Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Response gene to complement 32 (RGC-32) expression on M2-polarized and tumor-associated macrophages is M-CSF-dependent and enhanced by tumor-derived IL-4

Abstract

Response gene to complement 32 (RGC-32) is a cell cycle regulator involved in the proliferation, differentiation and migration of cells and has also been implicated in angiogenesis. Here we show that RGC-32 expression in macrophages is induced by IL-4 and reduced by LPS, indicating a link between RGC-32 expression and M2 polarization. We demonstrated that the increased expression of RGC-32 is characteristic of alternatively activated macrophages, in which this protein suppresses the production of pro-inflammatory cytokine IL-6 and promotes the production of the anti-inflammatory mediator TGF-β. Consistent with in vitro data, tumor-associated macrophages (TAMs) express high levels of RGC-32, and this expression is induced by tumor-derived ascitic fluid in an M-CSF- and/or IL-4-dependent manner. Collectively, these results establish RGC-32 as a marker for M2 macrophage polarization and indicate that this protein is a potential target for cancer immunotherapy, targeting tumor-associated macrophages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Auffray C, Sieweke MH, Geissmann F . Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol 2009; 27: 669–692.

    Article  CAS  PubMed  Google Scholar 

  2. Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K . Development of monocytes, macrophages, and dendritic cells. Science 2010; 327: 656–661.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Cohen HB, Mosser DM . Extrinsic and intrinsic control of macrophage inflammatory responses. J Leukoc Biol 2013; 94: 913–919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Martinez FO, Gordon S, Locati M, Mantovani A . Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 2006; 177: 7303–7311.

    Article  CAS  PubMed  Google Scholar 

  5. Locati M, Mantovani A, Sica A . Macrophage activation and polarization as an adaptive component of innate immunity. Adv Immunol 2013; 120: 163–184.

    Article  CAS  PubMed  Google Scholar 

  6. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M . The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 2004; 25: 677–686.

    Article  CAS  PubMed  Google Scholar 

  7. Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM . M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 2000; 164: 6166–6173.

    Article  CAS  PubMed  Google Scholar 

  8. Hao NB, Lu MH, Fan YH, Cao YL, Zhang ZR, Yang SM . Macrophages in tumor microenvironments and the progression of tumors. Clin Dev Immunol 2012; 2012: 948098.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Obeid E, Nanda R, Fu YX, Olopade OI . The role of tumor-associated macrophages in breast cancer progression (review). Int J Oncol 2013; 43: 5–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Menen RS, Hassanein MK, Momiyama M, Suetsugu A, Moossa AR, Hoffman RM et al. Tumor-educated macrophages promote tumor growth and peritoneal metastasis in an orthotopic nude mouse model of human pancreatic cancer. In Vivo 2012; 26: 565–569.

    PubMed  Google Scholar 

  11. Allavena P, Sica A, Garlanda C, Mantovani A . The Yin–Yang of tumor-associated macrophages in neoplastic progression and immune surveillance. Immunol Rev 2008; 222: 155–161.

    Article  CAS  PubMed  Google Scholar 

  12. Santoni M, Massari F, Amantini C, Nabissi M, Maines F, Burattini L et al. Emerging role of tumor-associated macrophages as therapeutic targets in patients with metastatic renal cell carcinoma. Cancer Immunol Immunother 2013; 62: 1757–1768.

    Article  CAS  PubMed  Google Scholar 

  13. Solinas G, Germano G, Mantovani A, Allavena P . Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol 2009; 86: 1065–1073.

    Article  CAS  PubMed  Google Scholar 

  14. Badea T, Niculescu F, Soane L, Fosbrink M, Sorana H, Rus V et al. RGC-32 increases p34CDC2 kinase activity and entry of aortic smooth muscle cells into S-phase. J Biol Chem 2002; 277: 502–508.

    Article  CAS  PubMed  Google Scholar 

  15. Schlick SN, Wood CD, Gunnell A, Webb HM, Khasnis S, Schepers A et al. Upregulation of the cell-cycle regulator RGC-32 in Epstein–Barr virus-immortalized cells. PLoS One 2011; 6: e28638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. An X, Jin Y, Guo H, Foo SY, Cully BL, Wu J et al. Response gene to complement 32, a novel hypoxia-regulated angiogenic inhibitor. Circulation 2009; 120: 617–627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang WY, Li ZG, Rus H, Wang X, Jose PA, Chen SY . RGC-32 mediates transforming growth factor-beta-induced epithelial–mesenchymal transition in human renal proximal tubular cells. J Biol Chem 2009; 284: 9426–9432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang JN, Shi N, Xie WB, Guo X, Chen SY . Response gene to complement 32 promotes vascular lesion formation through stimulation of smooth muscle cell proliferation and migration. Arterioscler Thromb Vasc Biol 2011; 31: e19–e26.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Guo X, Jose PA, Chen SY . Response gene to complement 32 interacts with Smad3 to promote epithelial–mesenchymal transition of human renal tubular cells. Am J Physiol Cell Physiol 2011; 300: C1415–1421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tanaka T, Takada H, Nomura A, Ohga S, Shibata R, Hara T . Distinct gene expression patterns of peripheral blood cells in hyper-IgE syndrome. Clin Exp Immunol 2005; 140: 524–531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tegla CA, Cudrici CD, Azimzadeh P, Singh AK, Trippe R 3rd, Khan A et al. Dual role of Response gene to complement-32 in multiple sclerosis. Exp Mol Pathol 2012; 94: 17–28.

