Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Research Articles

Delineation of a novel dendritic-like subset in human spleen

Abstract

Dendritic cells (DCs) and monocyte subpopulations present in the human spleen were analyzed by flow cytometry in an attempt to identify the presence of a novel dendritic-like cell subset described previously in mice and named L-DCs. In this study, an equivalent of this novel murine subset was characterized in the human spleen, thus increasing our knowledge of the antigen-presenting cell types present in the human spleen. Human L-DCs were identified as a hCD11c+hCD11b+HLA-DRhCD86+ subset in the spleen, along with the previously described subsets of hCD1c+ DCs, hCD123+ plasmacytoid DCs (pDCs), hCD16+ DCs and hCD141+ DCs. Three subsets of monocytes were also characterized. DC and monocyte subsets in human spleen had phenotypes similar to those of subsets in human blood. In line with murine studies, the presence of L-DC progenitors within the spleen was also investigated. When human splenocytes depleted of T and B cells were cocultured with the murine stromal line 5G3, hematopoiesis ensued and hCD11c+HLA-DR+ and hCD11c+HLA-DR cells were produced. The latter resemble L-DCs, which are also produced in murine spleen cocultures. Both subsets expressed hCD80 and hCD86, which identifies them as antigen-presenting cells, particularly DCs, and were highly endocytic. It is noteworthy that murine splenic stroma can serve as a support matrix for human hematopoiesis and DC production. These results support the hypothesis that 5G3 must express both cell-associated and soluble factors that can signal hematopoiesis in human and murine progenitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Brendolan A, Rosado MM, Carsetti R, Selleri L, Dear TN . Development and function of the mammalian spleen. BioEssays 2007; 29: 166–177.

    Article  CAS  PubMed  Google Scholar 

  2. Wolber FM, Leonard E, Michael S, Orschell-Traycoff CM, Yoder MC, Srour EF . Roles of spleen and liver in development of the murine hematopoietic system. Exp Hematol 2002; 30: 1010–1019.

    Article  CAS  PubMed  Google Scholar 

  3. Dor FJ, Ramirez ML, Parmar K, Altman EL, Huang CA, Down JD et al. Primitive hematopoietic cell populations reside in the spleen: studies in the pig, baboon, and human. Exp Hematol 2006; 34: 1573–1582.

    Article  CAS  PubMed  Google Scholar 

  4. Mebius RE, Kraal G . Structure and function of the spleen. Nat Rev Immunol 2005; 5: 606–616.

    Article  CAS  PubMed  Google Scholar 

  5. de Smedt T, Pajak B, Muraille E, Lespagnard L, Heinen E, de Baetselier P et al. Regulation of dendritic cell numbers and maturation by lipopolysaccharide in vivo. J Exp Med 1996; 184: 1413–1424.

    Article  CAS  PubMed  Google Scholar 

  6. Shortman K, Heath WR . The CD8+ dendritic cell subset. Immunol Rev 2010; 234: 18–31.

    Article  CAS  PubMed  Google Scholar 

  7. Shortman K, Sathe P, Vremec D, Naik S, O’Keeffe M . Plasmacytoid dendritic cell development. Adv Immunol 2013; 120: 105–126.

    Article  CAS  PubMed  Google Scholar 

  8. Tan JK, Periasamy P, O’Neill HC . Delineation of precursors in murine spleen that develop in contact with splenic endothelium to give novel dendritic-like cells. Blood 2010; 115: 3678–3685.

    Article  CAS  PubMed  Google Scholar 

  9. Tan JK, Quah BJ, Griffiths KL, Periasamy P, Hey YY, O’Neill HC . Identification of a novel antigen cross-presenting cell type in spleen. J Cell Mol Med 2011; 15: 1189–1199.

    Article  CAS  PubMed  Google Scholar 

  10. Periasamy P, O’Neill HC . Stroma-dependent development of two dendritic-like cell types with distinct antigen presenting capability. Exp Hematol 2013; 41: 281–292.

    Article  CAS  PubMed  Google Scholar 

  11. Periasamy P, Petvises S, O’Neill HC . Development of two distinct dendritic-like APCs in the context of splenic stroma. Front Immunol 2013; 4: 73.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Periasamy P, Tan JK, Griffiths KL, O’Neill HC . Splenic stromal niches support hematopoiesis of dendritic-like cells from precursors in bone marrow and spleen. Exp Hematol 2009; 37: 1060–1071.

    Article  CAS  PubMed  Google Scholar 

  13. O’Neill HC, Griffiths KL, Periasamy P, Hinton RA, Petvises S, Hey YY et al. Spleen stroma maintains progenitors and supports long-term hematopoiesis. Curr Stem Cell Res Ther 2014; 9: 354–363.

    Article  PubMed  Google Scholar 

  14. Petvises S, O’Neill HC . Characterisation of dendritic cells arising from progenitors endogenous to murine spleen. PLoS One 2014; 9: e88311.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hinton RA, O’Neill HC . Technical advance: in vitro production of distinct dendritic-like antigen-presenting cells from self-renewing hematopoietic stem cells. J Leuk Biol 2012; 91: 341–346.

    Article  CAS  Google Scholar 

  16. Dzionek A, Fuchs A, Schmidt P, Cremer S, Zysk M, Miltenyi S et al. BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J Immunol 2000; 165: 6037–6046.

    Article  CAS  PubMed  Google Scholar 

  17. MacDonald KP, Munster DJ, Clark GJ, Dzionek A, Schmitz J, Hart DN . Characterization of human blood dendritic cell subsets. Blood 2002; 100: 4512–4520.

