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The promise of cd T cells and the cd T cell receptor for
cancer immunotherapy

Mateusz Legut, David K Cole and Andrew K Sewell

cd T cells form an important part of adaptive immune responses against infections and malignant transformation. The

molecular targets of human cd T cell receptors (TCRs) remain largely unknown, but recent studies have confirmed the

recognition of phosphorylated prenyl metabolites, lipids in complex with CD1 molecules and markers of cellular stress.

All of these molecules are upregulated on various cancer types, highlighting the potential importance of the cd T cell

compartment in cancer immunosurveillance and paving the way for the use of cd TCRs in cancer therapy. Ligand

recognition by the cd TCR often requires accessory/co-stimulatory stress molecules on both T cells and target cells; this

cellular stress context therefore provides a failsafe against harmful self-reactivity. Unlike ab T cells, cd T cells recognise

their targets irrespective of HLA haplotype and therefore offer exciting possibilities for off-the-shelf, pan-population

cancer immunotherapies. Here, we present a review of known ligands of human cd T cells and discuss the promise of

harnessing these cells for cancer treatment.
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INTRODUCTION

The adaptive immune compartment comprises of three dis-

tinct cell subsets, namely B cells, T cells expressing an ab T cell

receptor (TCR) and T cells expressing a cd TCR. These cells

generate their defining B cell receptors (BCRs), or TCRs using

somatic V(D)J recombination which enables them to recognise

a vast spectrum of antigens. Despite the fact that gene segments

used in rearrangement leading to ab and cd TCRs were dis-

covered almost at the same time,1 the elucidation of ab T

cell biology progressed rapidly, while the complexities of cd
T cells have been slower to emerge. Nevertheless, the tripartite

organisation of the lymphocytic immune system appears to

be a fundamental requirement for efficient function, as this

organisation is present both in jawed and jawless vertebrates,

even though the manner of generating the defining receptors

completely differs between these lineages.2 The unique func-

tions of cd T cells, particularly in terms of antigen recognition

and kinetics of response, provide further evidence that cd T

cells represent an important and non-redundant lymphocyte

subset.

V(D)J recombination of the c and d chain genes is shown in

Figure 1 (IMGT nomenclature3). There are 4–6 (depending on

haplotype) functional variable (V)c, and 8 Vd gene segments in

humans.4 Some Vd segments can be used to generate both the a
and d chains of the TCR, as they are located within the tcra

locus.5,6 The number of V segments that can be used for cd T

cells is much smaller than that for ab T cells (46 Va and 48 Vb
segments). However, the potential diversity of cd TCR sur-

passes that of ab TCR, owing to extensive N-region nucleotide

additions and presence of distinct D segments (present only in

tcrd but not tcrg locus) which can be used simultaneously and

read in all three frames. This junctional variability results in the

generation of hyperdiversity focused on the complementarity

determining region (CDR)3 loops which are crucial for antigen

recognition.7 Furthermore, the length of the CDR3s of both a
and b chains is constrained, due to the requirement to make a

well-defined contact with peptide-MHC complexes, while

CDR3 in the d chain is usually more variable and longer than

its c counterpart.8 With regard to CDR3 length, the cd TCR

resembles the BCR more than ab TCR. This greater variability

of cd TCRsmay translate into recognition of both proteins and

smaller molecules. The CDRs form loops in the cd TCR struc-

ture to provide a highly variable antigen-binding domain at the

membrane-distal end of the molecule (Figure 2).

After arising from a common progenitor in the thymus, the

maturation pathways of cd and ab T cells diverge. Notably, the
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development of cd TCR1 thymocytes does not require the

expression of Aire,9 a transcriptional regulator crucial for the

negative selection of autoreactive abT cells. Themechanism by

which T cells become committed to the ab or cd lineage is not
yet fully understood as thymocytes rearrange b, c and d genes at
the same time which can lead to simultaneous expression of

the cd TCR and pre-TCR (invariant Ta paired with TCR-b).10

However, recent evidence suggests that thymocytes adopt the

cd T cell lineage after receiving a strong signal via cd TCR,

which can be additively enforced by additional signalling via

pre-TCR – thus enabling weak ligands to drive cd T cell lineage

commitment as well.11 If cells fail to receive this survival signal

they silence the cd TCR and undergo TCR-a rearrangement.12

This signal strength model implies that cd T cells need to

encounter a cognate ligand in the thymus. However, to date

only one molecule, namely Skint-1, has been described as a

thymically expressed ligand necessary for development of a

subset of mouse cd T cells.13 The identity of other ligands

required for positive selection of cd remains to be elucidated.

