Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

The DNA-binding factor Ctcf critically controls gene expression in macrophages

Abstract

Macrophages play an important role in immunity and homeostasis. Upon pathogen recognition via specific receptors, they rapidly induce inflammatory responses. This process is tightly controlled at the transcriptional level. The DNA binding zinc-finger protein CCCTC-binding factor (Ctcf) is a crucial regulator of long-range chromatin interactions and coordinates specific communication between transcription factors and gene expression processes. In this study, the Ctcf gene was specifically deleted in myeloid cells by making use of the transgenic Cre-LoxP system. Conditional deletion of the Ctcf gene in myeloid cells induced a mild phenotype in vivo. Ctcf-deficient mice exhibited significantly reduced expression of major histocompatibility complex (MHC) class II in the liver. Ctcf-deficient macrophages demonstrated a normal surface phenotype and phagocytosis capacity. Upon Toll-like receptor (TLR) stimulation, they produced normal levels of the pro-inflammatory cytokines IL-12 and IL-6, but manifested a strongly impaired capacity to produce tumor-necrosis factor (TNF) and IL-10, as well as to express the IL-10 family members IL-19, IL-20 and IL-24. Taken together, our data demonstrate a role of Ctcf that involves fine-tuning of macrophage function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Gordon S, Taylor PR . Monocyte and macrophage heterogeneity. Nat Rev Immunol 2005; 5: 953–964.

    Article  CAS  Google Scholar 

  2. Medzhitov R, Horng T . Transcriptional control of the inflammatory response. Nat Rev Immunol 2009; 9: 692–703.

    Article  CAS  Google Scholar 

  3. Phillips JE, Corces VG . CTCF: master weaver of the genome. Cell 2009; 137: 1194–1211.

    Article  Google Scholar 

  4. Ribeiro de Almeida C, Stadhouders R, Thongjuea S, Soler E, Hendriks RW . DNA-binding factor CTCF and long-range gene interactions in V(D)J recombination and oncogene activation. Blood 2012; 119: 6209–6218.

    Article  CAS  Google Scholar 

  5. Parelho V, Hadjur S, Spivakov M, Leleu M, Sauer S, Gregson HC et al. Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell 2008; 132: 422–433.

    Article  CAS  Google Scholar 

  6. Wendt KS, Yoshida K, Itoh T, Bando M, Koch B, Schirghuber E et al. Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 2008; 451: 796–801.

    Article  CAS  Google Scholar 

  7. Stedman W, Kang H, Lin S, Kissil JL, Bartolomei MS, Lieberman PM . Cohesins localize with CTCF at the KSHV latency control region and at cellular c-myc and H19/Igf2 insulators. EMBO J 2008; 27: 654–666.

    Article  CAS  Google Scholar 

  8. Donohoe ME, Zhang LF, Xu N, Shi Y, Lee JT . Identification of a Ctcf cofactor, Yy1, for the X chromosome binary switch. Mol Cell 2007; 25: 43–56.

    Article  CAS  Google Scholar 

  9. Defossez PA, Kelly KF, Filion GJ, Perez-Torrado R, Magdinier F, Menoni H et al. The human enhancer blocker CTC-binding factor interacts with the transcription factor Kaiso. J Biol Chem 2005; 280: 43017–43023.

    Article  CAS  Google Scholar 

  10. Chernukhin IV, Shamsuddin S, Robinson AF, Carne AF, Paul A, El-Kady AI et al. Physical and functional interaction between two pluripotent proteins, the Y-box DNA/RNA-binding factor, YB-1, and the multivalent zinc finger factor, CTCF. J Biol Chem 2000; 275: 29915–29921.

    Article  CAS  Google Scholar 

  11. Lutz M, Burke LJ, Barreto G, Goeman F, Greb H, Arnold R et al. Transcriptional repression by the insulator protein CTCF involves histone deacetylases. Nucleic Acids Res 2000; 28: 1707–1713.

    Article  CAS  Google Scholar 

  12. Ishihara K, Oshimura M, Nakao M . CTCF-dependent chromatin insulator is linked to epigenetic remodeling. Mol Cell 2006; 23: 733–742.

    Article  CAS  Google Scholar 

  13. Li T, Hu JF, Qiu X, Ling J, Chen H, Wang S et al. CTCF regulates allelic expression of Igf2 by orchestrating a promoter-polycomb repressive complex 2 intrachromosomal loop. Mol Cell Biol 2008; 28: 6473–6482.

    Article  CAS  Google Scholar 

  14. Chernukhin I, Shamsuddin S, Kang SY, Bergstrom R, Kwon YW, Yu W et al. CTCF interacts with and recruits the largest subunit of RNA polymerase II to CTCF target sites genome-wide. Mol Cell Biol 2007; 27: 1631–1648.

    Article  CAS  Google Scholar 

  15. Yu W, Ginjala V, Pant V, Chernukhin I, Whitehead J, Docquier F et al. Poly(ADP-ribosyl)ation regulates CTCF-dependent chromatin insulation. Nat Genet 2004; 36: 1105–1110.

