Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The role of neutrophils in the development of liver diseases

Abstract

Liver disease encompasses a wide variety of liver conditions, including liver failure, liver cirrhosis and a spectrum of acute and chronic hepatitis, such as alcoholic, fatty, drug, viral and chronic hepatitis. Liver injury is a primary causative factor in liver disease; generally, these factors include direct liver damage and immune-mediated liver injury. Neutrophils (also known as neutrophilic granulocytes or polymorphonuclear leukocytes (PMNs)) are the most abundant circulating white blood cell type in humans, and PMNs are a major innate immune cell subset. Inappropriate activation and homing of neutrophils to the microvasculature contributes to the pathological manifestations of many types of liver disease. This review summarizes novel concepts of neutrophil-mediated liver injury that are based on current clinical and animal model studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Kubes P, Mehal WZ . Sterile inflammation in the liver. Gastroenterology 2012; 143: 1158–1172.

    Article  CAS  PubMed  Google Scholar 

  2. Cheretakis C, Leung R, Sun CX, Dror Y, Glogauer M . Timing of neutrophil tissue repopulation predicts restoration of innate immune protection in amurine bone marrow transplantation model. Blood 2006; 108: 2821–2826.

    Article  CAS  PubMed  Google Scholar 

  3. Ulich TR, del Castillo J, Souza L . Kinetics and mechanisms of recombinant human granulocyte-colony stimulating factor-induced neutrophilia. Am J Pathol 1988; 133: 630–638.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. McDonald B, McAvoy EF, Lam F, Gill V, de la Motte C, Savani RC et al. Interaction of CD44 and hyaluronan is the dominant mechanism for neutrophil sequestration in inflamed liversinusoids. J Exp Med 2008; 205: 915–927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nathan C . Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 2006; 6: 173–182.

    Article  CAS  PubMed  Google Scholar 

  6. Bajt ML, Farhood A, Jaeschke H . Effects of CXC chemokines on neutrophil activation and sequestration in hepatic vasculature. Am J Physiol Gastrointest Liver Physiol 2001; 281: 1188–1195.

    Article  Google Scholar 

  7. Guo RF, Ward PA . Mediators and regulation of neutrophil accumulation in inflammatory responses in lung: insights from the IgG immune complex model. Free Radic Biol Med 2002; 33: 303–310.

    Article  PubMed  Google Scholar 

  8. Pillay J, Kamp VM, van Hoffen E, Visser T, Tak T, Lammers JW et al. A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1. J Clin Invest 2012; 122: 327–336.

    Article  CAS  PubMed  Google Scholar 

  9. Puga I, Cols M, Barra CM, He B, Cassis L, Gentile M et al. B cell-helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen. Nat Immunol 2011; 13: 170–180.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Jaeger BN, Donadieu J, Cognet C, Bernat C, Ordoñez-Rueda D, Barlogis V et al. Neutrophil depletion impairs natural killer cell maturation, function, and homeostasis. J Exp Med 2012; 209: 565–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. El Kebir D, Filep JG . Modulation of neutrophil apoptosis and the resolution of inflammation through β2 integrins. Front Immunol 2013; 4: 60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Selzner N, Rudiger H, Graf R, Clavien PA . Protective strategies against ischemic injury of the liver. Gastroenterology 2003; 125: 917–936.

    Article  CAS  PubMed  Google Scholar 

  13. Ramaiah SK, Jaeschke H . Role of neutrophils in the pathogenesis of acute inflammatory liver injury. Toxicol Pathol 2007; 35: 757–766.

    Article  CAS  PubMed  Google Scholar 

  14. Cerqueira NF, Hussni CA, Yoshida WB . Pathophysiology of mesenteric ischemia/reperfusion: a review. Acta Cir Bras 2005; 20: 336–343.

    Article  PubMed  Google Scholar 

  15. Jaeschke H, Farhood A . Neutrophil and Kupffer cell-induced oxidant stress and ischemia–reperfusion injury in rat liver. Am J Physiol 1991; 260: G355–G362.