Strong cd TCR-mediated interactions in the thymus have been

shown to result in upregulation of CD73, the earliest identified

marker of cd lineage commitment.14 CD73 is expressed by the

vast majority of cd T cells in the periphery, supporting the

notion that recognition of the ligand in the thymus is a common

occurrence in cd T cell development. Another striking difference

in development between ab and cd T cells is the acquisition of

effector functions. Conventional ab T cells acquire their effector

phenotype, in terms of produced cytokines, upon interactions

with their targets in the periphery, while cd T cell functions, like

their anatomical location, appear to be pre-determined in the

thymus by the chain usage of their TCR.15

In humans, cd T cells constitute 0.5–10% of T cells in peri-

pheral blood but are substantially enriched in epithelial tissues

(e.g. in skin, lungs, intestine). The majority of peripheral blood
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Figure 1 V(D)J recombination at the tcrg (upper panel) and tcra/tcrd (lower panel) locus. Only the functional gene segments are shown. The TCR-c
chain is produced using only a single V-J recombination, with P/N additions occurring at the V-J junction. The TCR-d chain is produced using V-D-J
recombinations that can involve either 2 or 3 D segments, leading to the creation of up to 4 N diversity regions. For the clarity of the figure, only the
gene segments that can be used in TCR-d chain production are presented (lower panel). The organisation of loci tcrg and tcra/tcrd was adapted
from IMGT database.3
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cd T cells express the Vd2 chain, while the tissue-resident cd T
cells are mainly Vd1pos or Vd3pos. The precise reasons for this
tissue specificity and the mechanisms that underlie it are yet to

be elucidated. The role of cd T cells in infection is well estab-

lished and has been amply reviewed elsewhere.16 More recent

discoveries suggest that cd T cells play a role in anticancer

immunity, and it has been known for over a decade that mice

lacking the cd TCR are more susceptible to some cancers

through unknown mechanisms.17 Here, we review recent ad-

vances in discovering cancer-associated antigens recognised by

human cd T cells and the evidence that there is a broad spec-

trum of cd T cell ligands waiting to be discovered. We also

provide a brief overview of therapeutic applications of cd T

cells in cancer immunotherapy.

cd TCR RECOGNITION OF CANCER-ASSOCIATED

ANTIGENS

Known ligands of human cd TCR are scarce when compared with

the vast spectrum of antigens recognised by ab T cells. However,

significant progress in this area has been made in the recent years,

linking the observed recognition of tumour cells to specific

ligands confirmed by biochemical and biophysical data. Themain

targets encompass phosphorylated prenyl antigens, endo- and

exogenous lipids presented by CD1-family proteins, and cell stress

molecules that can indicate DNA damage, viral infection or

malignant transformation.

Recognition of phosphoantigens

Phosphorylated isoprenoid metabolites, commonly referred to

as phosphoantigens (PAgs), can be produced by both bacterial

and eukaryotic cells, using non-mevalonate and mevalonate

biosynthetic pathways, respectively. The accumulation of

PAgs, such as isopentenyl pyrophosphate (IPP), is a result of

metabolic dysregulation that commonly occurs in tumour

cells18 and therefore the enzymes of the mevalonate pathway

are a valid target for anticancer drugs (reviewed in Clendening

and Penn19). Importantly, PAgs have long been known to be

recognised by cd T cells expressing Vc9Vd2 TCR. The presence
of this peripheral blood subset of cd T cells is restricted to

higher primates, with a few exceptions.20 Importantly, mice

and other rodents do not possess any corresponding T cell

subsets that respond to PAgs.

The mode of PAg recognition has only recently been

resolved. Early studies indicated that recognition of PAgs by

human Vc9Vd2 T cells required cell surface presentation by a

species-specific molecule.21 One of the proposed molecules

presenting the antigens was F1-ATPase which is expressed on

the surface of a wide range of tumour cells.22 Further research

suggested that PAgs could bind F1-ATPase in the form of a

nucleotide derivative, increasing the efficiency of T cell activa-

tion. However, as antibody blocking of F1-ATPase did not

abrogate T cell recognition, other molecules were thought to

be involved in PAg presentation.23 The cell surface-expressed

Butyrophilin molecules are encoded within the MHC class I

locus and offer attractive potential candidates as PAg-present-

ing molecules. Butyrophilin-3A (BTN3A/CD277) is present in

humans in three isoforms (BTN3A1, BTN3A2 and BTN3A3).24

Recent studies have shown that antibodies specific for BTN3A1

could either mimic PAg-mediated activation of the TCR (anti-

body 20.1) or abrogate this stimulatory effect (antibody
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103.2).25 Biophysical analysis of the underlying interactions sug-

gested that 20.1 antibody induced/stabilised a TCR-activating

conformation of BTN3A1.26 Additionally, PAgs and 20.1 anti-

body activated the same intracellular signalling pathways in the

responding cd T cells, suggesting a common recognition pro-

cess.27 Interestingly, transduction studies revealed that while

the expression of BTN3A1 alone is sufficient for the activation

mediated by 20.1, additional genes located on chromosome

6 are required for PAg-mediated recognition.28 These studies

suggest the possible existence of molecules responsible for effi-

cient loading of PAgs into butyrophilin-3A1 in a conceptually

similar manner to loading peptides into MHC, or that there is a

requirement for a co-stimulatory ligand. Two main models

explaining the role of BTN3A1 have been proposed, involving

intracellular or extracellular binding of pyrophosphate antigens

(Figure 3a). Sandstrom et al. demonstrated that BTN3A1 acts

as a sensor of intracellular PAgs by binding them in a surface

pocket located in an intracellular domain termed B30.2.29

This result was confirmed by the crystal structure of the

B30.2-PAg complex (Figure 3c) and by mutational analysis.