    Article  CAS  Google Scholar 

  16. Majumder P, Gomez JA, Chadwick BP, Boss JM . The insulator factor CTCF controls MHC class II gene expression and is required for the formation of long-distance chromatin interactions. J Exp Med 2008; 205: 785–798.

    Article  CAS  Google Scholar 

  17. Koesters C, Unger B, Bilic I, Schmidt U, Bluml S, Lichtenberger B et al. Regulation of dendritic cell differentiation and subset distribution by the zinc finger protein CTCF. Immunol Lett 2007; 109: 165–174.

    Article  CAS  Google Scholar 

  18. Heath H, Ribeiro de Almeida C, Sleutels F, Dingjan G, van de Nobelen S, Jonkers I et al. CTCF regulates cell cycle progression of alphabeta T cells in the thymus. EMBO J 2008; 27: 2839–2850.

    Article  CAS  Google Scholar 

  19. Ribeiro de Almeida C, Heath H, Krpic S, Dingjan GM, van Hamburg JP, Bergen I et al. Critical role for the transcription regulator CCCTC-binding factor in the control of Th2 cytokine expression. J Immunol 2009; 182: 999–1010.

    Article  CAS  Google Scholar 

  20. Sekimata M, Perez-Melgosa M, Miller SA, Weinmann AS, Sabo PJ, Sandstrom R et al. CCCTC-binding factor and the transcription factor T-bet orchestrate T helper 1 cell-specific structure and function at the interferon-gamma locus. Immunity 2009; 31: 551–564.

    Article  CAS  Google Scholar 

  21. Guo C, Yoon HS, Franklin A, Jain S, Ebert A, Cheng HL et al. CTCF-binding elements mediate control of V(D)J recombination. Nature 2011; 477: 424–430.

    Article  CAS  Google Scholar 

  22. Ribeiro de Almeida C, Stadhouders R, de Bruijn MJ, Bergen IM, Thongjuea S, Lenhard B et al. The DNA-binding protein CTCF limits proximal Vkappa recombination and restricts kappa enhancer interactions to the immunoglobulin kappa light chain locus. Immunity 2011; 35: 501–513.

    Article  CAS  Google Scholar 

  23. Clausen BE, Burkhardt C, Reith W, Renkawitz R, Forster I . Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res 1999; 8: 265–277.

    Article  CAS  Google Scholar 

  24. Srinivas S, Watanabe T, Lin CS, William CM, Tanabe Y, Jessell TM et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 2001; 1: 4.

    Article  CAS  Google Scholar 

  25. Hendriks RW, de Bruijn MF, Maas A, Dingjan GM, Karis A, Grosveld F . Inactivation of Btk by insertion of lacZ reveals defects in B cell development only past the pre-B cell stage. EMBO J 1996; 15: 4862–72.

    Article  CAS  Google Scholar 

  26. Boonstra A, Rajsbaum R, Holman M, Marques R, Asselin-Paturel C, Pereira JP et al. Macrophages and myeloid dendritic cells, but not plasmacytoid dendritic cells, produce IL-10 in response to MyD88- and TRIF-dependent TLR signals, and TLR-independent signals. J Immunol 2006; 177: 7551–7558.

    Article  CAS  Google Scholar 

  27. van Rooijen N, Sanders A . Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J Immunol Methods 1994; 174: 83–93.

    Article  CAS  Google Scholar 

  28. Claassen E . Post-formation fluorescent labelling of liposomal membranes. In vivo etection, localisation and kinetics. J Immunol Methods 1992; 147: 231–240.

    Article  CAS  Google Scholar 

  29. Schaufelberger DE, Koleck MP, Beutler JA, Vatakis AM, Alvarado AB, Andrews P et al. The large-scale isolation of bryostatin 1 from Bugula neritina following current good manufacturing practices. J Nat Prod 1991; 54: 1265–1270.

    Article  CAS  Google Scholar 

  30. Majumder P, Boss JM . CTCF controls expression and chromatin architecture of the human major histocompatibility complex class II locus. Mol Cell Biol 2010; 30: 4211–4223.

    Article  CAS  Google Scholar 

  31. Wolk K, Kunz S, Asadullah K, Sabat R . Cutting edge: immune cells as sources and targets of the IL-10 family members? J Immunol 2002; 168: 5397–5402.

    Article  CAS  Google Scholar 

  32. Ouyang W, Rutz S, Crellin NK, Valdez PA, Hymowitz SG . Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu Rev Immunol 2011; 29: 71–109.

    Article  CAS  Google Scholar 

  33. Kim TH, Abdullaev ZK, Smith AD, Ching KA, Loukinov DI, Green RD et al. Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell 2007; 128: 1231–1245.

    Article  CAS  Google Scholar 

  34. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z et al. High-resolution profiling of histone methylations in the human genome. Cell. 2007; 129: 823–837.

    Article  CAS  Google Scholar 

  35. Soshnikova N, Montavon T, Leleu M, Galjart N, Duboule D . Functional analysis of CTCF during mammalian limb development. Dev Cell 2010; 19: 819–830.

