Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Leukocyte driven-decidual angiogenesis in early pregnancy

Abstract

Successful pregnancy and long-term, post-natal maternal and offspring cardiac, vascular and metabolic health require key maternal cardiovascular adaptations over gestation. Within the pregnant decidualizing uterus, coordinated vascular, immunological and stromal cell changes occur. Considerable attention has been given to the roles of uterine natural killer (uNK) cells in initiating decidual spiral arterial remodeling, a process normally completed by mid-gestation in mice and in humans. However, leukocyte roles in much earlier, region specific, decidual vascular remodeling are now being defined. Interest in immune cell-promoted vascular remodeling is driven by vascular aberrations that are reported in human gestational complications such as infertility, recurrent spontaneous abortion, preeclampsia (PE) and fetal growth restriction. Appropriate maternal cardiovascular responses during pregnancy protect mothers and their children from later cardiovascular disease risk elevation. One of the earliest uterine responses to pregnancy in species with hemochorial placentation is stromal cell decidualization, which creates unique niches for angiogenesis and leukocyte recruitment. In early decidua basalis, the aspect of the implantation site that will cradle the developing placenta and provide the major blood vessels to support mature placental functions, leukocytes are greatly enriched and display specialized properties. UNK cells, the most abundant leukocyte subset in early decidua basalis, have angiogenic abilities and are essential for normal early decidual angiogenesis. The regulation of uNK cells and their roles in determining maternal and progeny cardiovascular health over pregnancy and postpartum are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Roberts JJ, Cunningham F, Lindheimer M . Chesley's Hypertensive Disorders in Pregnancy. Burlington, MA: Elsevier, 2009.

    Google Scholar 

  2. Hiby SE, Walker JJ, O'Shaughnessy KM, Redman CW, Carrington M, Trowsdale J et al. Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success. J Exp Med 2004; 200: 9579–65.

    Article  Google Scholar 

  3. American College of Obstetrician and Gynecologist. Pregnancy and Hypertension Guidelines. First Edition [PDF on Internet]. Washington, DC: American College of Obstetrician and Gynecologist, 2013. Available from: http://www.acog.org. accessed date: May 20, 2014.

  4. Brosens I, Pijnenborg R, Vercruysse L, Romero R . The “Great Obstetrical Syndromes” are associated with disorders of deep placentation. Am J Obstet Gynecol 2011; 204: 193–201.

    Article  PubMed  Google Scholar 

  5. Burke SD, Barrette VF, Bianco J, Thorne JG, Yamada AT, Pang SC et al. Spiral arterial remodeling is not essential for normal blood pressure regulation in pregnant mice. Hypertension 2010; 55: 729–737.

    Article  CAS  PubMed  Google Scholar 

  6. Kumasawa K1, Ikawa M, Kidoya H, Hasuwa H, Saito-Fujita T, Morioka Y et al. Pravastatin induces placental growth factor (PGF) and ameliorates preeclampsia in a mouse model. Proc Natl Acad Sci USA 2011; 108: 1451–1455.

    Article  CAS  PubMed  Google Scholar 

  7. Croy BA, Burke SD, Barrette VF, Zhang J, Hatta K, Smith GN et al. Identification of the primary outcomes that result from deficient spiral arterial modification in pregnant mice. Pregnancy Hypertens 2011; 1: 87–94.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhang J, Dong H, Wang B, Zhu S, Croy BA . Dynamic changes occur in patterns of endometrial EFNB2/EPHB4 expression during the period of spiral arterial modification in mice. Biol Reprod 2008; 79: 450–458.

    Article  CAS  PubMed  Google Scholar 

  9. Tannetta DS, Dragovic RA, Gardiner C, Redman CW, Sargent IL . Characterisation of syncytiotrophoblast vesicles in normal pregnancy and pre-eclampsia: expression of Flt-1 and endoglin. PloS One 2013; 8: e56754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tay CS, Tagliani E, Collins MK, Erlebacher A . Cis-acting pathways selectively enforce the non-immunogenicity of shed placental antigen for maternal CD8 T cells. PLoS One 2013; 8: e84064.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Gellersen B, Brosens IA, Brosens JJ . Decidualization of the human endometrium: mechanisms, functions, and clinical perspectives. Semin Reprod Med 2007; 25: 445–453.

    Article  CAS  PubMed  Google Scholar 

  12. Dey SK, Lim H, Das SK, Reese J, Paria BC, Dalkoku T et al. Molecular cues to implantation. Endocr Rev 2004; 25: 341–373.

    Article  CAS  PubMed  Google Scholar 

  13. Herington J, Bany BM . Effect of the conceptus on uterine natural killer cell numbers and function in the mouse uterus during decidualization. Biol Reprod 2007; 76: 579–588.

    Article  CAS  PubMed  Google Scholar 

  14. McConaha ME, Eckstrum K, An J, Steinle JJ, Bany BM . Microarray assessment of the influence of the conceptus on gene expression in the mouse uterus during decidualization. Reproduction 2011; 141: 511–527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Abrahamsohn PA, Zorn TM . Implantation and decidualization in rodents. J Exp Zool 1993; 266: 603–628.

    Article  CAS  PubMed  Google Scholar 

  16. Teklenburg G, Salker M, Molokhia M, Lavery S, Trew G, Aojanepong T et al. Natural selection of human embryos: decidualizing endometrial stromal cells serve as sensors of embryo quality upon implantation. PLoS One 2010; 5: e10258.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Oreshkova T, Dimitrov R, Mourdjeva M . A cross-talk of decidual stromal cells, trophoblast, and immune cells: a prerequisite for the success of pregnancy. Am J Reprod Immunol 2012; 68: 366–373.