Introduction of the B30.2 domain of BTN3A1 into the non-

activating isoform BTN3A3 was shown to confer PAg binding

and T cell stimulation. This result falls in line with observa-

tions by Wang et al. who demonstrated a lack of high-affinity

binding of PAgs to the extracellular regions of BTN3A1.30 In

direct contrast, De Libero and colleagues resolved the crystal

structure of two PAgs (IPP and HMBPP) in complex with the

extracellular domain of BTN3A1 where the antigen was

bound in a shallow surface pocket (Figure 3b).31 The binding

affinity of Vc9Vd2 TCR to BTN3A1 was relatively weak (KD

, 0.1 mM) but increased in the presence of IPP. These two

mechanisms need not be mutually exclusive and it remains

possible that PAgs bind to both the intracellular and extra-

cellular domains of BTN3A1 to provide a failsafe against

aberrant TCR triggering and autoimmunity. The binding

affinities of IPP to BTN3A1 and the Vc9Vd2 TCR interaction

with BTN3A1-IPP are summarised in Table 1. Further invest-

igation will be required to determine the exact mechanism of

antigen presentation by BTN3A1.

cdT cells recognise specific ligands in the context of antigen-

presenting molecules from the CD1 family

Four members of the human CD1 family of proteins (CD1a–

CD1d) present both endogenous and exogenous lipids that can

be recognised by both ab and cdT cells.32 Early reports demon-

strated that mucosal cd T cell clones showed broad reactivity

towards these four CD1 isoforms loaded with exogenous phos-

pholipids.33 Further studies showed that T cells expressing the

Vd3 chain were capable of killing tumour cells expressing

CD1d (but not other CD1 isoforms) without addition of exo-

genous lipids.34 Additionally, the cd T cell compartment of

peripheral blood was shown to recognise CD1d in complex

with self-lipids termed sulphatides (sulphated galactosylcera-

mides).35 CD1d-reactive cd T cells expressed similar Vd1-Jd1
chains paired with different Vc chains. Notably, some of the

generated clones could bind CD1d without any loaded lipid.

Recent studies provided the structural basis for CD1d-sulpha-

tide recognition, demonstrating that the binding occurred

solely via the d chain of the TCR – the germline-encoded resi-

dues made contact with the CD1d molecule whereas the

CDR3d loop interacted with sulphatide (Figure 4a).36 As the

CDR3 region is the most variable part of the cd TCR, it is

a b

cLoading (additional
proteins involved?)

IPP

IPP

Aminobisphosphonates
Metabolic deregulation

Downstream
products

B30.2 domain

BTN3A1

Mevalonate pathway
enzymes

Figure 3 (a) Schematic representation of the phosphoantigen presentation pathways by human cells showing phosphoantigen (IPP) binding in the
extracellular pocket of BTN3A1 (b) and phosphoantigen (cHDMAPP) binding in the intracellular domain (B30.2) of BTN3A1 (C). PDB IDs: 4JKW
(B)31 and 4N7U (C).29
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possible that a subset of cd T cells can recognise diverse lipid

cargoes presented by CD1 molecules, in a similar way to ab
TCR recognition of peptides bound to MHC. A similar mode

of interaction was reported for CD1d-a-galactosylceramide

(aGalCer) and a Vd1 TCR (9C2) where CD1d was bound by

germline-encoded residues in the d chain while the lipid was

recognised by the hypervariable CDR3c loop (Figure 4b).37

Interestingly, Pellicci et al. have recently discovered a novel T

cell subgroup recognising CD1d-aGalCer complex, expressing

a Vd1 domain linked to permissive Ja-Ca segments, paired

with diverse TCR-b chains (termed d/ab T cells).38 Again,

the binding of the TCR to CD1d was mainly driven by germ-

line-encoded residues in the Vd1 domain while the specific

recognition of the bound lipid was exclusively mediated by

the b chain of the TCR (Figure 4c). The affinity of the inter-

action between TCRd/ab and CD1d-aGalCer was, however,
much higher than described for 9C2 cd TCR (the binding

affinities of TCRs to CD1d complexed with lipid ligands are

summarised in Table 2). Importantly, functional d/ab T cells

comprise a high proportion of human CD1d-reactive T cells.

aGalCer has been so far investigated only in context of boosting
NK T cell anticancer activity,39 but it could potentially be used

to activate aGalCer-reactive cd T cells, similarly to using PAgs.

Notably, a recent study showed that small quantities of

aGalCer and other a-glycosylceramides can be endogenously

produced in mammalian species to modulate the immune res-

ponse.40 Additionally, CD1d may be an important target for

cancer immunotherapy as its high expression was reported on

chronic lymphocytic leukaemia cells, correlating with disease

progression.41 Similarly, CD1c on acute leukaemia cells was

shown to present a novel class of immunogenic self-lipids,

called methyl-lysophosphatidic acids (mLPAs). Recognition

of CD1c-mLPA complex by cd T cells has yet to be demon-

strated,42 but recent studies showing that CD1 family members

can present self-lipids make these molecules attractive targets

for future exploration.