    Article  CAS  PubMed  Google Scholar 

  16. Kono H, Fujii H, Ogiku M, Hosomura N, Amemiya H, Tsuchiya M et al. Role of IL-17A in neutrophil recruitment and hepatic injury after warm ischemia–reperfusion mice. J Immunol 2011; 187: 4818–4825.

    Article  CAS  PubMed  Google Scholar 

  17. Tan Z, Jiang R, Wang X, Wang Y, Lu L, Liu Q et al. RORγt+IL-17+ neutrophils play a critical role in hepatic ischemia–reperfusion injury. J Mol Cell Biol 2013; 5: 143–146.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Abu-Amara M, Yang SY, Tapuria N, Fuller B, Davidson B, Seifalian A . Liver ischemia/reperfusion injury: processes in inflammatory networks—a review. Liver Transpl 2010; 16: 1016–1032.

    Article  PubMed  Google Scholar 

  19. Kim MS, Lee KH, Lee WM, Jun JH, Kim DH . CD44 disruption attenuates murine hepatic ischemia/reperfusion injury. J Korean Med Sci 2011; 26: 919–926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Uchida Y, Freitas MC, Zhao D, Busuttil RW, Kupiec-Weglinski JW . The protective function of neutrophil elastase inhibitor in liver ischemia/reperfusion injury. Transplantation 2010; 89: 1050–1056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Datta G, Fuller BJ, Davidson BR . Molecular mechanisms of liver ischemia reperfusion injury: insights from transgenic knockout models. World J Gastroenterol 2013; 19: 1683–1698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Harlan JM, Winn RK . Leukocyte–endothelial interactions: clinical trials of anti-adhesion therapy. Crit Care Med 2002; 30: S214–S219.

    Article  CAS  PubMed  Google Scholar 

  23. Takai S, Kimura K, Nagaki M, Satake S, Kakimi K, Moriwaki H . Blockade of neutrophil elastase attenuates severe liver injury in hepatitis B transgenic mice. J Virol 2005; 79: 15142–15150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Alvarez-Uria G, Day JN, Nasir AJ, Russell SK, Vilar FJ . Reduction in neutrophil count during hepatitis C treatment: drug toxicity or predictor of good response? Dig Dis Sci 2010; 55: 2058–2062.

    Article  PubMed  Google Scholar 

  25. Sitia G, Isogawa M, Kakimi K, Wieland SF, Chisari FV, Guidotti LG . Depletion of neutrophils blocks the recruitment of antigen-nonspecific cells into the liver without affecting the antiviral activity of hepatitis B virus-specific cytotoxic T lymphocytes. Proc Natl Acad Sci USA 2002; 99: 13717–13722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Koo SH . Nonalcoholic fatty liver disease: molecular mechanisms for the hepatic steatosis. Clin Mol Hepatol 2013; 19: 210–215.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rensen SS, Bieghs V, Xanthoulea S, Arfianti E, Bakker JA, Shiri-Sverdlov R et al. Neutrophil-derived myeloperoxidase aggravates non-alcoholic steatohepatitis in low-density lipoprotein receptor-deficient mice. PLoS ONE 2012; 7: e52411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Larter CZ, Yeh MM, Haigh WG, van Rooyen DM, Brooling J, Heydet D et al. Dietary modification dampens liver inflammation and fibrosis in obesity-related fatty liver disease. Obesity 2013; 21: 1189–1199.

    Article  CAS  PubMed  Google Scholar 

  29. Inzaugarat ME, Ferreyra Solari NE, Billordo LA, Abecasis R, Gadano AC, Cherñavsky AC . Altered phenotype and functionality of circulating immune cells characterize adult patients with nonalcoholic steatohepatitis. J Clin Immunol 2011; 31: 1120–1130.