    Article  CAS  PubMed  Google Scholar 

  18. Yang X, Jin H, Cai X, Li S, Shen Y . Structural and mechanistic insights into the activation of Stromal interaction molecule 1 (STIM1). Proc Natl Acad Sci USA 2012; 109: 5657–5662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Collins MK, Tay CS, Erlebacher A . Dendritic cell entrapment within the pregnant uterus inhibits immune surveillance of the maternal/fetal interface in mice. J Clin Investig 2009; 119: 2062–2073.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Tagliani E, Shi C, Nancy P, Tay CS, Pamer EG, Erlebacher A et al. Coordinate regulation of tissue macrophage and dendritic cell population dynamics by CSF-1. J Exp Med 2011; 208: 1901–1916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Croy BA, Zhang J, Tayade C, Colucci F, Yadi H, Yamada AT et al. Analysis of uterine natural killer cells in mice. Methods Mol Biol 2010; 612: 465–503.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang J, Chen Z, Fritz JH, Rochman Y, Leonard WJ, Gommerman JL et al. Unusual timing of CD127 expression by mouse uterine natural killer cells. J Leukoc Biol 2012; 91: 417–426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Karsten CM, Kruse A . The role of vascular addressins in implantations sites during successful and failing mouse pregnancies. Immunol Invest 2008; 37: 449–466.

    Article  CAS  PubMed  Google Scholar 

  24. Fernekorn U, Kruse A . Regulation of leukocyte recruitment to the murine maternal/fetal interface. Chem Immunol Allergy 2005; 89: 105–117.

    Article  CAS  PubMed  Google Scholar 

  25. Croy BA, Chen Z, Hofmann AP, Lord EM, Sedlacek AL, Gerber SA et al. Imaging of vascular development in early mouse decidua and its association with leukocytes and trophoblasts. Biol Reprod 2012; 87: 125.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Hofmann AP, Gerber SA, Croy BA . Uterine natural killer cells pace early development of mouse decidua basalis. Mol Hum Reprod 2014; 20: 66–76.

    Article  CAS  PubMed  Google Scholar 

  27. Cha J, Sun X, Dey SK . Mechanisms of implantation: strategies for successful pregnancy. Nat Med 2012; 18: 1754–1767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bell SC . Decidualization and relevance to menstruation. In: D'Arcangues C, Fraser IS, Newton JR, Odlind V (eds.) Contraception and Mechanisms of Endometrial Bleeding. Cambridge: Cambridge University Press, 1990: 188.

    Google Scholar 

  29. Paria BC, Reese J, Das SK, Dey SK . Deciphering the cross-talk of implantation: advances and challenges. Science 2002; 296: 2185–2188.

    Article  CAS  PubMed  Google Scholar 

  30. Leonard S, Croy BA, Murrant CL . Arteriolar reactivity in lymphocyte-deficient mice. Am J Physiol Heart Circ Physiol 2011; 301: 1276–1285.

    Article  CAS  Google Scholar 

  31. Russell P, Anderson L, Lieberman D, Tremellen K, Yilmaz H, Cheerala B et al. The distribution of immune cells and macrophages in the endometrium of women with recurrent reproductive failure I: techniques. J Reprod Immunol 2011; 91: 90–102.

    Article  CAS  PubMed  Google Scholar 

  32. Salamonsen LA, Lathbury LJ . Endometrial leukocytes and menstruation. Hum Reprod 2000; 6: 16–27.

    CAS  Google Scholar 

  33. Givan AL, White HD, Stern JE, Colby E, Gosselin EJ, Guyre PM et al. Flow cytometric analysis of leukocytes in the human female reproductive tract: comparison of fallopian tube, uterus, cervix, and vagina. Am J Reprod Immunol 1997; 38: 350–359.

    Article  CAS  PubMed  Google Scholar 

  34. Nancy P, Tagliani E, Tay CS, Asp P, Levy DE, Erlebacher A et al. Chemokine gene silencing in decidual stromal cells limits T cell access to the maternal–fetal interface. Science 2012; 336: 1317–1321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Parr EL, Parr MB, Zheng LM, Young JD . Mouse granulated metrial gland cells originate by local activation of uterine natural killer lymphocytes. Biol Reprod 1991; 44: 834–841.

    Article  CAS  PubMed  Google Scholar 

  36. Yadi H, Burke S, Madeja Z, Hemberger M, Moffett A, Colucci F et al. Unique receptor repertoire in mouse uterine NK cells. J Immunol 2008; 181: 6140–6147.

    Article  CAS  PubMed  Google Scholar 

  37. Stewart I, Peel S . Granulated metrial gland cells in the virgin and early pregnant mouse uterus. J Anat 1981; 133: 535–541.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. King A1, Loke YW . On the nature and function of human uterine granular lymphocytes. Immunol Today 1991; 12: 432–435.

    Article  CAS  PubMed  Google Scholar 

  39. Croy BA, Kiso Y . Granulated metrial gland cells: a natural killer cell subset of the pregnant murine uterus. Microsc Res Tech 1993; 25: 189–200.

    Article  CAS  PubMed  Google Scholar 

  40. Paffaro VA Jr, Bizinotto MC, Joazeiro PP, Yamada AT . Subset classification of mouse uterine natural killer cells by DBA lectin reactivity. Placenta 2003; 24: 479–488.

    Article  CAS  PubMed  Google Scholar 

  41. Chiossone L, Chaix J, Fuseri N, Roth C, Vivier E, Walzer T et al. Maturation of mouse NK cells is a 4-stage developmental program. Blood 2009; 113: 5488–5496.

    Article  CAS  PubMed  Google Scholar 

  42. Parr EL, Young LH, Parr MB, Young JD . Granulated metrial gland cells of pregnant mouse uterus are natural killer-like cells that contain perforin and serine esterases. J Immunol 1990; 145: 2365–2372.