cd TCR recognition of general stress ligands

cd T cells are known to expand in response to some viral infec-

tions, with cytomegalovirus (CMV) providing the best-studied

example to date. CMV infection results in preferential expan-

sion of cd T cells expressing Vd1, Vd3 and Vd5 (commonly

termed ‘non-Vd2 T cells’).43,44 These cells can also recognise

and lyse intestinal tumour cells, in line with the fact that they

are enriched in epithelial tissues where they perform stress

surveillance.44 Interestingly, infection with CMV, regarded as

a treatment-related complication in kidney transplant recipi-

ents, serves a protective role against cancer in those patients.45

Taken together with the fact that Vd2neg compartment is selec-

tively expanded in CMV carriers and does not diminish with

age, it is possible that CMV-mediated activation of cd T cells

confers an adaptive-like, lifelong reduction of cancer risk.46

The ligands of dual reactive cd T cell clones recognising

CMV-infected and transformed cells remain unknown, with

one notable exception. Recently, Déchanet-Merville and collea-

gues identified the ligand of one of such clone, named LES. The

LES cd T cell clone expressed Vc4 and Vd5 TCR chains and was

substantially enriched (25% of peripheral blood T cells) in a

CMV-infected transplant recipient. LES was shown to recognise

a range of solid tumour lines and CMV-infected cells via its TCR

rather than natural killer (NK)-type receptors. The LES TCRwas

demonstrated to bind endothelial protein C receptor (EPCR).47

EPCR exhibits sequence and structural homology with the

MHC-like protein family CD1, and can present phospholipids

bound in the antigen-presenting groove.48 EPCR plays a dual

role in cancer, as it can both promote and inhibit metastases,

presumably depending on whether it is expressed on tumour

cells or endothelium (reviewed in Mohan Rao et al.49).

Additionally, EPCR signalling can activate antiapoptotic or

Table 1 The interaction affinities of IPP binding to the intra-

cellular or extracellular domains of BTN3A1, and of TCR bind-

ing to BNT3A1 in presence of IPP.

Interaction KD (mM) Ref.

IPP: extracellular BTN3A1 69.9 31

IPP:B30.20 <500 29

Vc9Vd2 TCR:BTN3A1(IPP) 340 31

a b cVγ4Vδ1 TCR

CD1d-sulphatide CD1d-αGalCerCD1d-αGalCer

Vγ5Vδ1 TCR Vδ1/CαVβ2 TCR

Figure 4 Complex formation between TCR and CD1 ligands. CDR loops are colour coded as in Figure 2: CDR1d-red, CDR2d-green, CDR3d-blue,
CDR1c-yellow, CDR2c-cyan and CDR3c-orange. The blue loop in panel C is CDR3d/a. PDB IDs: 4MNG (A),36 4LHU (B),37 4WO4 (C).38
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proapoptotic pathways through unresolved mechanisms.

Importantly, direct binding of the LES TCR to EPCR was con-

firmed by surface plasmon resonance, showing relatively low

binding affinity (KD < 90 mM) (Table 3). EPCR, however, does

not appear to be a common, innate-like target for dual reactive

cd T cell clones, as the recognition of the tumour lines by such

clones, isolated from other patients, was not abrogated by anti-

body blocking of EPCR. Moreover, the LES TCR recognition

was mediated by the hypervariable CDR3 loop of the Vc4 chain,
supporting the hypothesis that EPCR binding was part of an

adaptive response. Interestingly, the expression of EPCR was not

sufficient to induce T cell activation, suggesting that functional

recognition required a cell stress context and additional co-sti-

mulatory molecules. Indeed, CMV infection conferred the

recognition of fibroblasts and endothelial cells without altering

EPCR expression suggesting that recognition of this receptor

occurs in a stress-related co-stimulatory context. The identity

of these co-stimulatory ligands remains unknown.

EPCR is not the only cell stress marker that requires an

additional co-stimulatory context for efficient recognition by

cd T cells. Other examples described so far encompass the

human homologue of the bacterial MutS (hMSH2) protein,50

being a part of the DNA mismatch repair system (MMR), and

MHC class I polypeptide-related sequence A (MIC A),51 a

broadly recognised stress marker. Both molecules are recog-

nised by both highly variable cd TCR and the invariant

NKG2D receptor (discussed in the next section). hMSH2 is a

key protein involved in repairing mutations resulting from

DNA recombination or replication. Unsurprisingly, defects

in hMSH2 have been reported in various tumour histologies

including lung, colon, breast and prostate cancers.52 Although

hMSH2 is normally restricted to the nucleus, it can be trans-

located during cellular stress.53 Recent studies have demon-

strated that hMSH2 can be a ligand for some Vd2 cd T cells

when it is ectopically expressed, inducing cytotoxicity and

IFN-c production.54 Surface expression of hMSH2 can be

induced by Epstein-Barr virus (EBV) infection,54 oxidative

stress and proinflammatory cytokines such as IL-18 corrob-

orating its role in generalised stress.

Interestingly, oxidative stress promoted the expression of

MIC A in a similar manner to hMSH2, involving p38/JNK

signalling pathways.55 Another group reported MIC A/B upre-

gulation resulting from ataxia telangiectasia mutated (ATM)

protein kinase signalling in response to DNA damage, contrib-

uting to cd T cell-mediated lysis of ovarian cancer cell lines.56

Additionally, the level of MIC A expression on breast cancer cell

lines correlated with their susceptibility to cd T cell-mediated

cytotoxicity.57 Induction of surface expression of MIC A/B was

also reported in primary glioblastoma after chemotherapy.58

EBV infection induces MIC A expression as well, showing fur-

ther similarities between expression of MIC and hMSH2.

