Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

The Galectin-9/Tim-3 pathway is involved in the regulation of NK cell function at the maternal–fetal interface in early pregnancy

Abstract

Decidual natural killer (dNK) cells actively participate in the establishment and maintenance of maternal–fetal immune tolerance and act as local guardians against infection. However, how dNK cells maintain the immune balance between tolerance and anti-infection immune responses during pregnancy remains unknown. Here, we demonstrated that the inhibitory molecule T-cell immunoglobulin domain and mucin domain-containing molecule-3 (Tim-3) are expressed on over 60% of dNK cells. Tim-3+ dNK cells display higher interleukin (IL)-4 and lower tumor necrosis factor (TNF)-α and perforin production. Human trophoblast cells can induce the transformation of peripheral NK cells into a dNK-like phenotype via the secretion of galectin-9 (Gal-9) and the interaction between Gal-9 and Tim-3. In addition, trophoblasts inhibit lipopolysaccharide (LPS)-induced pro-inflammatory cytokine and perforin production by dNK cells, which can be attenuated by Tim-3 neutralizing antibodies. Interestingly, a decreased percentage of Tim-3-expressing dNK cells were observed in human miscarriages and murine abortion-prone models. Moreover, T helper (Th)2-type cytokines were decreased and Th1-type cytokines were increased in Tim-3+ but not Tim-3 dNK cells from human and mouse miscarriages. Therefore, our results suggest that the Gal-9/Tim-3 signal is important for the regulation of dNK cell function, which is beneficial for the maintenance of a normal pregnancy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Zenclussen AC, Schumacher A, Zenclussen ML, Wafula P, Volk HD . Immunology of pregnancy: cellular mechanisms allowing fetal survival within the maternal uterus. Expert Rev Mol Med 2007; 9: 1–14.

    Article  Google Scholar 

  2. Erlebacher A . Immunology of the maternal–fetal interface. Annu Rev Immunol 2013; 31: 387–411.

    Article  CAS  Google Scholar 

  3. Sharma S . Natural killer cells and regulatory T cells in early pregnancy loss. Int J Dev Biol 2014; 58: 219–229.

    Article  CAS  Google Scholar 

  4. Krasnow JS, Tollerud DJ, Naus G, DeLoia JA . Endometrial Th2 cytokine expression throughout the menstrual cycle and early pregnancy. Hum Reprod 1996; 11: 1747–1754.

    Article  CAS  Google Scholar 

  5. Tilburgs T, Scherjon SA, Claas FH . Major histocompatibility complex (MHC)-mediated immune regulation of decidual leukocytes at the fetal–maternal interface. J Reprod Immunol 2010; 85: 58–62.

    Article  CAS  Google Scholar 

  6. Hviid TV . HLA-G in human reproduction: aspects of genetics, function and pregnancy complications. Hum Reprod Update 2006; 12: 209–232.

    Article  CAS  Google Scholar 

  7. Mellor AL, Sivakumar J, Chandler P, Smith K, Molina H, Mao D et al. Prevention of T cell-driven complement activation and inflammation by tryptophan catabolism during pregnancy. Nat Immunol 2001; 2: 64–68.

    Article  CAS  Google Scholar 

  8. Girardi G, Yarilin D, Thurman JM, Holers VM, Salmon JE . Complement activation induces dysregulation of angiogenic factors and causes fetal rejection and growth restriction. J Exp Med 2006; 203; 2165–2175.

    Article  CAS  Google Scholar 

  9. Zhou WH, Dong L, Du MR, Zhu XY, Li DJ . Cyclosporin A improves murine pregnancy outcome in abortion-prone matings: involvement of CD80/86 and CD28/CTLA-4. Reproduction 2008; 135: 385–395.

    Article  CAS  Google Scholar 

  10. Curti A, Trabanelli S, Salvestrini V, Baccarani M, Lemoli RM . The role of indoleamine 2,3-dioxygenase in the induction of immune tolerance: focus on hematology. Blood 2009; 113: 2394–2401.

    Article  CAS  Google Scholar 

  11. Santner-Nanan B, Straubinger K, Hsu P, Parnell G, Tang B, Xu B et al. Fetal–maternal alignment of regulatory T cells correlates with IL-10 and Bcl-2 upregulation in pregnancy. J Immunol 2013; 191: 145–153.

    Article  CAS  Google Scholar 

  12. Cerdeira AS, Rajakumar A, Royle CM, Lo L, Husain Z, Thadhani RI et al. Conversion of peripheral blood NK cells to a decidual NK-like phenotype by a cocktail of defined factors. J Immunol 2013; 190; 3939–3948.

    Article  CAS  Google Scholar 

  13. Keskin DB, Allan DS, Rybalov B, Andzelm MM, Stern JN, Kopcow HD et al. TGFbeta promotes conversion of CD16+ peripheral blood NK cells into CD16 NK cells with similarities to decidual NK cells. Proc Natl Acad Sci USA 2007; 104: 3378–3383.