    Article  PubMed  Google Scholar 

  30. Ibusuki R, Uto H, Arima S, Mawatari S, Setoguchi Y, Iwashita Y et al. Transgenic expression of human neutrophil peptide-1 enhances hepatic fibrosis in mice fed a choline-deficient, L-amino acid-defined diet. Liver Int 2013; 33: 1547–1556.

    Article  CAS  Google Scholar 

  31. Alkhouri N, Morris-Stiff G, Campbell C, Lopez R, Tamimi TA, Yerian L et al. Neutrophil to lymphocyte ratio: a new marker for predicting steatohepatitis and fibrosis in patients with nonalcoholic fatty liver disease. Liver Int 2012; 32: 297–302.

    Article  CAS  PubMed  Google Scholar 

  32. Gao B, Bataller R . Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology 2011; 141: 1572–1585.

    Article  CAS  PubMed  Google Scholar 

  33. Taïeb J, Delarche C, Ethuin F, Selloum S, Poynard T, Gougerot-Pocidalo MA et al. Ethanol-induced inhibition of cytokine release and protein degranulation in human neutrophils. J Leukoc Biol 2002; 72: 1142–1147.

    PubMed  Google Scholar 

  34. Woodfin A, Voisin MB, Nourshargh S . Recent developments and complexities in neutrophil transmigration. Curr Opin Hematol 2010; 17: 9–17

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kono H, Uesugi T, Froh M, Rusyn I, Bradford BU, Thurman RG . ICAM-1 is involved in the mechanism of alcohol-induced liver injury: studies with knockout mice. Am J Physiol Gastrointest Liver Physiol 2001; 280: G1289–G1295.

    Article  CAS  PubMed  Google Scholar 

  36. Bertola A, Park O, Gao B . Chronic plus binge ethanol feeding synergistically induces neutrophil infiltration and liver injury in mice: a critical role for E-selectin. Hepatology 2013; 58: 1814–1823.

    Article  CAS  PubMed  Google Scholar 

  37. Gao B, Seki E, Brenner DA, Friedman S, Cohen JI, Nagy L et al. Innate immunity in alcoholic liver disease. Am J Physiol Gastrointest Liver Physiol 2011; 300: G516–G525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fujimoto M, Uemura M, Nakatani Y, Tsujita S, Hoppo K, Tamagawa T et al. Plasma endotoxin and serum cytokine levels in patients with alcoholic hepatitis: relation to severity of liver disturbance. Alcohol Clin Exp Res 2000; 24: 48S–54S.

    Article  CAS  PubMed  Google Scholar 

  39. Degré D, Lemmers A, Gustot T, Ouziel R, Trépo E, Demetter P et al. Hepatic expression of CCL2 in alcoholic liver disease is associated with disease severity and neutrophil infiltrates. Clin Exp Immunol 2012; 169: 302–310.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Ziol M, Tepper M, Lohez M, Arcangeli G, Ganne N, Christidis C et al. Clinical and biological relevance of hepatocyte apoptosis in alcoholic hepatitis. J Hepatol 2001; 34: 254–260.

    Article  CAS  PubMed  Google Scholar 

  41. Biyik M, Ucar R, Solak Y, Gungor G, Polat I, Gaipov A et al. Blood neutrophil-to-lymphocyte ratio independently predicts survival in patients with liver cirrhosis. Eur J Gastroenterol Hepatol 2013; 25: 435–441.

    Article  CAS  PubMed  Google Scholar 

  42. Papp M, Sipeki N, Vitalis Z, Tornai T, Altorjay I, Tornai I et al. High prevalence of IgA class anti-neutrophil cytoplasmic antibodies (ANCA) is associated with increased risk of bacterial infection in patients with cirrhosis. J Hepatol 2013; 59: 457–466.

    Article  CAS  PubMed  Google Scholar 

  43. Gungor G, Ataseven H, Demir A, Solak Y, Gaipov A, Biyik M et al. Neutrophil gelatinase-associated lipocalin in prediction of mortality in patients with hepatorenal syndrome: a prospective observational study. Liver Int 2013; 34: 49–57.