cd TCRS RECOGNISE TUMOURS IN A CO-STIMULATORY

STRESS CONTEXT

As mentioned above, the recognition of cell stress markers by

cd T cells appears not to be driven solely by the interaction

between the TCR and its cognate ligand but rather requires a

wider stress context provided by co-stimulatory receptors on

the T cell and additional self-antigens. In the case of the LES

clone recognising EPCR, part of the co-stimulatory effect was

provided by LFA-1 on the T cells binding to ICAM-1 (over-

expressed as a result of CMV infection).47 CD2 interaction with

CD58 (LFA-3) was also implicated. Blocking of TCR binding to

EPCR completely abrogated the recognition while disrupting

the ICAM-1-LFA-1 and CD2-CD58 axes merely decreased T

cell activation, demonstrating the dominance of TCR signalling

and the possible co-existence of complementary co-stimula-

tory pathways. Furthermore, another group showed that the

CD8aa homodimer could act as a coreceptor for recognition of

CMV-infected cells by Vd1 TCR chains (Figure 5a).59 This

observation is in line with the findings that T cells expressing

CD8aa play an important role in immunosurveillance of the

epithelial tissues against viral60 and bacterial61 infections.

The requirement for co-stimulation is well established for ab
T cells and it has been known for some time that CD8ab het-

erodimer acts to co-receive peptide-MHC class I, stabilising the

TCR interaction62 and ensuring full phosphorylation of the

CD3f chain63 to increase sensitivity to antigen by up to a mil-

lion-fold64 (reviewed in Cole et al.65). Thus the ab T cell co-

receptors, CD4 and CD8, ensure that this T cell subset isMHC-

restricted66,67 and determine the fate of the developing T cell.68

In an analogous fashion, co-stimulation via stress-induced

ligands might maintain the correct focus and function of the

cd T cell compartment. In keeping with this concept, both

hMSH2 and MIC A/B are dually recognised by cognate TCRs

and the NKG2D receptor (Figure 5b). NKG2D is commonly

expressed on the surface of NK cells, ab T cells and cd T cells,

and binds to cell stress molecules from the UL16-binding

protein (ULBP1–6) family (reviewed in Ullrich et al.69). The

Table 2 The interaction affinities of TCR binding the CD1d-

lipid complex.

TCR Ligand KD (mM) PDB code Ref.

Vc4 Vd1 CD1d-

sulphatide

5.6 4MNG 36

Vc5 Vd1 CD1d-

aGalCer

16 4LHU 37

Vd1/Ca Vb2 CD1d-

aGalCer

0.066 4WO4 38

Table 3 cd TCR and NKG2D binding affinities to stress-

related ligands EPCR, hMSH2 and MIC A.

Receptor Ligand KD (mM) Ref.

Vc4 Vd5 TCR

(LES)

EPCR 96 47

Vd2 TCRs hMSH2 N/A 54

NKG2D hMSH2 0.132 54

Vc4 Vd1 TCR MIC A 110–900 70

NKG2D MIC A 0.3–21 70
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interactions of germline-encoded NKG2D with such diverse

ligands are possible because of conserved fragments within

the a1a2 superdomain in the ligands. The involvement of

the cd TCR and NKG2D in recognition of the MIC Amolecule

has recently been studied. Xu et al. showed that both TCR and

NKG2D bound overlapping fragments of MIC A, with differ-

ent affinity and kinetics – for NKG2D, the affinity was much

higher than for the TCR (Table 3).70 Nevertheless, the complex

between TCR and MIC A was particularly stable, suggesting a

sequential model of binding where the initial contact by

NKG2D is followed by the more stable TCR:MIC A complex.

The role of TCR chains in complex formation remains to be

fully resolved as the studies implicated partial contributions of

the germline-encoded CDR loops from Vd1 TCR70 while other

studies showed that MIC A-associated recognition

of tumour cells could be mediated by both Vd171 and

Vd256,57,72 TCRs. Notably, TCR engagement has been shown

to be indispensable for cd T cell-mediated cytotoxicity whereas

NKG2D played only a co-stimulatory role; thus indicating the

importance of TCR:MIC A complex formation.73 ULBP mole-

cules may be recognised in a similar manner as it has been

shown that ULBP-4 engages both NKG2D and Vc9Vd2
TCRs.74

The sequential recognition of different targets by cd T cells

could therefore play an important role in immunosurveillance

as it allows the T cell to rapidly scan the target cells for the signs

of stress, indicating a possible infection or transformation. The

requirement for a multicomponent stress context for full T

cell activation could then provide fail-safe protection against

autoimmunity. The apparent co-existence of diverse co-stimu-

latory axes decreases the chances of immune evasion.