    Article  CAS  Google Scholar 

  14. Carlino C, Stabile H, Morrone S, Bulla R, Soriani A, Agostinis C et al. Recruitment of circulating NK cells through decidual tissues: a possible mechanism controlling NK cell accumulation in the uterus during early pregnancy. Blood 2008; 111: 3108–3115.

    Article  CAS  Google Scholar 

  15. Vacca P, Moretta L, Moretta A, Mingari MC . Origin, phenotype and function of human natural killer cells in pregnancy. Trends Immunol 2011; 32; 517–523.

    Article  CAS  Google Scholar 

  16. Tabiasco J, Rabot M, Aguerre-Girr M, El Costa H, Berrebi A, Parant O et al. Human decidual NK cells: unique phenotype and functional properties—a review. Placenta 2006; 27 Suppl A: S34–S39.

    Article  CAS  Google Scholar 

  17. Vacca P, Cantoni C, Vitale M, Prato C, Canegallo F, Fenoglio D et al. Crosstalk between decidual NK and CD14+ myelomonocytic cells results in induction of Tregs and immunosuppression. Proc Natl Acad Sci USA 2010; 107: 11918–11923.

    Article  CAS  Google Scholar 

  18. Fu B, Li X, Sun R, Tong X, Ling B, Tian Z et al. Natural killer cells promote immune tolerance by regulating inflammatory TH17 cells at the human maternal–fetal interface. Proc Natl Acad Sci USA 2013; 110: E231–240.

    Article  CAS  Google Scholar 

  19. Renaud SJ, Cotechini T, Quirt JS, Macdonald-Goodfellow SK, Othman M, Graham CH . Spontaneous pregnancy loss mediated by abnormal maternal inflammation in rats is linked to deficient uteroplacental perfusion. J Immunol 2011; 186: 1799–1808.

    Article  CAS  Google Scholar 

  20. Park BS, Song DH, Kim HM, Choi BS, Lee H, Lee JO . The structural basis of lipopolysaccharide recognition by the TLR4–MD-2 complex. Nature 2009; 458: 1191–1195.

    Article  CAS  Google Scholar 

  21. Murphy SP, Fast LD, Hanna NN, Sharma S . Uterine NK cells mediate inflammation-induced fetal demise in IL-10-null mice. J Immunol 2005; 175: 4084–4090.

    Article  CAS  Google Scholar 

  22. Zhu C, Anderson AC, Schubart A, Xiong H, Imitola J, Khoury SJ et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol 2005; 6: 1245–1252.

    Article  CAS  Google Scholar 

  23. Sanchez-Fueyo A, Tian J, Picarella D, Domenig C, Zheng XX, Sabatos CA et al. Tim-3 inhibits T helper type 1-mediated auto- and alloimmune responses and promotes immunological tolerance. Nat Immunol 2003; 4: 1093–1101.

    Article  CAS  Google Scholar 

  24. Han G, Chen G, Shen B, Li Y . Tim-3: an activation marker and activation limiter of innate immune cells. Front Immunol 2013; 4: 449–455.

    Article  Google Scholar 

  25. Ndhlovu LC, Lopez-Verges S, Barbour JD, Jones RB, Jha AR, Long BR et al. Tim-3 marks human natural killer cell maturation and suppresses cell-mediated cytotoxicity. Blood 2012; 119: 3734–3743.

    Article  CAS  Google Scholar 

  26. Jost S, Moreno-Nieves UY, Garcia-Beltran WF, Rands K, Reardon J, Toth I et al. Dysregulated Tim-3 expression on natural killer cells is associated with increased Galectin-9 levels in HIV-1 infection. Retrovirology 2013; 10: 74–85.

    Article  CAS  Google Scholar 

  27. Ju Y, Hou N, Meng J, Wang X, Zhang X, Zhao D et al. T cell immunoglobulin- and mucin-domain-containing molecule-3 (Tim-3) mediates natural killer cell suppression in chronic hepatitis B. J Hepatol 2010; 52: 322–329.

    Article  CAS  Google Scholar 

  28. Du MR, Guo PF, Piao HL, Wang SC, Sun C, Jin LP et al. Embryonic trophoblasts induce decidual regulatory T cell differentiation and maternal–fetal tolerance through thymic stromal lymphopoietin instructing dendritic cells. J Immunol 2014; 192: 1502–1511.

    Article  CAS  Google Scholar 

  29. Wu X, Jin LP, Yuan MM, Zhu Y, Wang MY, Li DJ . Human first-trimester trophoblast cells recruit CD56brightCD16 NK cells into decidua by way of expressing and secreting of CXCL12/stromal cell-derived factor 1. J Immunol 2005; 175: 61–68.

    Article  CAS  Google Scholar 

  30. Guo PF, Du MR, Wu HX, Lin Y, Jin LP, Li DJ . Thymic stromal lymphopoietin from trophoblasts induces dendritic cell-mediated regulatory TH2 bias in the decidua during early gestation in humans. Blood 2010; 116: 2061–2069.

    Article  CAS  Google Scholar 

  31. Matthiesen L, Kalkunte S, Sharma S . Multiple pregnancy failures: an immunological paradigm. Am J Reprod Immunol 2012; 67: 334–340.