    Article  CAS  Google Scholar 

  36. Constancia M, Angiolini E, Sandovici I, Smith P, Smith R, Kelsey G et al. Adaptation of nutrient supply to fetal demand in the mouse involves interaction between the Igf2 gene and placental transporter systems. Proc Natl Acad Sci USA 2005; 102: 19219–1924.

    Article  CAS  Google Scholar 

  37. Medina-Contreras O, Geem D, Laur O, Williams IR, Lira SA, Nusrat A et al. CX3CR1 regulates intestinal macrophage homeostasis, bacterial translocation, and colitogenic Th17 responses in mice. J Clin Invest 2011; 121: 4787–4795.

    Article  CAS  Google Scholar 

  38. Bender AT, Ostenson CL, Giordano D, Beavo JA . Differentiation of human monocytes in vitro with granulocyte-macrophage colony-stimulating factor and macrophage colony-stimulating factor produces distinct changes in cGMP phosphodiesterase expression. Cell Signal 2004; 16: 365–374.

    Article  CAS  Google Scholar 

  39. Ottaviani D, Lever E, Mao S, Christova R, Ogunkolade BW, Jones TA et al. CTCF binds to sites in the major histocompatibility complex that are rapidly reconfigured in response to interferon-gamma. Nucleic Acids Res 2012; 40: 5262–5270.

    Article  CAS  Google Scholar 

  40. Gombert WM, Krumm A . Targeted deletion of multiple CTCF-binding elements in the human C-MYC gene reveals a requirement for CTCF in C-MYC expression. PLoS ONE 2009; 4: e6109.

    Article  Google Scholar 

  41. Delgado MD, Chernukhin IV, Bigas A, Klenova EM, Leon J . Differential expression and phosphorylation of CTCF, a c-myc transcriptional regulator, during differentiation of human myeloid cells. FEBS Lett 1999; 444: 5–10.

    Article  CAS  Google Scholar 

  42. van Zuylen WJ, Garceau V, Idris A, Schroder K, Irvine KM, Lattin JE et al. Macrophage activation and differentiation signals regulate schlafen-4 gene expression: evidence for Schlafen-4 as a modulator of myelopoiesis. PLoS ONE 2011; 6: e15723.

    Article  CAS  Google Scholar 

  43. Watanabe T, Ishihara K, Hirosue A, Watanabe S, Hino S, Ojima H et al. Higher-order chromatin regulation and differential gene expression in the human tumor necrosis factor/lymphotoxin locus in hepatocellular carcinoma cells. Mol Cell Biol 2012; 32: 1529–1541.

    Article  CAS  Google Scholar 

  44. Saraiva M, O'Garra A . The regulation of IL-10 production by immune cells. Nat Rev Immunol 2010; 10: 170–181.

    Article  CAS  Google Scholar 

  45. Saraiva M, Christensen JR, Tsytsykova AV, Goldfeld AE, Ley SC, Kioussis D et al. Identification of a macrophage-specific chromatin signature in the IL-10 locus. J Immunol 2005; 175: 1041–106.

    Article  CAS  Google Scholar 

  46. Faust N, Varas F, Kelly LM, Heck S, Graf T . Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages. Blood 2000; 96: 719–726.

    CAS  PubMed  Google Scholar 

  47. Sesti-Costa R, Ignacchiti MD, Chedraoui-Silva S, Marchi LF, Mantovani B . Chronic cold stress in mice induces a regulatory phenotype in macrophages: correlation with increased 11beta-hydroxysteroid dehydrogenase expression. Brain Behav Immun 2012; 26: 50–60.

    Article  CAS  Google Scholar 

  48. Sica A, Saccani A, Bottazzi B, Polentarutti N, Vecchi A, van Damme J et al. Autocrine production of IL-10 mediates defective IL-12 production and NF-kappa B activation in tumor-associated macrophages. J Immunol 2000; 164: 762–767.

    Article  CAS  Google Scholar 

  49. Mirza R, Koh TJ . Dysregulation of monocyte/macrophage phenotype in wounds of diabetic mice. Cytokine 2011; 56: 256–264.

    Article  CAS  Google Scholar 

  50. Kleijwegt FS, Laban S, Duinkerken G, Joosten AM, Zaldumbide A, Nikolic T et al. Critical role for TNF in the induction of human antigen-specific regulatory T cells by tolerogenic dendritic cells. J Immunol 2010; 185: 1412–1418.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Frank Sleutels, Ralph Stadhouders and Anthonie Groothuismink (Erasmus MC Rotterdam) for assistance at various stages of the project. This work was supported by VENI grant no. 91666067 from the Netherlands Organisation for Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudi Hendriks.

Additional information

Supplementary Information accompanies the paper on Cellular & Molecular Immunology website.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikolic, T., Movita, D., Lambers, M. et al. The DNA-binding factor Ctcf critically controls gene expression in macrophages. Cell Mol Immunol 11, 58–70 (2014). https://doi.org/10.1038/cmi.2013.41

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2013.41

Keywords

This article is cited by

Search

Quick links