HARNESSING cd T CELLS FOR THERAPY

Stimulating cd T cells in vivo with phosphoantigens

As mentioned above, the Vc9Vd2 T cell subset that predomi-

nates in human peripheral blood is capable of responding to

prenyl pyrophosphates. This feature has been employed to redir-

ect Vc9Vd2 T cells to tumours by manipulating isoprenoid

metabolism in the cancer cells. Such manipulation can be

achieved using aminobisphosphonates (e.g. zoledronate, pami-

dronate, risedronate) which are structural analogues of prenyl

pyrophosphates that contain an amino moiety. As a result, ami-

nobisphosphonates act indirectly by inhibiting farnesyl pyro-

phosphate synthase (FPPS) in the mevalonate pathway leading

to the accumulation of prenyl pyrophosphate substrates.75,76

Recently, Idrees et al. screened over 50 tumour cell lines, show-

ing a direct correlation between zoledronate-induced FPPS

inhibition and tumour recognition by Vc9Vd2 T cells.77 The

FPPS-inhibiting concentration of zoledronate was on average

two orders of magnitude lower than the concentration required

for inhibition of tumour proliferation, thus indicating that T cell

activation was not the result of cell death. Another group

showed that risedronate caused PAg accumulation in the

tumour cells which were then recognised by Vc9Vd2 T cells.78

Upon recognition, T cells produced IFNc which caused upre-

gulation of ICAM-1 on tumour cells, contributing to a posi-

tive feedback loop and subsequent cytotoxicity. Additionally,

aminobisphosphonates,79 as well as conventional chemotherapy,

can sensitise the neoplastic cells to cytototoxic activity of

Vc9Vd2 T cells. This may be an attractive therapeutic option

for eradication of cancer-initiating cells, which are often resist-

ant to conventional therapy and can contribute to the relapse

of the disease. Finally, cd T cells are known to acquire the
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phenotype of professional antigen-presenting cells upon activa-

tion.80 Therefore, they may be used as a potent anticancer vac-

cine in addition to their broad antineoplastic cytotoxicity.

Redirecting T cells to tumours

In the absence of known ligands, cd T cells can be redirected to

tumours using antibodies. The efficacy of bispecific antibodies,

where one part recognised a tumour surface marker (for

example, EpCAMon liver tumours orHER2/neu on pancreatic

cancer) while the other binding site targets CD3 or the Vc9
chain of the TCR, has been demonstrated in pre-clinical mod-

els.81,82 An interesting approach was described by Zheng et al.

where they cloned out the extracellular domains of a Vc9Vd2
TCR from ovarian cancer tumour-infiltrating lymphocytes

(TILs) and conjugated them with Fc domain of human

IgG1.83 This bispecific construct bound to a range of ovarian

cancer cells, recognising an unknown ubiquitous antigen, and

mediated the killing of the cells via antibody-dependent cellular

cytotoxicity (ADCC). ADCC can be mediated by binding of

CD16 (FccRIII) to the Fc region of IgGs, constituting yet

another means of target recognition by cd T cells, in addition

to TCR and NKG2D. CD16 can be upregulated on both Vd2pos

and Vd2neg T cells, depending on circumstances, while binding

of its target may trigger either cytotoxicity or other effector

functions (e.g. IFNc secretion).84,85 A similar approach

involves transducing T cells with chimeric antigen receptors

(CARs; Figure 6). CARs are usually derived from single chain

Fv fragments of antibodies, thus enabling the CAR-transduced

T cells to recognise conformational epitopes independently of

their TCR (recently reviewed in Maus et al.86). To date, most

CAR transduction experiments have been conducted on ab T

cells – nevertheless, cd T cells are also an appealing target, due

to their broad antitumour cytotoxicity and numerous effector

functions. Recently, Deniger et al. have transduced polyclonal

cd T cells with a CD19-specific CAR, demonstrating their effi-

cacy in killing CD191 leukaemia lines.87 CAR-mediated signal-

ling resulted in a similar cytokine secretion profile as TCR

activation, and induced unbiased expansion of cd T cell sub-

sets. Notably, CAR technology has been combined with the

generation of induced pluripotent stem cells (iPSC) from

human peripheral blood T cells.88 Such cells exhibited a pheno-

type closest to cd T cells of all lymphocyte lineages and exerted

similar in vivo antitumour activity to CAR-transduced cd T

cells.

Finally, T cells can be redirected to tumours by introducing

an exogenous TCR of known anticancer specificity into

patient-derived peripheral lymphocytes prior to adoptive

transfer of these cells. Most TCR gene studies have involved

transduction of ab TCRs into ab T cells.89 However, this strat-

egy comeswith the inherent risk of abTCRmispairing between

the endo- and exogenous TCR chains, resulting in receptors of

unknown and potentially autoreactive specificities (Figure 6b).

Such autoreactivity has been observed both in ex vivo human

samples90 and in mouse models.91 cd T cells offer an attractive

way to circumvent this problem as tumour-reactive ab TCRs

can be introduced into these cells without the risk ofmispairing

(Figure 6c).92,93 Additionally, cd T cells transduced with ab
TCRs retain the functionality of their original TCR and

respond to stimuli transferred via either TCR with rapid, cd-
like kinetics.94 The main obstacle associated with ab TCR trans-

fer, however, is that cd T cells usually do not express CD4 or

CD8 co-receptors required for the efficient recognition of pep-

tide-MHC. Thus efficient function might require co-transduc-

tion with a coreceptor95 or use of enhanced affinity TCRs.96 It is

also possible to transduce peripheral lymphocytes (both of cd
and ab origin) with a specific cd TCR. Zhao et al. demonstrated

that T cells transduced with a Vc9Vd2 TCR, modified with a

CDR3d loop specific for unidentified antigens on ovarian car-

cinoma, exerted an anticancer activity in vivo.97

Similarly, the transduction of a PAg-reactive Vc9Vd2 TCR

into ab T cells successfully redirected them towards cancer cells,

as well as led to downregulation of their endogenous ab TCRs,

thus abrogating alloreactive responses.98 It is therefore likely that

the detailed characterisation of cancer-specific cd TCRs will

bring about new studies examining the efficacy of such TCRs

in the TCR gene transduction setting.