    CAS  PubMed  Google Scholar 

  43. Zheng LM, Ojcius DM, Liu CC, Kramer MD, Simon MM, Parr EL et al. Immunogold labeling of perforin and serine esterases in granulated metrial gland cells. FASEB J 1991; 5: 79–85.

    Article  CAS  PubMed  Google Scholar 

  44. Lima PD, Croy BA, Degaki KY, Tayade C, Yamada AT . Heterogeneity in composition of mouse uterine natural killer cell granules. J Leukoc Biol 2012; 92: 195–204.

    Article  CAS  PubMed  Google Scholar 

  45. Salminen A, Kauppinen A, Kaarniranta K . Emerging role of NF-κB signaling in the induction of senescence-associated secretory phenotype (SASP). Cell Signal 2012; 24: 835–845.

    Article  CAS  PubMed  Google Scholar 

  46. Pang SC, Janzen-Pang J, Tse MY, Croy BA, Tse D . Implant site dissections. In: The Guide to Investigation of Mouse Pregnancy. Amsterdam: Elsevier, 2014: 21–42.

    Chapter  Google Scholar 

  47. Chen Z, Zhang J, Hatta K, Lima PD, Yadi H, Colucci F et al. DBA-lectin reactivity defines mouse uterine natural killer cell subsets with biased gene expression. Biol Reprod 2012; 87: 81.

    Article  PubMed  Google Scholar 

  48. Degaki KY, Chen Z, Yamada AT, Croy BA . Delta-like ligand (DLL)1 expression in early mouse decidua and its localization to uterine natural killer cells. PLoS One 2012; 7: e52037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Limbourg A, Ploom M, Elligsen D, Sörensen I, Ziegelhoeffer T, Gossler A et al. The Notch ligand Delta-like 1 is essential for postnatal arteriogenesis. Circ Res 2007; 100: 363–371.

    Article  CAS  PubMed  Google Scholar 

  50. Sörensen I, Adams RH, Gossler A . DLL1-mediated Notch activation regulates endothelial identity in mouse fetal arteries. Blood 2009; 113: 5680–5688.

    Article  PubMed  CAS  Google Scholar 

  51. Ashkar AA, Di Santo JP, Croy BA . Interferon gamma contributes to initiation of uterine vascular modification, decidual integrity, and uterine natural killer cell maturation during normal murine pregnancy. J Exp Med 2000; 192: 259–270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang JH, Yamada AT, Croy BA . DBA-lectin reactivity defines natural killer cells that have homed to mouse decidua. Placenta 2009; 30: 968–973.

    Article  PubMed  CAS  Google Scholar 

  53. Starkey PM, Sargent IL, Redman CW . Cell populations in human early pregnancy decidua: characterization and isolation of large granular lymphocytes by flow cytometry. Immunology 1988; 65: 129–134.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kalkunte S, Chichester CO, Gotsch F, Sentman CL, Romero R, Sharma S . Evolution of non-cytotoxic uterine natural killer cells. Am J Reprod Immunol 2008; 59: 425–432.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Male V, Sharkey A, Masters L, Kennedy PR, Farrell LE, Moffett A et al. The effect of pregnancy on uterine NK cell KIR repertoire. Eur J Immunol 2011; 41: 1–11.

    Article  CAS  Google Scholar 

  56. Li XF, Charnock-Jones DS, Zhang E, Hiby S, Malik S, Day K et al. Angiogenic growth factor messenger ribonucleic acids in uterine Natural Killer cells. J Clin Endocrinol Metab 2001; 86: 1823–1834.

    CAS  PubMed  Google Scholar 

  57. Lash GE, Schiessl B, Kirkley M, Innes BA, Cooper A, Searle RF et al. Expression of angiogenic growth factors by uterine natural killer cells during early pregnancy. J Leukoc Biol 2006; 80: 572–580.

    Article  CAS  PubMed  Google Scholar 

  58. Jokhi PP, King A, Sharkey AM, Smith SK, Loke YW . Screening for cytokine messenger ribonucleic acids in purified human decidual lymphocyte populations by the reverse-transcriptase polymerase chain reaction. J Immunol 1994; 153: 4427–4435.

    CAS  PubMed  Google Scholar 

  59. Hanna J, Goldman-Wohl D, Hamani Y, Avraham I, Greenfield C, Natanson-Yaron S et al. Decidual NK cells regulate key developmental processes at the human fetal–maternal interface. Nat Med 2006; 12: 1065–1074.

    Article  CAS  PubMed  Google Scholar 

  60. Lash GE, Robson SC, Bulmer JN . Review: Functional role of uterine natural killer (uNK) cells in human early pregnancy decidua. Placenta 2010; 31( Suppl): S87–S92.

    Article  PubMed  CAS  Google Scholar 

  61. Hazan AD, Smith SD, Jones RL, Whittle W, Lye SJ, Dunk CE et al. Vascular-leukocyte interactions: mechanisms of human decidual spiral artery remodeling in vitro. Am J Pathol 2010; 177: 1017–1030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang J, Dunk CE, Lye SJ . Sphingosine signalling regulates decidual NK cell angiogenic phenotype and trophoblast migration. Hum Reprod 2013; 28: 3026–3037.

    Article  CAS  PubMed  Google Scholar 

  63. Robson A, Harris LK, Innes BA, Lash GE, Aljunaidy MM, Aplin JD et al. Uterine natural killer cells initiate spiral artery remodeling in human pregnancy. FASEB J 2012; 26: 4876–4885.

    Article  CAS  PubMed  Google Scholar 

  64. Smith SD, Dunk CE, Aplin JD, Harris LK, Jones RL . Evidence for immune cell involvement in decidual spiral arteriole remodeling in early human pregnancy. Am J Pathol 2009; 174: 1959–1971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bulmer JN, Morrison L, Longfellow M, Ritson A, Pace D . Granulated lymphocytes in human endometrium: histochemical and immunohistochemical studies. Hum Reprod 1991; 6: 791–798.