    Article  PubMed  Google Scholar 

  22. Tjiu JW, Chen JS, Shun CT, Lin SJ, Liao YH, Chu CY et al. Tumor-associated macrophage-induced invasion and angiogenesis of human basal cell carcinoma cells by cyclooxygenase-2 induction. J Invest Dermatol 2009; 129: 1016–1025.

    Article  CAS  PubMed  Google Scholar 

  23. Bellora F, Castriconi R, Dondero A, Reggiardo G, Moretta L, Mantovani A et al. The interaction of human natural killer cells with either unpolarized or polarized macrophages results in different functional outcomes. Proc Natl Acad Sci USA 2010; 107: 21659–21664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Puig-Kroger A, Sierra-Filardi E, Dominguez-Soto A, Samaniego R, Corcuera MT, Gomez-Aguado F et al. Folate receptor beta is expressed by tumor-associated macrophages and constitutes a marker for M2 anti-inflammatory/regulatory macrophages. Cancer Res 2009; 69: 9395–9403.

    Article  PubMed  Google Scholar 

  25. Shao Q, Ning H, Lv J, Liu Y, Zhao X, Ren G et al. Regulation of Th1/Th2 polarization by tissue inhibitor of metalloproteinase-3 via modulating dendritic cells. Blood 2012; 119: 4636–4644.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang S, Yin J, Li X, Zhang J, Yue R, Diao Y et al. Jacarel hyperol A induced apoptosis in leukaemia cancer cell through inhibition the activity of Bcl-2 proteins. BMC Cancer 2014; 14: 689.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Daigneault M, Preston JA, Marriott HM, Whyte MK, Dockrell DH . The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS One 2010; 5: e8668.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tsuchiya S, Kobayashi Y, Goto Y, Okumura H, Nakae S, Konno T et al. Induction of maturation in cultured human monocytic leukemia cells by a phorbol diester. Cancer Res 1982; 42: 1530–1536.

    CAS  PubMed  Google Scholar 

  29. Cahill CM, Rogers JT . Interleukin (IL) 1beta induction of IL-6 is mediated by a novel phosphatidylinositol 3-kinase-dependent AKT/IkappaB kinase alpha pathway targeting activator protein-1. J Biol Chem 2008; 283: 25900–25912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Biswas SK, Allavena P, Mantovani A . Tumor-associated macrophages: functional diversity, clinical significance, and open questions. Semin Immunopathol 2013; 35: 585–600.

    Article  CAS  PubMed  Google Scholar 

  31. Saigusa K, Imoto I, Tanikawa C, Aoyagi M, Ohno K, Nakamura Y et al. RGC32, a novel p53-inducible gene, is located on centrosomes during mitosis and results in G2/M arrest. Oncogene 2007; 26: 1110–1121.

    Article  CAS  PubMed  Google Scholar 

  32. Huang WY, Xie W, Guo X, Li F, Jose PA, Chen SY . Smad2 and PEA3 cooperatively regulate transcription of response gene to complement 32 in TGF-beta-induced smooth muscle cell differentiation of neural crest cells. Am J Physiol Cell Physiol 2011; 301: C499–C506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hiraiwa K, van Eeden SF . Contribution of lung macrophages to the inflammatory responses induced by exposure to air pollutants. Mediators Inflamm 2013; 2013: 619523.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Stout RD, Suttles J . Functional plasticity of macrophages: reversible adaptation to changing microenvironments. J Leukoc Biol 2004; 76: 509–513.

    Article  CAS  PubMed  Google Scholar 

  35. Dahle MK, Overland G, Myhre AE, Stuestol JF, Hartung T, Krohn CD et al. The phosphatidylinositol 3-kinase/protein kinase B signaling pathway is activated by lipoteichoic acid and plays a role in Kupffer cell production of interleukin-6 (IL-6) and IL-10. Infect Immun 2004; 72: 5704–5711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fosbrink M, Cudrici C, Tegla CA, Soloviova K, Ito T, Vlaicu S et al. Response gene to complement 32 is required for C5b-9 induced cell cycle activation in endothelial cells. Exp Mol Pathol 2009; 86: 87–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gocheva V, Wang HW, Gadea BB, Shree T, Hunter KE, Garfall AL et al. IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev 2010; 24: 241–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (Nos. 31270971, 81072406 and 31100650), the China Postdoctoral Science Foundation (Nos. 2013M541922) and the Independent Innovation Foundation of Shandong University (No. 2012TS143). We would like to thank Professor Jian Li (Beth Israel Deaconess Medical Center, Harvard Medical School) for providing the RGC-32 overexpression vector and the RGC-32 antibody.

Author information

Authors and Affiliations

Authors

Additional information

Supplementary Information accompanies the paper on Cellular & Molecular Immunology's website. (http://www.nature.com/cmi).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, P., Gao, D., Wang, Q. et al. Response gene to complement 32 (RGC-32) expression on M2-polarized and tumor-associated macrophages is M-CSF-dependent and enhanced by tumor-derived IL-4. Cell Mol Immunol 12, 692–699 (2015). https://doi.org/10.1038/cmi.2014.108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2014.108

Keywords

This article is cited by

Search

Quick links