Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Attenuated Listeria monocytogenes as a cancer vaccine vector for the delivery of CD24, a biomarker for hepatic cancer stem cells

Abstract

Attenuated Listeria monocytogenes (LM) is a promising candidate vector for the delivery of cancer vaccines. After phagocytosis by antigen-presenting cells, this bacterium stimulates the major histocompatibility complex (MHC)-I and MHC-II pathways and induces the proliferation of antigen-specific T lymphocytes. A new strategy involving genetic modification of the replication-deficient LM strain ΔdalΔdat (Lmdd) to express and secrete human CD24 protein has been developed. CD24 is a hepatic cancer stem cell biomarker that is closely associated with apoptosis, metastasis and recurrence of hepatocellular carcinoma (HCC). After intravenous administration in mice, Lmdd-CD24 was distributed primarily in the spleen and liver and did not cause severe organ injury. Lmdd-CD24 effectively increased the number of interferon (IFN)-γ-producing CD8+ T cells and IFN-γ secretion. Lmdd-CD24 also enhanced the number of IL-4- and IL-10-producing T helper 2 cells. The efficacy of the Lmdd-CD24 vaccine was further investigated against Hepa1–6-CD24 tumors, which were inguinally inoculated into mice. Lmdd-CD24 significantly reduced the tumor size in mice and increased their survival. Notably, a reduction of T regulatory cell (Treg) numbers and an enhancement of specific CD8+ T-cell activity were observed in the tumor-infiltrating lymphocytes (TILs). These results suggest a potential application of the Lmdd-CD24 vaccine against HCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. El-Serag HB, Rudolph KL . Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 2007; 132: 2557–2576.

    Article  CAS  Google Scholar 

  2. Sanyal AJ, Yoon SK, Lencioni R . The etiology of hepatocellular carcinoma and consequences for treatment. Oncologist 2010; 15( Suppl 4): 14–22.

    Article  Google Scholar 

  3. Chen Y, Yang D, Li S, Gao Y, Jiang R, Deng L et al. Development of a Listeria monocytogenes-based vaccine against hepatocellular carcinoma. Oncogene 2012; 31: 2140–2152.

    Article  CAS  Google Scholar 

  4. Llovet JM, Fuster J, Bruix J . Prognosis of hepatocellular carcinoma. Hepato-gastroenterology 2002; 49: 7–11.

    PubMed  Google Scholar 

  5. Ebinuma H, Saito H . Prevention for the development of hepatitis B virus-related hepatocellular carcinoma by anti-viral treatment. Nihon Rinsho 2011; 69( Suppl 4): 540–545.

    PubMed  Google Scholar 

  6. Hilgard P, Muller S, Hamami M, Sauerwein WS, Haberkorn U, Gerken G et al. Selective internal radiotherapy (radioembolization) and radiation therapy for HCC—current status and perspectives. Z Gastroenterol 2009; 47: 37–54.

    Article  CAS  Google Scholar 

  7. Roche A . Therapy of HCC–TACE for liver tumor. Hepato-gastroenterology 2001; 48: 3–7.

    CAS  PubMed  Google Scholar 

  8. Baer HU, Seiler C, Buchler MW . Modern liver surgery for HCC. Swiss Surg 1999; 5: 91.

    Article  CAS  Google Scholar 

  9. Fang P, Hu JH, Cheng ZG, Liu ZF, Wang JL, Jiao SC . Efficacy and safety of bevacizumab for the treatment of advanced hepatocellular carcinoma: a systematic review of phase II trials. PloS ONE 2012; 7: e49717.

    Article  CAS  Google Scholar 

  10. Li QG, Yang GS, Yang Q, Wei LX, Yang N, Zhou XP et al. Disseminated tumor cells homing into rats' liver: a new possible mechanism of HCC recurrence. World J Gastroenterol 2004; 10: 903–905.

    Article  Google Scholar 

  11. Ma S, Lee TK, Zheng BJ, Chan KW, Guan XY . CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene 2008; 27: 1749–1758.

    Article  CAS  Google Scholar 

  12. Yoon SK . The biology of cancer stem cells and its clinical implication in hepatocellular carcinoma. Gut Liver 2012; 6: 29–40.

    Article  CAS  Google Scholar 

  13. Haraguchi N, Utsunomiya T, Inoue H, Tanaka F, Mimori K, Barnard GF et al. Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells 2006; 24: 506–513.

    Article  CAS  Google Scholar 

  14. Crea F, Danesi R, Farrar WL . Cancer stem cell epigenetics and chemoresistance. Epigenomics 2009; 1: 63–79.

    Article  CAS  Google Scholar 

  15. Yang ZF, Ho DW, Ng MN, Lau CK, Yu WC, Ngai P et al. Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell 2008; 13: 153–166.