    Article  CAS  Google Scholar 

  32. Sabatos CA, Chakravarti S, Cha E, Schubart A, Sanchez-Fueyo A, Zheng XX et al. Interaction of Tim-3 and Tim-3 ligand regulates T helper type 1 responses and induction of peripheral tolerance. Nat Immunol 2003; 4: 1102–1110.

    Article  CAS  Google Scholar 

  33. Monney L, Sabatos CA, Gaglia JL, Ryu A, Waldner H, Chernova T et al. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature 2002; 415: 536–541.

    Article  CAS  Google Scholar 

  34. Nagahara K, Arikawa T, Oomizu S, Kontani K, Nobumoto A, Tateno H et al. Galectin-9 increases Tim-3+ dendritic cells and CD8+ T cells and enhances antitumor immunity via galectin-9-Tim-3 interactions. J Immunol 2008; 181: 7660–7669.

    Article  CAS  Google Scholar 

  35. Hanna J, Wald O, Goldman-Wohl D, Prus D, Markel G, Gazit R et al. CXCL12 expression by invasive trophoblasts induces the specific migration of CD16 human natural killer cells. Blood 2003; 102: 1569–1577.

    Article  CAS  Google Scholar 

  36. Winger EE, Reed JL . The multiple faces of the decidual natural killer cell. Am J ReprodImmunol 2013; 70: 1–9.

    CAS  Google Scholar 

  37. Tao Y, Li YH, Piao HL, Zhou WJ, Zhang D, Fu Q et al. CD56CD25 NK cells are preferentially recruited to the maternal/fetal interface in early human pregnancy. Cell Mol Immunol 2014; in press.

  38. Mselle TF, Howell AL, Ghosh M, Wira CR, Sentman CL . Human uterine natural killer cells but not blood natural killer cells inhibit human immunodeficiency virus type 1 infection by secretion of CXCL12. J Virol 2009; 83: 11188–11195.

    Article  CAS  Google Scholar 

  39. Marlin R, Nugeyre MT, Duriez M, Cannou C, Le Breton A, Berkane N et al. Decidual soluble factors participate in the control of HIV-1 infection at the maternofetal interface. Retrovirology 2011; 8: 58–69.

    Article  CAS  Google Scholar 

  40. Siewiera J, El Costa H, Tabiasco J, Berrebi A, Cartron G, Le Bouteiller P et al. Human cytomegalovirus infection elicits new decidual natural killer cell effector functions. PLoS Pathog 2013; 9: e1003257–1003273.

    Article  CAS  Google Scholar 

  41. Kwak-Kim J, Bao S, Lee SK, Kim JW, Gilman-Sachs A . Immunological modes of pregnancy loss: inflammation, immune effectors, and stress. Am J Reprod Immunol 2014; 72: 129–140.

    Article  CAS  Google Scholar 

  42. Goodier MR, Londei M . Lipopolysaccharide stimulates the proliferation of human CD56+CD3 NK cells: a regulatory role of monocytes and IL-10. J Immunol 2000; 165: 139–147.

    Article  CAS  Google Scholar 

  43. Miranda D, Puente J, Blanco L, Wolf ME, Mosnaim AD . In vitro effect of bacterial lipopolysaccharide on the cytotoxicity of human natural killer cells. Res Commun Mol Pathol Pharmacol 1998; 100: 3–14.

    CAS  PubMed  Google Scholar 

  44. Mian MF, Lauzon NM, Andrews DW, Lichty BD, Ashkar AA . FimH can directly activate human and murine natural killer cells via TLR4. Mol Ther 2010; 18: 1379–1388.

    Article  CAS  Google Scholar 

  45. Duriez M, Quillay H, Madec Y, El Costa H, Cannou C, Marlin R et al. Human decidual macrophages and NK cells differentially express Toll-like receptors and display distinct cytokine profiles upon TLR stimulation. Front Microbiol 2014; 5: 316–329.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (2015CB943300); the Key Project of Shanghai Basic Research from the Shanghai Municipal Science and Technology Commission (STCSM) (12JC1401600 to DJ Li); the Key Project of Shanghai Municipal Education Commission (MECSM) (14ZZ013 to MR Du); the Extension Project of the Shanghai Health System (2013SY034 to MR Du); the Personnel Training Plan of the Health Care System (2013-3-021 to WH Zhou) and the Nature Science Foundation of the National Nature Science Foundation of China (NSFC) (NSFC31270969 to DJ Li; NSFC81070537, NSFC31171437 and NSFC81370770 to MR Du; NSFC81270753 to WH Zhou; NSFC31300751 to HL Piao; NSFC81370730 to Q Fu).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YH., Zhou, WH., Tao, Y. et al. The Galectin-9/Tim-3 pathway is involved in the regulation of NK cell function at the maternal–fetal interface in early pregnancy. Cell Mol Immunol 13, 73–81 (2016). https://doi.org/10.1038/cmi.2014.126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2014.126

Keywords

This article is cited by

Search

Quick links