    Article  CAS  PubMed  Google Scholar 

  66. Moffett-King A . Natural killer cells and pregnancy. Nat Rev Immunol 2002; 2: 656–663.

    Article  CAS  PubMed  Google Scholar 

  67. Bartmann C, Segerer SE, Rieger L, Kapp M, Sütterlin M, Kämmerer U et al. Quantification of the predominant immune cell populations in decidua throughout human pregnancy. Am J Reprod Immunol 2014; 71: 109–119.

    Article  CAS  PubMed  Google Scholar 

  68. Apps R, Gardner L, Traherne J, Male V, Moffett A . Natural-killer cell ligands at the maternal–fetal interface: UL-16 binding proteins, MHC class-I chain related molecules, HLA-F and CD48. Hum Reprod 2008; 23: 2535–2548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Apps R, Gardner L, Moffett A . A critical look at HLA-G. Trends Immunol 2008; 29: 313–321.

    Article  CAS  PubMed  Google Scholar 

  70. Moreau P, Contu L, Alba F, Lai S, Simoes R, Orrù S et al. HLA-G gene polymorphism in human placentas: possible association of G*0106 allele with preeclampsia and miscarriage. Biol Reprod 2008; 79: 459–467.

    Article  CAS  PubMed  Google Scholar 

  71. Kruse A, Martens N, Fernekorn U, Hallmann R, Butcher EC . Alterations in the expression of homing-associated molecules at the maternal/fetal interface during the course of pregnancy. Biol Reprod 2002; 66: 333–345.

    Article  CAS  PubMed  Google Scholar 

  72. Carlino C, Stabile H, Morrone S, Bulla R, Soriani A, Agostinis C et al. Recruitment of circulating NK cells through decidual tissues: a possible mechanism controlling NK cell accumulation in the uterus during early pregnancy. Blood 2008; 111: 3108–3115.

    Article  CAS  PubMed  Google Scholar 

  73. Madigan J, Freeman DJ, Menzies F, Forrow S, Nelson SM, Young A et al. Chemokine scavenger D6 is expressed by trophoblasts and aids the survival of mouse embryos transferred into allogeneic recipients. J Immunol 2010; 184: 3202–3212.

    Article  CAS  PubMed  Google Scholar 

  74. Sumagin R, Sarelius IH . Intercellular adhesion molecule-1 enrichment near tricellular endothelial junctions is preferentially associated with leukocyte transmigration and signals for reorganization of these junctions to accommodate leukocyte passage. J Immunol 2010; 184: 5242–5252.

    Article  CAS  PubMed  Google Scholar 

  75. Kruse A, Merchant MJ, Hallmann R, Butcher EC . Evidence of specialized leukocyte-vascular homing interactions at the maternal/fetal interface. Eur J Immunol 1999; 29: 1116–1126.

    Article  CAS  PubMed  Google Scholar 

  76. Zavan B, Paffaro AM, Joazeiro PP, Yamada AT, Paffaro VA Jr . Immunocytochemical studies of adhesion molecules on mouse uNK cells and their extracellular matrix ligands during mouse pregnancy. Anat Rec Hoboken 2010; 293: 1081–1088.

    Article  CAS  PubMed  Google Scholar 

  77. Chantakru S, Kuziel WA, Maeda N, Croy BA . A study on the density and distribution of uterine Natural Killer cells at mid pregnancy in mice genetically-ablated for CCR2, CCR 5 and the CCR5 receptor ligand, MIP-1 alpha. J Reprod Immunol 2001; 49: 33–47.

    Article  CAS  PubMed  Google Scholar 

  78. Xie X, Kang Z, Anderson LN, He H, Lu B, Croy BA et al. Analysis of the contributions of L-selectin and CXCR3 in mediating leukocyte homing to pregnant mouse uterus. Am J Reprod Immunol 2005; 53: 1–12.

    Article  CAS  PubMed  Google Scholar 

  79. Cao Q, Chen H, Deng Z, Yue J, Chen Q, Cao Y et al. Genetic deletion of Cxcl14 in mice alters uterine NK cells. Biochem Biophys Res Commun 2013; 435: 664–670.

    Article  CAS  PubMed  Google Scholar 

  80. Linzke N, Schumacher A, Woidacki K, Croy BA, Zenclussen AC . Carbon monoxide promotes proliferation of uterine natural killer cells and remodeling of spiral arteries in pregnant hypertensive heme oxygenase-1 mutant mice. Hypertension 2014; 63: 580–588.

    Article  CAS  PubMed  Google Scholar 

  81. Li M, Schwerbrock NM, Lenhart PM, Fritz-Six KL, Kadmiel M, Christine KS et al. Fetal-derived adrenomedullin mediates the innate immune milieu of the placenta. J Clin Invest 2013; 123: 2408–2420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Red-Horse K, Drake PM, Gunn MD, Fisher SJ . Chemokine ligand and receptor expression in the pregnant uterus: reciprocal patterns in complementary cell subsets suggest functional roles. Am J Pathol 2001; 159: 2199–2213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wu X, Jin LP, Yuan MM, Zhu Y, Wang MY, Li DJ et al. Human first-trimester trophoblast cells recruit CD56brightCD16 NK cells into decidua by way of expressing and secreting of CXCL12/stromal cell-derived factor 1. J Immunol 2005; 175: 161–68.

    Google Scholar 

  84. Engert S, Rieger L, Kapp M, Becker JC, Dietl J, Kämmerer U et al. Profiling chemokines, cytokines and growth factors in human early pregnancy decidua by protein array. Am J Reprod Immunol 2007; 58: 129–137.