Generating clinically relevant numbers of tumour-reactive

cd T cells

Themain hurdle that needs to be overcome in order to use cdT
cells as a therapeutic is obtaining these cell in clinically mean-

ingful numbers. ForabT cell-based therapies, this is a relatively

straightforward task as the requirements for effective ab T cell

expansion have been widely studied, and the cognate ligands

can be readily used to stimulate the expanding cells.99 In the

case of cd T cells, the only known common ligands are PAgs

which are recognised by the Vc9Vd2 subset. As aminobispho-

sphonates such as zoledronate cause accumulation of PAgs in

the cells, they can be used to preferentially expand that T cell

subset both ex vivo, prior to re-infusion, and directly in

patients. However, PAgs and aminobisphosphonates expand

only the Vc9Vd2 subset of cd T cells, and this bias may have

a negative impact on clinical efficacy. In an alternative approach,

immobilised anti-cd TCR antibody has been demonstrated to

promote the expansion of all cd T cell subsets, without modulat-

ing their antitumour function.100,101 This method, however, may

lead to mitogen-induced T cell death and has not yet been used in

a published clinical trial. Deniger et al. have recently proved that T

cells with polyclonal cd TCR repertoires can be expanded to large

numbers (.109) using IL-2, IL-21 and clinical grade artificial

antigen-presenting cells, engineered to express co-stimulatory

molecules CD19, CD64, CD86, CD137L and membrane-bound

IL-15.102 Notably, the antigen-presenting cells were derived from

a tumour line K562, broadly recognised by cd T cells, and c-
irradiated prior to T cell exposure. The irradiation step could

potentially enhance the recognition even further, as it leads to

expression of cell stress molecules. Polyclonal cd T cell lines

showed superior toxicity compared to those expressing only

Vd2 chains, thus highlighting the possibility of enhancing cd T

cell-focused immunotherapy. Similarly, Anderson and colleagues

used the same antigen-presenting cell line to generate unbiased cd
T cell products from peripheral blood of cancer patients.84
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Finally, manipulations of the CD3 co-receptor can be applied

to increase therapeutic efficacy of cd T cells. Dopfer et al.

recently showed that two anti-CD3 antibodies affect the func-

tional activity of cd T cells differentially.103 The reported results

indicated that an anti-CD3 antibody, OKT3, induced strong

proliferation and cytokine secretion with decreased cytotoxic

potential, while another anti-CD3 antibody, UCHT1, enhanced

tumour killing via Ras/Erk and PI3K/Akt pathways, without an

increase in cytokine secretion or proliferation. These results

might pave the way for new therapeutic approaches focused

on manipulation for CD3-mediated signal transduction to

favour expansion of large numbers of cd T cells, with desired

effector functions such as cytotoxicity.

Lessons learned from clinical trials

Numerous attempts to use cd T cells in cancer immunotherapy

have beenmade over the past decade, with variable efficacy and

a good overall safety profile.

Two recent trials investigated the anticancer effect of zoledro-

nate combined with low dose IL-2. In renal cell carcinoma, the

combined treatment resulted only in aminor expansion of Vd2pos

cells which diminished after repeated treatment cycles without

achieving the objective response in any of the enrolled patients.104

A similar study by Kunzmann and colleagues showed no objective

response in patients with solid tumours (melanoma and renal cell

carcinoma), and a partial response in acute myeloid leukaemia

patients.105 Surprisingly, the treatment resulted in increased vas-

cular endothelial growth factor levels, an indication of augmented

angiogenesis, having a negative impact on the therapeutic out-

come. No severe side effects (apart from grade 4 fever) were

observed. A recent phase IV clinical trial of zoledronate in can-

cer-free patients demonstrated that the severity of transient

inflammation-related side effects, caused by the treatment, could

easily be predicted by ex vivomeasurements of IFN-c production
by zoledronate-activated peripheral blood cells.106 Notably,

repeated zoledronate treatment led to the depletion of the central

memory subset of blood Vc9Vd2 T cells, as well as a long-lasting

decrease of their absolute count.106,107 This phenomenon may be

caused by peripheral blood neutrophils which have been shown to

ingest zoledronate and subsequently inhibit the proliferation of

the T cells by production of hydrogen peroxide.108 Repeated

stimulation with PAgs, either accumulated in response to amino-

bisphosphonates or as a result of an accelerated mevalonate path-

way, can also lead to a differentiation shift of Vc9Vd2 T cells and

functional exhaustion.109 Zoledronate therefore appears to be

insufficient to generate an effective antitumour response per
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se – nevertheless, two multicentre studies demonstrated that

treatment with zoledronate combined with chemotherapy

improved the survival of breast cancer and multiple myeloma

patients.110,111

The adoptive cell transfer (ACT) of ex vivo expanded cd T

cells appears to be amore effective treatment option than using

zoledronate as a single agent. In metastatic renal cell carcin-

oma, two groups reported re-infusing autologous PAg-

expanded Vd2pos T cells.112,113 When the T cells were infused

with IL-2 only, 6 out of 10 patients experienced stabilisation of

the disease whereas the infusion of the cells with both IL-2 and

zoledronate resulted in 5 out of 10 disease stabilisations and 1

complete response. However, as both studies included only a

small number of patients, it is possible that the observed super-

ior efficacy of using both IL-2 and zoledronate was purely

coincidental. When cells were expanded using IL-2 and zole-

dronate but infused without further exogenous stimulation,

the partial response was observed in 3 out of 10 patients with

various solid tumours.114 As the patients were treated with

chemotherapy together with ACT, the response could be con-

tributed to the additive/synergistic effect of the combination

therapy. A similar effect was observed by Nicol and colleagues

as the complete response (1/17) and partial response (2/17)

patients received both cell infusion and chemo/hormone ther-

apy.115 However, the patient cohorts in these studies were small

and highly diverse, in terms of cancer type, additional therapy

and composition of the T cell infusion. These variables make it

difficult to assign the exact clinical contribution of cd T cells.

