Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

ATF4 is directly recruited by TLR4 signaling and positively regulates TLR4-trigged cytokine production in human monocytes

Abstract

Toll-like receptors (TLRs) are sentinels of the host defense system, which recognize a large number of microbial pathogens. The host defense system may be inefficient or inflammatory diseases may develop if microbial recognition by TLRs and subsequent TLR-triggered cytokine production are deregulated. Activating transcription factor 4 (ATF4), a member of the ATF/CREB transcription factor family, is an important factor that participates in several pathophysiological processes. In this report, we found that ATF4 is also involved in the TLR-mediated innate immune response, which participates in TLR4 signal transduction and mediates the secretion of a variety of cytokines. We observed that ATF4 is activated and translocates to the nucleus following lipopolysaccharide (LPS) stimulation via the TLR4-MyD88-dependent pathway. Additionally, a cytokine array assay showed that some key inflammatory cytokines, such as IL-6, IL-8 and RANTES, are positively regulated by ATF4. We also demonstrate that c-Jun directly binds to ATF4, thereby promoting the secretion of inflammatory cytokines. Taken together, these results indicate that ATF4 acts as a positive regulator in TLR4-triggered cytokine production.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Belvin MP, Anderson KV . A conserved signaling pathway: the Drosophila toll-dorsal pathway. Annu Rev Cell Dev Biol 1996; 12: 393–416.

    Article  CAS  PubMed  Google Scholar 

  2. Kawai T, Akira S . TLR signaling. Cell Death Differ 2006; 13: 816–825.

    Article  CAS  PubMed  Google Scholar 

  3. Horng T, Medzhitov R . Drosophila MyD88 is an adapter in the Toll signaling pathway. Proc Natl Acad Sci USA 2001; 98: 12654–12658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Adachi O, Kawai T, Takeda K, Matsumoto M, Tsutsui H, Sakagami M et al. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 1998; 9: 143–150.

    Article  CAS  PubMed  Google Scholar 

  5. Kawai T, Akira S . Toll-like receptor downstream signaling. Arthritis Res Ther 2005; 7: 12–19.

    Article  CAS  PubMed  Google Scholar 

  6. Rutkowski DT, Kaufman RJ . All roads lead to ATF4. Dev Cell 2003; 4: 442–444.

    Article  CAS  PubMed  Google Scholar 

  7. Ameri K, Harris AL . Activating transcription factor 4. Int J Biochem Cell Biol 2008; 40: 14–21.

    Article  CAS  PubMed  Google Scholar 

  8. Gilchrist M, Thorsson V, Li B, Rust AG, Korb M, Roach JC et al. Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature 2006; 441: 173–178.

    Article  CAS  PubMed  Google Scholar 

  9. Gargalovic PS, Imura M, Zhang B, Gharavi NM, Clark MJ, Pagnon J et al. Identification of inflammatory gene modules based on variations of human endothelial cell responses to oxidized lipids. Proc Natl Acad Sci USA 2006; 103: 12741–12746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rossol M, Heine H, Meusch U, Quandt D, Klein C, Sweet MJ et al. LPS-induced cytokine production in human monocytes and macrophages. Crit Rev Immunol 2011; 31: 379–446.

    Article  CAS  PubMed  Google Scholar 

  11. Kagan JC, Medzhitov R . Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling. Cell 2006; 125: 943–955.

    Article  CAS  PubMed  Google Scholar 

  12. Yadav R, Misra R, Naik S . In vitro effect of gold sodium thiomalate and methotrexate on tumor necrosis factor production in normal healthy individuals and patients with rheumatoid arthritis. Int J Immunopharmacol 1997; 19: 111–114.

    Article  CAS  PubMed  Google Scholar 

  13. Dabelic S, Novak R, Goreta SS, Dumic J . Galectin-3 expression in response to LPS, immunomodulatory drugs and exogenously added galectin-3 in monocyte-like THP-1 cells. In Vitro Cell Dev Biol Anim 2012; 48: 518–527.