    Article  CAS  PubMed  Google Scholar 

  85. Jones RL, Hannan NJ, Kaitu'u TJ, Zhang J, Salamonsen LA . Identification of chemokines important for leukocyte recruitment to the human endometrium at the times of embryo implantation and menstruation. J Clin Endocrinol Metab 2004; 89: 6155–6167.

    Article  CAS  PubMed  Google Scholar 

  86. Campbell JJ, Qin S, Unutmaz D, Soler D, Murphy KE, Hodge MR et al. Unique subpopulations of CD56+ NK and NK-T peripheral blood lymphocytes identified by chemokine receptor expression repertoire. J Immunol 2001; 166: 6477–6482.

    Article  CAS  PubMed  Google Scholar 

  87. Carmeliet P, Collen D . Molecular basis of angiogenesis. Role of VEGF and VE-cadherin. Ann NY Acad Sci USA 2000; 902: 249–262.

    Article  CAS  Google Scholar 

  88. Kim M, Park HJ, Seol JW, Jang JY, Cho YS, Kim KR et al. VEGF-A regulated by progesterone governs uterine angiogenesis and vascular remodelling during pregnancy. EMBO Mol Med 2013; 5: 1415–1430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Demir R, Kayisli UA, Cayli S, Huppertz B . Sequential steps during vasculogenesis and angiogenesis in the very early human placenta. Placenta 2006; 27: 535–539.

    Article  CAS  PubMed  Google Scholar 

  90. Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 2003; 161: 1163–1177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Carmeliet P . Mechanisms of angiogenesis and arteriogenesis. Nat Med 2000; 6: 389–395.

    Article  CAS  PubMed  Google Scholar 

  92. Jakobsson L, Bentley K, Gerhardt H . VEGFRs and Notch: a dynamic collaboration in vascular patterning. Biochem Soc Trans 2009; 37: 1233–1236.

    Article  CAS  PubMed  Google Scholar 

  93. Phng LK, Gerhardt H . Angiogenesis: a team effort coordinated by notch. Dev Cell 2009; 16: 196–208.

    Article  CAS  PubMed  Google Scholar 

  94. Phng LK, Potente M, Leslie JD, Babbage J, Nyqvist D, Lobov I et al. Nrarp coordinates endothelial Notch and Wnt signaling to control vessel density in angiogenesis. Dev Cell 2009; 16: 70–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Blanco R, Gerhardt H . VEGF and Notch in tip and stalk cell selection. Cold Spring Harb Perspect Med 2013; 3: a006569.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Noguera-Troise I, Daly C, Papadopoulos NJ, Coetzee S, Boland P, Gale NW et al. Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature 2006; 444: 1032–1037.

    Article  CAS  PubMed  Google Scholar 

  97. Eliceiri BP, Paul R, Schwartzberg PL, Hood JD, Leng J, Cheresh DA et al. Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol Cell 1999; 4: 915–924.

    Article  CAS  PubMed  Google Scholar 

  98. Thurston G, Rudge JS, Ioffe E, Zhou H, Ross L, Croll SD et al. Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med 2000; 6: 460–463.

    Article  CAS  PubMed  Google Scholar 

  99. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 1997; 277: 55–60.

    Article  CAS  PubMed  Google Scholar 

  100. Iruela-Arispe ML, Davis GE . Review. Cellular and molecular mechanisms of vascular lumen formation. Dev Cell 2009; 16: 222–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Datta A, Bryant DM, Mostov KE . Review. Molecular regulation of lumen morphogenesis. Curr Biol 2011; 21: R126–R136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zeeb M, Strilic B, Lammert E . Resolving cell–cell junctions: lumen formation in blood vessels. Curr Opin Cell Biol 2010; 22: 626–632.

    Article  CAS  PubMed  Google Scholar 

  103. Herbert SP, Stainier DY . Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat Rev Mol Cell Biol 2011; 12: 551–564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Leno-Durán E, Hatta K, Bianco J, Yamada AT, Ruiz-Ruiz C, Olivares EG et al. Fetal-placental hypoxia does not result from failure of spiral arterial modification in mice. Placenta 2010; 31: 731–737.

    Article  PubMed  Google Scholar 

  105. Daikoku T, Matsumoto H, Gupta RA, Das SK, Gassmann M, DuBois RN et al. Expression of hypoxia-inducible factors in the peri-implantation mouse uterus is regulated in a cell-specific and ovarian steroid hormone-dependent manner. Evidence for differential function of HIFs during early pregnancy. J Biol Chem 2003; 278: 7683–7691.

    Article  CAS  PubMed  Google Scholar 

  106. Pugh CW, Ratcliffe PJ . Review. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 2003; 9: 677–684.

    Article  CAS  PubMed  Google Scholar 

  107. Raz T, Avni R, Addadi Y, Cohen Y, Jaffa AJ, Hemmings B et al. The hemodynamic basis for positional- and inter-fetal dependent effects in dual arterial supply of mouse pregnancies. PLoS One 2012; 7: e52273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Halder JB, Zhao X, Soker S, Paria BC, Klagsbrun M, Das SK et al. Differential expression of VEGF isoforms and VEGF164-specific receptor neuropilin-1 in the mouse uterus suggests a role for VEGF164 in vascular permeability and angiogenesis during implantation. Genesis 2000; 26: 213–224.

    Article  CAS  PubMed  Google Scholar 

  109. Wang C, Umesaki N, Nakamura H, Tanaka T, Nakatani K, Sakaguchi I et al. Expression of vascular endothelial growth factor by granulated metrial gland cells in pregnant murine uteri. Cell Tissue Res 2000; 300: 285–293.

    Article  CAS  PubMed  Google Scholar 

  110. Oh MJ, Croy BA . A map of relationships between uterine natural killer cells and progesterone receptor expressing cells during mouse pregnancy. Placenta 2008; 29: 317–323.

