4714.

    Article  CAS  PubMed  Google Scholar 

  53. Martínez D, Vermeulen M, von Euw E et al. Extracellular acidosis triggers the maturation of human dendritic cells and the production of IL-12. J Immunol 2007; 179: 1950–1959.

    Article  PubMed  Google Scholar 

  54. Arrighi J, Rebsamen M, Rousset F, Kindler V, Hauser C . A critical role for p38 mitogen-activated protein kinase in the maturation of human blood-derived dendritic cells induced by lipopolysaccharide, TNF-alpha, and contact sensitizers. J Immunol 2001; 166: 3837–3845.

    Article  CAS  PubMed  Google Scholar 

  55. Hirsch RL, Griffin DE, Johnson RT et al. Cellular immune responses during complicated and uncomplicated measles virus infections in man. Clin Immunol Immunopathol 1984; 31: 1–12.

    Article  CAS  PubMed  Google Scholar 

  56. Ward BJ, Griffin DE . Changes in cytokine production after measles virus vaccination: predominant production of IL-4 suggests induction of a Th2 response. Clin Immunol Immunopathol 1993; 67: 171–177.

    Article  CAS  PubMed  Google Scholar 

  57. Hahm B, Arbour N, Naniche D, Homann D, Manchester M, Oldstone MB . Measles virus infects and suppresses proliferation of T lymphocytes from transgenic mice bearing human signaling lymphocytic activation molecule. J Virol 2003; 77: 3505–3515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yu XL, Cheng YM, Shi BS et al. Measles virus infection in adults induces production of IL-10 and is associated with increased CD4+ CD25+ regulatory T cells. J Immunol 2008; 181: 7356–7366.

    Article  CAS  PubMed  Google Scholar 

  59. Sellin CI, Jégou J, Renneson J et al. Interplay between virus-specific effector response and Foxp3 regulatory T cells in measles virus immunopathogenesis. PLoS One 2009; 4: e4948.

    Article  PubMed  PubMed Central  Google Scholar 

  60. de Vries RD, McQuaid S, van Amerongen G et al. Measles immune suppression: lessons from the macaque model. PLoS Pathog 2012; 8: e1002885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work was supported by INSERM, Ligue contre le Cancer, Ministere des affaires Etrangeres, Partenariat Curien Franco-Ukrainien “Dnipro” and The State Fund for Fundamental Research of Ukraine, National Academy of Sciences of Ukraine. Olga Romanets-Korbut was supported by FEBS Summer and Collaborative Fellowships, Bourse de Gouvernement Francais and AccueilDoc from Region Rhone Alpes. Authors thank to Dr T.B.H. Geijtenbeek (University of Amsterdam) for generous gift of AZN-D1 mAb and Dr D. Gerlier and members of the CIRI-INSERM-U1111 group “Immunobiology of viral infections” for their help in the achievement of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Branka Horvat.

Ethics declarations

Competing interests

The authors declare no financial or commercial conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanets-Korbut, O., Kovalevska, L., Seya, T. et al. Measles virus hemagglutinin triggers intracellular signaling in CD150-expressing dendritic cells and inhibits immune response. Cell Mol Immunol 13, 828–838 (2016). https://doi.org/10.1038/cmi.2015.55

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2015.55

Keywords

This article is cited by

Search

Quick links