ACTof cdT cells and other cytotoxic cell types can also increase

the efficacy of radiofrequency ablation.116 The aforementioned

trials utilised patients’ autologous peripheral blood T cells for

ACT – however, in some instances the effector functions of

autologous T cells are severely impaired.109 A recent study by

Wilhelm et al. demonstrated that it is possible to infuse patients

with a cd T cell product obtained from haploidentical donors,

with no evidence of graft versus host disease, showing substan-

tial clinical efficacy (3 out of 4 patients with advanced haema-

tological malignancies experienced complete regression).117

The donor cd T cells persisted for 28 days and expanded in

vivo, in response to exogenous IL-2 and zoledronate. Another

group also showed that prolonged persistence of infused cd T

cells can occur without IL-2 supplementation, probably relying

on endogenous IL-15.118 Moreover, exogenous IL-18 can be a

potent co-stimulator of cd T cell proliferation.119,120

Overall, while cd T cell therapy has a good safety profile,

clinical performance to date has been underwhelming.121

Anticipated discoveries of the various ligands recognised on

tumour cells by the Vd2neg T cell subset will lead to a better

understanding of how these cells operate and an increased

capacity to beneficially harness these mechanisms for immu-

notherapy.

CONCLUSIONS AND FURTHER DIRECTIONS

The evolutionary conservation of cd T cells in all jawed verte-

brates and of an analogous third lymphocyte lineage in their

jawless ancestors2 attests to the critical importance of these cells

in the maintenance of immune integrity. cd T cells are known

to play an important role in infection16; further recent discov-

eries have shown that this T cell lineage can respond to stress

signals and thereby play an important role in cancer immuno-

surveillance. Indeed, mice lacking the cd TCR have increased

cancer risk.17 Despite the importance of cd T cells, very few

ligands for the human cd TCR have been confirmed by bio-

chemical and biophysical data and this field is still in its infancy.

Interestingly, certain similarities exist between the few known

human cd TCR ligands that might point to some generalised

mechanisms by which these cells patrol the periphery.

BTN3A1, MIC A/B and CD1-family proteins belong to the

immunoglobulin superfamily (while EPCR is highly homolog-

ous to CD1d), and both infections and cellular stress seem to

play a role in activating cd T cells via these immunoglobulin

structures. Microbial infections lead to a stimulatory confor-

mational change and/or direct metabolite presentation by

BTN3A1while herpesvirus (CMV, EBV) infections cause upre-

gulation of EPCR, MIC A and hMSH2, respectively. Similarly,

cell stress, including neoplasms, can involve deregulation of the

mevalonate pathway122 and subsequent PAg activation of

BNT3A1 in addition to ectopic expression of cell stress markers

such as EPCR, MIC and hMSH2, while CD1-family proteins

can present endogenous lipids acting as a marker of malig-

nant transformation (CD1c)42 or viral infection (CD1d).123

Interestingly, both CD1d and EPCR are capable of lipid pre-

sentation, and both can be recognised by cd T cell clones

regardless of the lipid cargo – thus indicating that both mole-

cules can act as an immunogenic marker per se.35,47

Requirement for a wider cell stress context for cd T cell recog-

nition potentially restrains these immune cells and provides a

failsafe against autoimmune reactions. Cancer-associated cd

TCR targets are essentially self-antigens. Accordingly, cd
TCR interactions with the known targets are of low affinity

(KD 5 10–4–10–6 M; Tables 1–3), similar to ab TCR affinities

for self-derived peptides.124,125 To date, only two structures of

human cd TCR in complex with a ligand have been resolved

(Figure 4). In both cases (CD1d-sulphatide and CD1d-

aGalCer), the germline-encoded CDR loops engaged the anti-

gen-presenting CD1d molecule while hypervariable CDR3

loops made contacts with the lipid ligand, suggesting that dis-

crimination between subtly different lipid cargoes is possible.

In contrast, PAg recognitionmay be mediated mostly by germ-

line-encoded CDR loops from Vd2 and/or Vc9 chains as PAg-

BTN3A1 can be recognised by a wide range of different Vd2
Vc9 T cell clones. However, the exact mode of PAg recognition

awaits a BTN3A1: cd TCR complex structure.

In summary, cd T cell therapy for cancer has demonstrated a

good overall safety profile although results to date have not lived

up to their early promise. Nevertheless, we anticipate that many

more ligands will be found for these important immune cells in

the next 5 years thereby greatly expanding the therapeutic hori-

zon. Therapeutic approaches to cancer treatment based around

the ab TCR in gene transfer99 or as soluble bispecifics126,127 have

burgeoned in the last two years. Importantly, cd TCRs do not
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appear to suffer the limitation of being HLA-restricted so might

offer exciting possibilities for new off-the-shelf, pan-population

cancer immunotherapies in the very near future.
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