    Article  CAS  Google Scholar 

  16. Ma S, Chan KW, Hu L, Lee TK, Wo JY, Ng IO et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 2007; 132: 2542–2556.

    Article  CAS  Google Scholar 

  17. Yamashita T, Ji J, Budhu A, Forgues M, Yang W, Wang HY et al. EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology 2009; 136: 1012–1024.

    Article  CAS  Google Scholar 

  18. Haraguchi N, Ishii H, Mimori K, Tanaka F, Ohkuma M, Kim HM et al. CD13 is a therapeutic target in human liver cancer stem cells. J Clin Invest 2010; 120: 3326–3339.

    Article  CAS  Google Scholar 

  19. Went P, Dellas T, Bourgau C, Maurer R, Augustin F, Tzankov A et al. Expression profile and prognostic significance of CD24, p53 and p21 in lymphomas. A tissue microarray study of over 600 non-Hodgkin lymphomas. Dtsch Med Wochenschr 2004; 129: 2094–2099.

    Article  CAS  Google Scholar 

  20. Jackson D, Waibel R, Weber E, Bell J, Stahel RA . CD24, a signal-transducing molecule expressed on human B cells, is a major surface antigen on small cell lung carcinomas. Cancer Res 1992; 52: 5264–5270.

    CAS  PubMed  Google Scholar 

  21. Karran L, Jones M, Morley G, van Noorden S, Smith P, Lampert I et al. Expression of a B-cell marker, CD24, on nasopharyngeal carcinoma cells. Int J Cancer 1995; 60: 562–566.

    Article  CAS  Google Scholar 

  22. Kaipparettu BA, Malik S, Konduri SD, Liu W, Rokavec M, van der Kuip H et al. Estrogen-mediated downregulation of CD24 in breast cancer cells. Int J Cancer 2008; 123: 66–72.

    Article  CAS  Google Scholar 

  23. Lee HJ, Kim DI, Kwak C, Ku JH, Moon KC . Expression of CD24 in clear cell renal cell carcinoma and its prognostic significance. Urology 2008; 72: 603–607.

    Article  Google Scholar 

  24. Yang XR, Xu Y, Yu B, Zhou J, Li JC, Qiu SJ et al. CD24 is a novel predictor for poor prognosis of hepatocellular carcinoma after surgery. Clin Cancer Res 2009; 15: 5518–5527.

    Article  CAS  Google Scholar 

  25. Lee TK, Castilho A, Cheung VC, Tang KH, Ma S, Ng IO . CD24+ liver tumor-initiating cells drive self-renewal and tumor initiation through STAT3-mediated NANOG regulation. Cell Stem Cell 2011; 9: 50–63.

    Article  CAS  Google Scholar 

  26. Gahan CG, Hill C . The use of listeriolysin to identify in vivo induced genes in the Gram-positive intracellular pathogen Listeria monocytogenes. Mol Microbiol 2000; 36: 498–507.

    Article  CAS  Google Scholar 

  27. Pamer EG, Sijts AJ, Villanueva MS, Busch DH, Vijh S . MHC class I antigen processing of Listeria monocytogenes proteins: implications for dominant and subdominant CTL responses. Immunol Rev 1997; 158: 129–136.

    Article  CAS  Google Scholar 

  28. Watts C . The exogenous pathway for antigen presentation on major histocompatibility complex class II and CD1 molecules. Nat Immunol 2004; 5: 685–692.

    Article  CAS  Google Scholar 

  29. Thompson RJ, Bouwer HG, Portnoy DA, Frankel FR . Pathogenicity and immunogenicity of a Listeria monocytogenes strain that requires D-alanine for growth. Infect Immun 1998; 66: 3552–3561.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Li Z, Zhang M, Zhou C, Zhao X, Iijima N, Frankel FR . Novel vaccination protocol with two live mucosal vectors elicits strong cell-mediated immunity in the vagina and protects against vaginal virus challenge. J Immunol 2008; 180: 2504–2513.

    Article  CAS  Google Scholar 

  31. Shen Y, Kawamura I, Nomura T, Tsuchiya K, Hara H, Dewamitta SR et al. Toll-like receptor 2- and MyD88-dependent phosphatidylinositol 3-kinase and Rac1 activation facilitates the phagocytosis of Listeria monocytogenes by murine macrophages. Infect Immun 2010; 78: 2857–2867.

    Article  CAS  Google Scholar 

  32. Camejo A, Buchrieser C, Couve E, Carvalho F, Reis O, Ferreira P et al. In vivo transcriptional profiling of Listeria monocytogenes and mutagenesis identify new virulence factors involved in infection. PLoS Pathog 2009; 5: e1000449.