    Article  CAS  PubMed  Google Scholar 

  18. Palucka K, Banchereau J . Human dendritic cell subsets in vaccination. Curr Opin Immunol 2013; 25: 396–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Grage-Griebenow E, Zawatzky R, Kahlert H, Brade L, Flad H, Ernst M . Identification of a novel dendritic cell-like subset of CD64+/CD16+ blood monocytes. Eur J Immunol 2001; 31: 48–56.

    Article  CAS  PubMed  Google Scholar 

  20. Mittag D, Proietto AI, Loudovaris T, Mannering SI, Vremec D, Shortman K et al. Human dendritic cell subsets from spleen and blood are similar in phenotype and function but modified by donor health status. J Immunol 2011; 186: 6207–6217.

    Article  CAS  PubMed  Google Scholar 

  21. Shortman K, Liu YJ . Mouse and human dendritic cell subtypes. Nat Rev Immunol 2002; 2: 151–161.

    Article  CAS  PubMed  Google Scholar 

  22. Haniffa M, Shin A, Bigley V, McGovern N, Teo P, See P et al. Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity 2012; 37: 60–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schlitzer A, Ginhoux F . Organization of the mouse and human DC network. Curr Opin Immunol 2014; 26: 90–99.

    Article  CAS  PubMed  Google Scholar 

  24. Onai N, Kurabayashi K, Hosoi-Amaike M, Toyama-Sorimachi N, Matsushima K, Inaba K et al. A clonogenic progenitor with prominent plasmacytoid dendritic cell developmental potential. Immunity 2013; 38: 943–957.

    Article  CAS  PubMed  Google Scholar 

  25. Sathe P, Vremec D, Wu L, Corcoran L, Shortman K . Convergent differentiation: myeloid and lymphoid pathways to murine plasmacytoid dendritic cells. Blood 2013; 121: 11–19.

    Article  CAS  PubMed  Google Scholar 

  26. Jongbloed SL, Kassianos AJ, McDonald KJ, Clark GJ, Ju X, Angel CE et al. Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J Exp Med 2010; 207: 1247–1260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Despars G, O’Neill HC . Heterogeneity amongst splenic stromal cell lines which support dendritic cell hematopoiesis. In Vitro Cell Dev Biol Anim 2006; 42: 208–215.

    Article  CAS  PubMed  Google Scholar 

  28. Ni K, O’Neill HC . Long-term stromal cultures produce dendritic-like cells. Br J Haematol 1997; 97: 710–725.

    Article  CAS  PubMed  Google Scholar 

  29. Ni K, O’Neill HC . Hemopoiesis in long-term stroma-dependent cultures from lymphoid tissue: production of cells with myeloid/dendritic characteristics. In Vitro Cell Dev Biol Anim 1998; 34: 298–307.

    Article  CAS  PubMed  Google Scholar 

  30. Periasamy P, Tan JK, O’Neill HC . Novel splenic antigen-presenting cells derive from a Lin-c-kitlo progenitor. J Leuk Biol 2013; 93: 63–69.

    Article  CAS  Google Scholar 

  31. Tan JK, O’Neill HC . Haematopoietic stem cells in spleen have distinct differentiative potential for antigen presenting cells. J Cell Mol Med 2010; 14: 2144–2150.

    Article  CAS  PubMed  Google Scholar 

  32. Ziegler-Heitbrock L . The CD14+ CD16+ blood monocytes: their role in infection and inflammation. J Leuk Biol 2007; 81: 584–592.

    Article  CAS  Google Scholar 

  33. Kassianos AJ, Jongbloed SL, Hart DN, Radford KJ . Isolation of human blood DC subtypes. Methods Mol Biol 2010; 595: 45–54.

    Article  PubMed  Google Scholar 

  34. Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K . Development of monocytes, macrophages, and dendritic cells. Science 2010; 327: 656–661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sunderkötter C, Nilolic T, Dillon MJ, van Rooijen N, Stehling M, Drevets DA et al. Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J Immunol 2004; 172: 4410–4417.

    Article  PubMed  Google Scholar 

  36. Smeekens SP, van de Veerdonk FL, Joosten LA, Jacobs L, Jansen T, Williams DL et al. The classical CD14++ CD16 monocytes, but not the patrolling CD14+ CD16+ monocytes, promote Th17 responses to Candida albicans. Eur J Immunol 2011; 41: 2915–2924.

    Article  CAS  PubMed  Google Scholar 

  37. Wong KL, Tai JJ, Wong WC, Han H, Sem X, Yeap WH et al. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood 2011; 118: e16–e31.

    Article  CAS  PubMed  Google Scholar 

  38. O’Neill HC, Wilson HL, Quah B, Abbey JL, Despars G, Ni K . Dendritic cell development in long-term spleen stromal cultures. Stem Cells 2004; 22: 475–486.

    Article  PubMed  Google Scholar 

  39. Quah B, Ni K, O’Neill HC . In vitro hematopoiesis produces a distinct class of immature dendritic cells from spleen progenitors with limited T cell stimulation capacity. Int Immunol 2004; 16: 567–577.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Australian Research Council (#DP13010703) and the National Health and Medical Research Foundation of Australia (project grant # 585443).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen C O’Neill.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petvises, S., Talaulikar, D. & O’Neill, H. Delineation of a novel dendritic-like subset in human spleen. Cell Mol Immunol 13, 443–450 (2016). https://doi.org/10.1038/cmi.2015.16

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2015.16

Keywords

This article is cited by

Search

Quick links