Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Amino acids 89–96 of Salmonella typhimurium flagellin represent the major domain responsible for TLR5-independent adjuvanticity in the humoral immune response

Abstract

Toll-like receptor 5 (TLR5) signaling in response to flagellin is dispensable for inducing humoral immunity, but alterations of aa 89–96, the TLR5 binding site, significantly reduced the adjuvanticity of flagellin. These observations indicate that the underlying mechanism remains incompletely understood. Here, we found that the native form of Salmonella typhimurium aa 89–96-mutant flagellin extracted from flagella retains some TLR5 recognition activity, indicating that aa 89–96 is the primary, but not the only site that imparts TLR5 activity. Additionally, this mutation impaired the production of IL-1β and IL-18. Using TLR5KO mice, we found that aa 89–96 is critical for the humoral adjuvant effect, but this effect was independent of TLR5 activation triggered by this region of flagellin. In summary, our findings suggest that aa 89–96 of flagellin is not only the crucial site responsible for TLR5 recognition, but is also important for humoral immune adjuvanticity through a TLR5-independent pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Donnelly MA, Steiner TS . Two nonadjacent regions in enteroaggregative Escherichia coli flagellin are required for activation of Toll-like receptor 5. J Biol Chem 2002; 277: 40456–40461.

    Article  CAS  PubMed  Google Scholar 

  2. Eaves-Pyles TD, Wong HR, Odoms K, Pyles RB . Salmonella flagellin-dependent proinflammatory responses are localized to the conserved amino and carboxyl regions of the protein. J Immunol 2001; 167: 7009–7016.

    Article  CAS  PubMed  Google Scholar 

  3. Murthy KG, Deb A, Goonesekera S, Szabo C, Salzman AL . Identification of conserved domains in Salmonella muenchen flagellin that are essential for its ability to activate TLR5 and to induce an inflammatory response in vitro. J Biol Chem 2004; 279: 5667–5675.

    Article  CAS  PubMed  Google Scholar 

  4. Lightfield KL, Persson J, Brubaker SW, Witte CE, von Moltke J, Dunipace EA et al. Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nat Immunol 2008; 9: 1171–1178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Miao EA, Andersen-Nissen E, Warren SE, Aderem A . TLR5 and Ipaf: dual sensors of bacterial flagellin in the innate immune system. Semin Immunopathol 2007; 29: 275–288.

    Article  CAS  PubMed  Google Scholar 

  6. Strindelius L, Filler M, Sjoholm I . Mucosal immunization with purified flagellin from Salmonella induces systemic and mucosal immune responses in C3H/HeJ mice. Vaccine 2004; 22: 3797–3808.

    Article  CAS  PubMed  Google Scholar 

  7. McSorley SJ, Cookson BT, Jenkins MK . Characterization of CD4+ T cell responses during natural infection with Salmonella typhimurium. J Immunol 2000; 164: 986–993.

    Article  CAS  PubMed  Google Scholar 

  8. Andersen-Nissen E, Smith KD, Strobe KL, Barrett SL, Cookson BT, Logan SM et al. Evasion of Toll-like receptor 5 by flagellated bacteria. Proc Natl Acad Sci USA 2005; 102: 9247–9252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yoon SI, Kurnasov O, Natarajan V, Hong M, Gudkov AV, Osterman AL et al. Structural basis of TLR5-flagellin recognition and signaling. Science 2012; 335: 859–864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Newton SM, Jacob CO, Stocker BA . Immune response to cholera toxin epitope inserted in Salmonella flagellin. Science 1989; 244: 70–72.

    Article  CAS  PubMed  Google Scholar 

  11. Taylor DN, Treanor JJ, Sheldon EA, Johnson C, Umlauf S, Song L et al. Development of VAX128, a recombinant hemagglutinin (HA) influenza-flagellin fusion vaccine with improved safety and immune response. Vaccine 2012; 30: 5761–5769.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang H, Liu L, Wen K, Huang J, Geng S, Shen J et al. Chimeric flagellin expressed by Salmonella typhimurium induces an ESAT-6-specific Th1-type immune response and CTL effects following intranasal immunization. Cell Mol Immunol 2011; 8: 496–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mizel SB, Bates JT . Flagellin as an adjuvant: cellular mechanisms and potential. J Immunol 2010; 185: 5677–5682.

    Article  CAS  PubMed  Google Scholar 

  14. Nempont C, Cayet D, Rumbo M, Bompard C, Villeret V, Sirard, JC. Deletion of flagellin's hypervariable region abrogates antibody-mediated neutralization and systemic activation of TLR5-dependent immunity. J Immunol 2008; 181: 2036–2043.