    Article  Google Scholar 

  33. Yin Y, Tian D, Jia Y, Gao Y, Fu H, Niu Z et al. Attenuated Listeria monocytogenes, a Mycobacterium tuberculosis ESAT-6 antigen expression and delivery vector for inducing an immune response. Res Microbiol 2012; 163: 540–549.

    Article  CAS  Google Scholar 

  34. Barraud H, Bronowicki JP . Curative treatment of hepatocellular carcinoma. Rev Prat 2013; 63: 229–233. French.

    PubMed  Google Scholar 

  35. Dalerba P, Cho RW, Clarke MF . Cancer stem cells: models and concepts. Annu Rev Med 2007; 58: 267–284.

    Article  CAS  Google Scholar 

  36. Yamashita T, Wang XW . Cancer stem cells in the development of liver cancer. J Clin Invest 2013; 123: 1911–1918.

    Article  CAS  Google Scholar 

  37. Brundage RA, Smith GA, Camilli A, Theriot JA, Portnoy DA . Expression and phosphorylation of the Listeria monocytogenes ActA protein in mammalian cells. Proc Natl Acad Sci USA 1993; 90: 11890–11894.

    Article  CAS  Google Scholar 

  38. Vazquez-Boland JA, Kocks C, Dramsi S, Ohayon H, Geoffroy C, Mengaud J et al. Nucleotide sequence of the lecithinase operon of Listeria monocytogenes and possible role of lecithinase in cell-to-cell spread. Infect Immun 1992; 60: 219–230.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Marquis H, Doshi V, Portnoy DA . The broad-range phospholipase C and a metalloprotease mediate listeriolysin O-independent escape of Listeria monocytogenes from a primary vacuole in human epithelial cells. Infect Immun 1995; 63: 4531–4534.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Jia Y, Yin Y, Duan F, Fu H, Hu M, Gao Y et al. Prophylactic and therapeutic efficacy of an attenuated Listeria monocytogenes-based vaccine delivering HPV16 E7 in a mouse model. Int J Mol Med 2012; 30: 1335–1342.

    Article  CAS  Google Scholar 

  41. Pan ZK, Weiskirch LM, Paterson Y . Regression of established B16F10 melanoma with a recombinant Listeria monocytogenes vaccine. Cancer Res 1999; 59: 5264–5269.

    CAS  Google Scholar 

  42. Frankel FR, Hegde S, Lieberman J, Paterson Y . Induction of cell-mediated immune responses to human immunodeficiency virus type 1 Gag protein by using Listeria monocytogenes as a live vaccine vector. J Immunol 1995; 155: 4775–4782.

    CAS  PubMed  Google Scholar 

  43. Kim SH, Castro F, Gonzalez D, Maciag PC, Paterson Y, Gravekamp C . Mage-b vaccine delivered by recombinant Listeria monocytogenes is highly effective against breast cancer metastases. Br J Cancer 2008; 99: 741–749.

    Article  CAS  Google Scholar 

  44. Baecher-Allan C, Viglietta V, Hafler DA . Human CD4+CD25+ regulatory T cells. Sem Immunol 2004; 16: 89–98.

    Article  CAS  Google Scholar 

  45. Zhou L, Fu JL, Lu YY, Fu BY, Wang CP, An LJ et al. Regulatory T cells are associated with post-cryoablation prognosis in patients with hepatitis B virus-related hepatocellular carcinoma. J Gastroenterol 2010; 45: 968–978.

    Article  CAS  Google Scholar 

  46. Singh M, Ramos I, Asafu-Adjei D, Quispe-Tintaya W, Chandra D, Jahangir A et al. Curcumin improves the therapeutic efficacy of Listeria(at)-Mage-b vaccine in correlation with improved T-cell responses in blood of a triple-negative breast cancer model 4T1. Cancer Med 2013; 2: 571–582.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation (81072029 to BS, 30901750 and 81272322 to YC and 81201528 to RJ), the National Basic Research Program of China (2012CB910800 to BS), the Major Research Plan of the National Natural Science Foundation (91029721 to BS), the Natural Science Foundation of Jiangsu Province (BK2010532 to YC), the China Postdoctoral Science Foundation-funded Project (20090461133 to YC), the Jiangsu Planned Projects for Postdoctoral Research Funds (1001028B to YC) and the Jiangsu Province Laboratory of Pathogen Biology (11BYKF02 to QS).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

All authors have contributed substantially to this work and declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Cellular & Molecular Immunology's website.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Hou, J., Lin, Z. et al. Attenuated Listeria monocytogenes as a cancer vaccine vector for the delivery of CD24, a biomarker for hepatic cancer stem cells. Cell Mol Immunol 11, 184–196 (2014). https://doi.org/10.1038/cmi.2013.64

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2013.64

Keywords

This article is cited by

Search

Quick links