    Article  CAS  PubMed  Google Scholar 

  111. Tayade C, Hilchie D, He H, Fang Y, Moons L, Carmeliet P et al. Genetic deletion of placenta growth factor in mice alters uterine NK cells. J Immunol 2007; 178: 4267–4275.

    Article  CAS  PubMed  Google Scholar 

  112. Foo SS, Turner CJ, Adams S, Compagni A, Aubyn D, Kogata N et al. Ephrin-B2 controls cell motility and adhesion during blood–vessel–wall assembly. Cell 2006; 124: 161–173.

    Article  CAS  PubMed  Google Scholar 

  113. Hellström M, Kalén M, Lindahl P, Abramsson A, Betsholtz C . Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 1999; 126: 3047–3055.

    Article  PubMed  Google Scholar 

  114. Leonard S, Murrant C, Tayade C, van den Heuvel M, Watering R, Croy BA . Mechanisms regulating immune cell contributions to spiral artery modification—facts and hypotheses—a review. Placenta 2006; 27( Suppl A): S40–S46.

    Article  PubMed  CAS  Google Scholar 

  115. De Bock K, Georgiadou M, Carmeliet P . Role of endothelial cell metabolism in vessel sprouting. Cell Metab 2013; 18: 634–647.

    Article  CAS  PubMed  Google Scholar 

  116. Ferrara N, Gerber HP, LeCouter J . The biology of VEGF and its receptors. Nat Med 2003; 9: 669–676.

    Article  CAS  PubMed  Google Scholar 

  117. Ferrara N, Davis-Smyth T . The biology of vascular endothelial growth factor. Endocr Rev 1997; 18: 4–25.

    Article  CAS  PubMed  Google Scholar 

  118. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z . Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 1999; 13: 9–22.

    Article  CAS  PubMed  Google Scholar 

  119. Hoeben A, Landuyt B, Highley MS, Wildiers H, van Oosterom AT, de Bruijn EA et al. Review. Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 2004; 56: 549–580.

    Article  CAS  PubMed  Google Scholar 

  120. Waltenberger J, Claesson-Welsh L, Siegbahn A, Shibuya M, Heldin CH . Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J Biol Chem 1994; 269: 26988–26995.

    Article  CAS  PubMed  Google Scholar 

  121. Zachary I . Vascular endothelial growth factor: how it transmits its signal. Exp Nephrol 1998; 6: 480–487.

    Article  CAS  PubMed  Google Scholar 

  122. Mazure NM, Chen EY, Laderoute KR, Giaccia AJ . Induction of vascular endothelial growth factor by hypoxia is modulated by a phosphatidylinositol 3-kinase/Akt signaling pathway in Ha-ras-transformed cells through a hypoxia inducible factor-1 transcriptional element. Blood 1997; 90: 3322–3331.

    Article  CAS  PubMed  Google Scholar 

  123. Cross MJ, Dixelius J, Matsumoto T, Claesson-Welsh L . VEGF-receptor signal transduction. Trends Biochem Sci 2003; 28: 488–494.

    Article  CAS  PubMed  Google Scholar 

  124. Rousseau S, Houle F, Landry J, Huot J . p38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells. Oncogene 1997; 15: 2169–2177.

    Article  CAS  PubMed  Google Scholar 

  125. Li B, Ogasawara AK, Yang R, Wei W, He GW, Zioncheck TF et al. KDR (VEGF receptor 2) is the major mediator for the hypotensive effect of VEGF. Hypertension 2002; 39: 1095–1100.

    Article  CAS  PubMed  Google Scholar 

  126. Maynard SE, Min JY, Merchan J, Lim KH, Li J, Monda S et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest 2003; 111: 649–658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Algeri P, Ornaghi S, Bernasconi DP, Cappellini F, Signorini S, Brambilla P et al. Feto-maternal correlation of PTX3, sFlt-1 and PlGF in physiological and pre-eclamptic pregnancies. Hypertens Pregnancy 2014; 33: 360–370.

    Article  CAS  PubMed  Google Scholar 

  128. Levine RJ, Maynard SE, Qian C, Lim KH, England LJ, Yu KF et al. Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med 2004; 350: 672–683.

    Article  CAS  PubMed  Google Scholar 

  129. Karumanchi SA, Haig D . Flt1, pregnancy, and malaria: evolution of a complex interaction. Proc Natl Acad Sci USA 2008; 105: 14243–14244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Cerdeira AS, Rajakumar A, Royle CM, Lo A, Husain Z, Thadhani RI et al. Conversion of peripheral blood NK cells to a decidual NK-like phenotype by a cocktail of defined factors. J Immunol 2013; 190: 3939–3948.

    Article  CAS  PubMed  Google Scholar 

  131. Patten IS, Rana S, Shahul S, Rowe GC, Jang C, Liu L et al. Cardiac angiogenic imbalance leads to peripartum cardiomyopathy. Nature 2012; 485: 333–338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Felker AM, Chen Z, Foster WG, Croy BA . Receptors for non-MHC ligands contribute to uterine natural killer cell activation during pregnancy in mice. Placenta 2013; 34: 757–764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kieckbusch J, Gaynor LM, Moffett A, Colucci F . MHC-dependent inhibition of uterine NK cells impedes fetal growth and decidual vascular remodelling. Nat Commun 2014; 5: 3359.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Lima PD, Tu M, Mahin MM, Peng A, Croy BA, Makrigiannis AP . LY49 receptors activate angiogenic mouse DBA1 uterine natural killer cells. Cell Moll Immunol 2014; in press.

  135. Iwasaki H, Kawamoto A, Tjwa M, Horii M, Hayashi S, Oyamada A et al. PlGF repairs myocardial ischemia through mechanisms of angiogenesis, cardioprotection and recruitment of myo-angiogenic competent marrow progenitors. PLoS One 2011; 6: e24872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Oura H, Bertoncini J, Velasco P, Brown LF, Carmeliet P, Detmar M . A critical role of placental growth factor in the induction of inflammation and edema formation. Blood 2003; 101: 560–567.