    Article  CAS  PubMed  Google Scholar 

  15. Sanders CJ, Franchi L, Yarovinsky F, Uematsu S, Akira S, Nunez G et al. Induction of adaptive immunity by flagellin does not require robust activation of innate immunity. Eur J Immunol 2009; 39: 359–371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vijay-Kumar M, Carvalho FA, Aitken JD, Fifadara NH, Gewirtz AT . TLR5 or NLRC4 is necessary and sufficient for promotion of humoral immunity by flagellin. Eur J Immunol 2010; 40: 3528–3534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Saha S, Takeshita F, Matsuda T, Jounai N, Kobiyama K, Matsumoto T et al. Blocking of the TLR5 activation domain hampers protective potential of flagellin DNA vaccine. J Immunol 2007; 179: 1147–1154.

    Article  CAS  PubMed  Google Scholar 

  18. Bullas LR, Ryu JI . Salmonella typhimurium LT2 strains which are r- m+ for all three chromosomally located systems of DNA restriction and modification. J Bacteriol 1983; 156: 471–474.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Raffatellu M, Chessa D, Wilson RP, Dusold R, Rubino S, Baumler AJ . The Vi capsular antigen of Salmonella enterica serotype Typhi reduces Toll-like receptor-dependent interleukin-8 expression in the intestinal mucosa. Infect Immun 2005; 73: 3367–3374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Smith KD, Andersen-Nissen E, Hayashi F, Strobe K, Bergman MA, Barrett SL et al. Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat Immunol 2003; 4: 1247–1253.

    Article  CAS  PubMed  Google Scholar 

  21. Yoshioka K, Aizawa S, Yamaguchi S . Flagellar filament structure and cell motility of Salmonella typhimurium mutants lacking part of the outer domain of flagellin. J Bacteriol 1995; 177: 1090–1093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Smith KD, Valenzuela A, Vigna JL, Aalbers K, Lutz CT . Unwanted mutations in PCR mutagenesis: avoiding the predictable. PCR Methods Appl 1993; 2: 253–257.

    Article  CAS  PubMed  Google Scholar 

  23. Ibrahim GF, Fleet GH, Lyons MJ, Walker RA . Method for the isolation of highly purified Salmonella flagellins. J Clin Microbiol 1985; 22: 1040–1044.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Rolli J, Loukili N, Levrand S, Rosenblatt-Velin N, Rignault-Clerc S, Waeber B et al. Bacterial flagellin elicits widespread innate immune defense mechanisms, apoptotic signaling, and a sepsis-like systemic inflammatory response in mice. Crit Care 2010; 14: R160.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lamkanfi M, Dixit VM . Inflammasomes: guardians of cytosolic sanctity. Immunol Rev 2009; 227: 95–105.

    Article  CAS  PubMed  Google Scholar 

  26. Miao EA, Mao DP, Yudkovsky N, Bonneau R, Lorang CG, Warren SE et al. Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc Natl Acad Sci USA 2010; 107: 3076–3080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Poyraz O, Schmidt H, Seidel K, Delissen F, Ader C, Tenenboim H et al. Protein refolding is required for assembly of the type three secretion needle. Nat Struct Mol Biol 2010; 17: 788–792.

    Article  CAS  PubMed  Google Scholar 

  28. Descamps D, Le Gars M, Balloy V, Barbier D, Maschalidi S, Tohme M et al. Toll-like receptor 5 (TLR5), IL-1beta secretion, and asparagine endopeptidase are critical factors for alveolar macrophage phagocytosis and bacterial killing. Proc Natl Acad Sci USA 2012; 109: 1619–1624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Carvalho FA, Aitken JD, Gewirtz AT, Vijay-Kumar M . TLR5 activation induces secretory interleukin-1 receptor antagonist (sIL-1Ra) and reduces inflammasome-associated tissue damage. Mucosal Immunol 2011; 4: 102–111.

    Article  CAS  PubMed  Google Scholar 

  30. McSorley SJ, Ehst BD, Yu Y, Gewirtz AT . Bacterial flagellin is an effective adjuvant for CD4+ T cells in vivo. J Immunol 2002; 169: 3914–3919.

    Article  CAS  PubMed  Google Scholar 

  31. Lopez-Yglesias AH, Zhao X, Quarles EK, Lai MA, VandenBos T, Strong RK et al. Flagellin induces antibody responses through a TLR5- and inflammasome-independent pathway. J Immunol 2014; 192: 1587–1596.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (2012CB518805), the National Natural Science Foundation of China (31230070, 31172299), the Program for New Century Excellent Talents in University (NCET-12-0745) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). We thank XiaoMing Zhang of Institut Pasteur in Paris for assistance with in vivo studies and for critically reading this manuscript, and Edith Deriaud of Institut Pasteur in Paris for technical assistance.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no financial or commercial conflicts of interest.

Additional information

Supplementary Information accompanies the paper on Cellular & Molecular Immunology's website. (http://www.nature.com/cmi).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Pan, Z., Kang, X. et al. Amino acids 89–96 of Salmonella typhimurium flagellin represent the major domain responsible for TLR5-independent adjuvanticity in the humoral immune response. Cell Mol Immunol 12, 625–632 (2015). https://doi.org/10.1038/cmi.2014.76

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2014.76

Keywords

This article is cited by

Search

Quick links