    Article  PubMed  CAS  Google Scholar 

  44. Tritto G, Bechlis Z, Stadlbauer V, Davies N, Francés R, Shah N et al. Evidence of neutrophil functional defect despite inflammation in stable cirrhosis. J Hepatol 2011; 55: 574–581.

    Article  CAS  PubMed  Google Scholar 

  45. Mookerjee RP, Stadlbauer V, Lidder S, Wright GA, Hodges SJ, Davies NA et al. Neutrophil dysfunction in alcoholic hepatitis superimposed on cirrhosis is reversible and predicts the outcome. Hepatology 2007; 46: 831–840.

    Article  CAS  PubMed  Google Scholar 

  46. Jaeschke H, Williams CD, Ramachandran A, Bajt ML . Acetaminophen hepatotoxicity and repair: the role of sterile inflammation and innate immunity. Liver Int 2012; 32: 8–20.

    Article  CAS  PubMed  Google Scholar 

  47. Zou Z, Li B, Xu D, Zhang Z, Zhao JM, Zhou G et al. Imbalanced intrahepatic cytokine expression of interferon-gamma, tumor necrosis factoralpha, and interleukin-10 in patients with acuteon-chronic liver failure associated with hepatitis B virus infection. J Clin Gastroenterol 2009; 43: 182–190.

    Article  CAS  PubMed  Google Scholar 

  48. Antoniades CG, Berry PA, Wendon JA, Vergani D . The importance of immune dysfunction in determining outcome in acute liver failure. J Hepatol 2008; 49: 845–861.

    Article  CAS  PubMed  Google Scholar 

  49. Jaeschke H, Ho YS, Fisher MA, Lawson JA, Farhood A . Glutathione peroxidase-deficient mice are more susceptible to neutrophil-mediated hepatic parenchymal cell injury during endotoxemia: importance of an intracellular oxidant stress. Hepatology 1999; 29: 443–450.

    Article  CAS  PubMed  Google Scholar 

  50. Liu ZX, Kaplowitz N . Role of innate immunity in acetaminophen-induced hepatotoxicity. Expert Opin Drug Metab Toxicol 2006; 2: 493–503.

    Article  CAS  PubMed  Google Scholar 

  51. Marques PE, Amaral SS, Pires DA, Nogueira LL, Soriani FM, Lima BH et al. Chemokines and mitochondrial products activate neutrophils to amplify organ injury during mouse acute liver failure. Hepatology 2012; 56: 1971–1982.

    Article  CAS  PubMed  Google Scholar 

  52. Liu ZX, Han D, Gunawan B, Kaplowitz N . Neutrophil depletion protects against murine acetaminophen hepatotoxicity. Hepatology 2006; 43: 1220–1230.

    Article  CAS  PubMed  Google Scholar 

  53. Jaeschke H, Liu J . Neutrophil depletion protects against murine acetaminophen hepatotoxicity: another perspective. Hepatology 2007; 45: 1588–1589.

    Article  PubMed  Google Scholar 

  54. Lawson JA, Farhood A, Hopper RD, Bajt ML, Jaeschke H . The hepatic inflammatory response after acetaminophen overdose: role of neutrophils. Toxicol Sci 2000; 54: 509–516.

    Article  CAS  PubMed  Google Scholar 

  55. Williams CD, Bajt ML, Farhood A, Jaeschke H . Acetaminophen-induced hepatic neutrophil accumulation and inflammatory liver injury in CD18-deficient mice. Liver Int 2010; 30: 1280–1292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Williams CD, Farhood A, Jaeschke H . Role of caspase-1 and interleukin-1beta in acetaminophen-induced hepatic inflammation and liver injury. Toxicol Appl Pharmacol 2010; 247: 169–178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Taylor NJ, Nishtala A, Manakkat Vijay GK, Abeles RD, Auzinger G, Bernal W et al. Circulating neutrophil dysfunction in acute liver failure. Hepatology 2013; 57: 1142–1152.