    Article  CAS  PubMed  Google Scholar 

  137. Nagy JA, Dvorak AM, Dvorak HF . VEGF-A164/165 and PlGF: roles in angiogenesis and arteriogenesis. Trends Cardiovasc Med 2003; 13: 169–175.

    Article  CAS  PubMed  Google Scholar 

  138. Carmeliet P, Moons L, Luttun A, Vincenti V, Compernolle V, de Mol M et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 2001; 7: 575–583.

    Article  CAS  PubMed  Google Scholar 

  139. Tchaikovski V, Fellbrich G, Waltenberger J . The molecular basis of VEGFR-1 signal transduction pathways in primary human monocytes. Arterioscler Thromb Vasc Biol 2008; 28: 322–328.

    Article  CAS  PubMed  Google Scholar 

  140. Knudsen UB, Kronborg CS, von Dadelszen P, Kupfer K, Lee SW, Vittinghus E et al. A single rapid point-of-care placental growth factor determination as an aid in the diagnosis of preeclampsia. Pregnancy Hypertens 2012; 2: 8–15.

    Article  PubMed  Google Scholar 

  141. Staff AC, Benton SJ, von Dadelszen P, Roberts JM, Taylor RN, Powers RW et al. Redefining preeclampsia using placenta-derived biomarkers. Hypertension 2013; 61: 932–942.

    Article  CAS  PubMed  Google Scholar 

  142. Redman CW, Sacks GP, Sargent IL . Preeclampsia: an excessive maternal inflammatory response to pregnancy. Am J Obstet Gynecol 1999; 180: 499–506.

    Article  CAS  PubMed  Google Scholar 

  143. Fukuhara S, Sako K, Minami T, Noda K, Kim HZ, Kodama T et al. Differential function of Tie2 at cell–cell contacts and cell–substratum contacts regulated by angiopoietin-1. Nat Cell Biol 2008; 10: 513–526.

    Article  CAS  PubMed  Google Scholar 

  144. Saharinen P, Eklund L, Pulkki K, Bono P, Alitalo K . VEGF and angiopoietin signaling in tumor angiogenesis and metastasis. Trends Mol Med 2011; 17: 347–362.

    Article  CAS  PubMed  Google Scholar 

  145. Felcht M, Luck R, Schering A, Seidel P, Srivastava K, Hu J et al. Angiopoietin-2 differentially regulates angiogenesis through TIE2 and integrin signaling. J Clin Invest 2012; 122: 1991–2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Horwood NJ . Immune cells and bone: coupling goes both ways. Immunol Invest 2013; 42: 532–543.

    Article  CAS  PubMed  Google Scholar 

  147. Guo B1, Zhang XM, Li SJ, Tian XC, Wang ST, Li DD et al. Differential expression and regulation of angiopoietin-3 in mouse uterus during preimplantation period. Mol Dev Evol 2012; 318: 316–324.

    CAS  Google Scholar 

  148. González IT, Barrientos G, Freitag N, Otto T, Thijssen VL, Moschansky P et al. Uterine NK cells are critical in shaping DC immunogenic functions compatible with pregnancy progression. PLoS One 2012; 7: e46755.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Potente M, Gerhardt H, Carmeliet P . Basic and therapeutic aspects of angiogenesis. Cell 2011; 146: 873–887.

    Article  CAS  PubMed  Google Scholar 

  150. Bai S, Wang Y, Qin L, Xiao Z, Herva R, Piao Y . Dynamic expression of matrix metalloproteinases (MMP-2, -9 and -14) and the tissue inhibitors of MMPs (TIMP-1, -2 and -3) at the implantation site during tubal pregnancy. Reproduction 2005; 129: 103–113.

    Article  CAS  PubMed  Google Scholar 

  151. Naruse K, Lash GE, Innes BA, Otun HA, Searle RF, Robson SC et al. Localization of matrix metalloproteinase (MMP)-2, MMP-9 and tissue inhibitors for MMPs (TIMPs) in uterine natural killer cells in early human pregnancy. Hum Reprod 2009; 24: 553–561.

    Article  CAS  PubMed  Google Scholar 

  152. Fontana V1, Coll TA, Sobarzo CM, Tito LP, Calvo JC, Cebral E . Matrix metalloproteinase expression and activity in trophoblast-decidual tissues at organogenesis in CF-1 mouse. J Mol Histol 2012; 43: 487–496.

    Article  CAS  PubMed  Google Scholar 

  153. D'Souza B, Meloty-Kapella L, Weinmaster G . Canonical and non-canonical Notch ligands. Curr Top Dev Biol 2010; 92: 73–129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Afshar Y, Jeong JW, Roqueiro D, DeMayo F, Lydon J, Radtke F et al. Notch1 mediates uterine stromal differentiation and is critical for complete decidualization in the mouse. FASEB J 2012; 26: 282–294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hunkapiller NM, Gasperowicz M, Kapidzic M, Plaks V, Maltepe E, Kitajewski J et al. A role for Notch signaling in trophoblast endovascular invasion and in the pathogenesis of pre-eclampsia. Development 2011; 138: 2987–2998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Manaster I, Gazit R, Goldman-Wohl D, Stern-Ginossar N, Mizrahi S, Yagel S et al. Notch activation enhances IFNgamma secretion by human peripheral blood and decidual NK cells. J Reprod Immunol 2010; 84: 1–7.

    Article  CAS  PubMed  Google Scholar 

  157. Stallmach T, Ehrenstein T, Isenmann S, Müller C, Hengartner H, Kägi D . The role of perforin-expression by granular metrial cells in pregnancy. Eur J Immun 1995, 25: 3342–3348.

    Article  CAS  Google Scholar 

  158. Burnett TG, Hunt JS . Nitric oxide synthase-2 and expression of perforin in uterine NK cells. J Immunol 2000; 164: 5245–5250.

    Article  CAS  PubMed  Google Scholar 

  159. Henderson EL, Geng YJ, Sukhova GK, Whittemore AD, Knox J, Libby P . Death of smooth muscle cells and expression of mediators of apoptosis by T lymphocytes in human abdominal aortic aneurysms. Circulation 1999; 99: 96–104.

    Article  CAS  PubMed  Google Scholar 

  160. Ishida S, Yamashiro K, Usui T, Kaji Y, Ogura Y, Hida T et al. Leukocytes mediate retinal vascular remodeling during development and vaso-obliteration in disease. Nat Med 2003; 9: 781–788.

    Article  CAS  PubMed  Google Scholar 

  161. Lanier LL . Evolutionary struggles between NK cells and viruses. Nat Rev Immunol 2008; 8: 259–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Parham P, Guethlein LA . Pregnancy immunogenetics: NK cell education in the womb? J Clin Invest 2010; 120: 3801–3804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Rahim MM, Tu MM, Mahmoud AB, Wight A, Abou-Samra E, Lima PD et al. Ly49 receptors: innate and adaptive immune paradigms. Front Immunol 2014; 5: 145.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Manaster I, Mandelboim O . The unique properties of uterine NK cells. Am J Reprod Immunol 2010; 63: 434–444.

    Article  CAS  PubMed  Google Scholar 

  165. El Costa H, Casemayou A, Aguerre-Girr M, Rabot M, Berrebi A, Parant O et al. Critical and differential roles of NKp46- and NKp30-activating receptors expressed by uterine NK cells in early pregnancy. J Immunol 2008; 181: 3009–3017.

    Article  CAS  PubMed  Google Scholar 

  166. Huntington ND, Vosshenrich CA, Di Santo JP . Developmental pathways that generate natural-killer-cell diversity in mice and humans. Nat Rev Immunol 2007; 7: 703–714.

    Article  CAS  PubMed  Google Scholar 

  167. Lakshmikanth T, Burke S, Ali TH, Kimpfler S, Ursini F, Ruggeri L et al. NCRs and DNAM-1 mediate NK cell recognition and lysis of human and mouse melanoma cell lines in vitro and in vivo. J Clin Invest 2009; 119: 1251–1263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Cyster JG, Schwab SR . Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu Rev Immunol 2012; 30: 69–94.

    Article  CAS  PubMed  Google Scholar 

  169. Wang Z1, Min X, Xiao SH, Johnstone S, Romanow W, Meininger D et al. Molecular basis of sphingosine kinase 1 substrate recognition and catalysis. Structure 2013; 21: 798–809.

    Article  CAS  PubMed  Google Scholar 

  170. Yamamoto Y, Olson DM, van Bennekom M, Brindley DN, Hemmings DG . Increased expression of enzymes for sphingosine 1-phosphate turnover and signaling in human decidua during late pregnancy. Biol Reprod 2010; 82: 628–635.

    Article  CAS  PubMed  Google Scholar 

  171. Mendelson K, Evans T, Hla T . Sphingosine 1-phosphate signalling. Development 2014; 141: 5–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Long EO, Sik Kim H, Liu D, Peterson ME, Rajagopalan S . Controlling Natural Killer cell responses: integration of signals for activation and inhibition. Annu Rev Immunol 2013; 31: 227–258.

    Article  CAS  PubMed  Google Scholar 

  173. Walzer T, Vivier E . G-protein-coupled receptors in control of natural killer cell migration. Trends Immunol 2011; 32: 486–492.

    Article  CAS  PubMed  Google Scholar 

  174. Rahman MM, Alkhouri H, Tang F, Che W, Ge Q, Ammit AJ . Sphingosine 1-phosphate induces neutrophil chemoattractant IL-8: repression by steroids. PLoS One 2014; 9: e92466.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Montaldo E, Vitale C, Cottalasso F, Conte R, Glatzer T, Ambrosini P et al. Human NK cells at early stages of differentiation produce CXCL8 and express CD161 molecule that functions as an activating receptor. Blood 2012; 119: 3987–3996.

    Article  CAS  PubMed  Google Scholar 

  176. Yu J, Freud AG, Caligiuri MA . Location and cellular stages of natural killer cell development. Trends Immunol 2013; 34: 573–582.

    Article  CAS  PubMed  Google Scholar 

  177. Apps R, Sharkey A, Gardner L, Male V, Kennedy P, Masters L et al. Ex vivo functional responses to HLA-G differ between blood and decidual NK cells. Mol Hum Reprod 2011; 17: 577–586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Trundley A, Moffett A . Human uterine leukocytes and pregnancy. Tissue Antigens 2004; 63: 1–12.

    Article  CAS  PubMed  Google Scholar 

  179. Erlebacher A . Immunology of the maternal-fetal interface. Annu Rev Immunol 2013; 31: 387–411.

    Article  CAS  PubMed  Google Scholar 

  180. Wallace AE, Fraser R, Cartwright JE . Extravillous trophoblast and decidual natural killer cells: a remodelling partnership. Hum Reprod Update 2012; 18: 458–471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Professor Aureo Yamada, University of Campinas, SP, Brazil, for his collaborative support and discussions during our studies of mouse uNK cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia DA Lima.

Ethics declarations

Competing interests

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, P., Zhang, J., Dunk, C. et al. Leukocyte driven-decidual angiogenesis in early pregnancy. Cell Mol Immunol 11, 522–537 (2014). https://doi.org/10.1038/cmi.2014.63

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2014.63

Keywords

This article is cited by

Search

Quick links