    Article  CAS  PubMed  Google Scholar 

  58. Wislez M, Rabbe N, Marchal J, Milleron B, Crestani B, Mayaud C et al. Hepatocyte growth factor production by neutrophils infiltrating bronchioloalveolar subtype pulmonary adenocarcinoma: role in tumor progression and death. Cancer Res 2003; 63: 1405–1412.

    CAS  PubMed  Google Scholar 

  59. Tanaka S, Yoshimoto T, Naka T, Nakae S, Iwakura Y, Cua D et al. Natural occurring IL-17 producing T cells regulate the initial phase of neutrophil mediated airway responses. J Immunol 2009; 183: 7523–7530.

    Article  CAS  PubMed  Google Scholar 

  60. Ardi VC, Kupriyanova TA, Deryugina EI, Quigley JP . Human neutrophils uniquely release TIMP-free MMP-9 to provide a potent catalytic stimulator of angiogenesis. Proc Natl Acad Sci USA 2007; 104: 20262–20267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. McDonald B, Spicer J, Giannais B, Fallavollita L, Brodt P, Ferri LE . Systemic inflammation increases cancer cell adhesion to hepatic sinusoids by neutrophil mediated mechanisms. Int J Cancer 2009; 125: 1298–1305.

    Article  CAS  PubMed  Google Scholar 

  62. Mantovani A, Allavena P, Sica A, Balkwill F . Cancer-related inflammation. Nature 2008; 454: 436–444.

    Article  CAS  PubMed  Google Scholar 

  63. Dan J, Zhang Y, Peng Z, Huang J, Gao H, Xu L et al. Postoperative neutrophil-to-lymphocyte ratio change predicts survival of patients with small hepatocellular carcinoma undergoing radiofrequency ablation. PLoS ONE 2013; 8: e58184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gao Q, Zhao YJ, Wang XY, Qiu SJ, Shi YH, Sun J et al. CXCR6 upregulation contributes to a proinflammatory tumor microenvironment that drives metastasis and poor patient outcomes in hepatocellular carcinoma. Cancer Res 2012; 72: 3546–3556.

    Article  CAS  PubMed  Google Scholar 

  65. Zhou SL, Dai Z, Zhou ZJ, Wang XY, Yang GH, Wang Z et al. Overexpression of CXCL5 mediates neutrophil infiltration and indicates poor prognosis for hepatocellularcarcinoma. Hepatology 2012; 56: 2242–2254.

    Article  CAS  PubMed  Google Scholar 

  66. Sica A, Larghi P, Mancino A, Rubino L, Porta C, Totaro MG et al. Macrophage polarization in tumour progression. Semin Cancer Biol 2008; 18: 349–355.

    Article  CAS  PubMed  Google Scholar 

  67. Tsuda Y, Takahashi H, Kobayashi M, Hanafusa T, Herndon DN, Suzuki F . Three different neutrophil subsets exhibited in mice with different susceptibilities to infection by methicillin-resistant Staphylococcus aureus. Immunity 2004; 21: 215–226.

    Article  CAS  PubMed  Google Scholar 

  68. Tsuda Y, Fukui H, Asai A, Fukunishi S, Miyaji K, Fujiwara S et al. An immunosuppressive subtype of neutrophils identified in patients with hepatocellular carcinoma. J Clin Biochem Nutr 2012; 51: 204–212.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Grand Program on Key Infectious Disease (No. 2012ZX10002-007-002) and the National Science Fund for Outstanding Young Scholars (No. 81222024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Sheng Wang.

Ethics declarations

Competing interests

The authors declare no financial or commercial conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, R., Huang, H., Zhang, Z. et al. The role of neutrophils in the development of liver diseases. Cell Mol Immunol 11, 224–231 (2014). https://doi.org/10.1038/cmi.2014.2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2014.2

Keywords

This article is cited by

Search

Quick links