    Article  CAS  PubMed  Google Scholar 

  14. Takahata Y, Hinoi E, Takarada T, Nakamura Y, Ogawa S, Yoneda Y . Positive regulation by GABAB receptor subunit-1 of chondrogenesis through acceleration of nuclear translocation of activating transcription factor-4. J Biol Chem 2012; 287: 33293–33303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Takeda K, Akira S . TLR signaling pathways. Semin Immunol 2004; 16: 3–9.

    Article  CAS  PubMed  Google Scholar 

  16. Takeda K, Akira S . Toll-like receptors in innate immunity. Int Immunol 2005; 17: 1–14.

    Article  CAS  PubMed  Google Scholar 

  17. Woo CW, Cui D, Arellano J, Dorweiler B, Harding H, Fitzgerald KA et al. Adaptive suppression of the ATF4-CHOP branch of the unfolded protein response by toll-like receptor signalling. Nat Cell Biol 2009; 11: 1473–1480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bandow K, Maeda A, Kakimoto K, Kusuyama J, Shamoto M, Ohnishi T et al. Molecular mechanisms of the inhibitory effect of lipopolysaccharide (LPS) on osteoblast differentiation. Biochem Biophys Res Commun 2010; 402: 755–761.

    Article  CAS  PubMed  Google Scholar 

  19. Ninomiya-Tsuji J, Kishimoto K, Hiyama A, Inoue J, Cao Z, Matsumoto K . The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 1999; 398: 252–256.

    Article  CAS  PubMed  Google Scholar 

  20. Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ . TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 2001; 412: 346–351.

    Article  CAS  PubMed  Google Scholar 

  21. Yamaguchi K, Shirakabe K, Shibuya H, Irie K, Oishi I, Ueno N et al. Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction. Science 1995; 270: 2008–2011.

    Article  CAS  PubMed  Google Scholar 

  22. Chun J, Choi RJ, Khan S, Lee DS, Kim YC, Nam YJ et al. Alantolactone suppresses inducible nitric oxide synthase and cyclooxygenase-2 expression by down-regulating NF-kappaB, MAPK and AP-1 via the MyD88 signaling pathway in LPS-activated RAW 264.7 cells. Int Immunopharmacol 2012; 14: 375–383.

    Article  CAS  PubMed  Google Scholar 

  23. Nie YC, Wu H, Li PB, Xie LM, Luo YL, Shen JG et al. Naringin attenuates EGF-induced MUC5AC secretion in A549 cells by suppressing the cooperative activities of MAPKs-AP-1 and IKKs-IkappaB-NF-kappaB signaling pathways. Eur J Pharmacol 2012; 690: 207–213.

    Article  CAS  PubMed  Google Scholar 

  24. Vesely PW, Staber PB, Hoefler G, Kenner L . Translational regulation mechanisms of AP-1 proteins. Mutat Res 2009; 682: 7–12.

    Article  CAS  PubMed  Google Scholar 

  25. Clarke M, Pentz R, Bobyn J, Hayley S . Stressor-like effects of c-Jun N-terminal kinase (JNK) inhibition. PLoS One 2012; 7: e44073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. An J, Sun Y, Rettig MB . Transcriptional coactivation of c-Jun by the KSHV-encoded LANA. Blood 2004; 103: 222–228.

    Article  CAS  PubMed  Google Scholar 

  27. Kawasaki T, Sata T . Perioperative innate immunity and its modulation. J UOEH 2011; 33: 123–137.

    Article  CAS  PubMed  Google Scholar 

  28. Manavalan B, Basith S, Choi S . Similar structures but different roles—an updated perspective on TLR structures. Front Physiol 2011; 2: 41.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Oberg F, Haseeb A, Ahnfelt M, Ponten F, Westermark B, El-Obeid A . Herbal melanin activates TLR4/NF-kappaB signaling pathway. Phytomedicine 2009; 16: 477–484.

    Article  PubMed  Google Scholar 

  30. Shimasaki S, Koga T, Shuto T, Suico MA, Sato T, Watanabe K et al. Endoplasmic reticulum stress increases the expression and function of toll-like receptor-2 in epithelial cells. Biochem Biophys Res Commun 2010; 402: 235–240.

    Article  CAS  PubMed  Google Scholar 

  31. Xuan B, Qian Z, Torigoi E, Yu D . Human cytomegalovirus protein pUL38 induces ATF4 expression, inhibits persistent JNK phosphorylation, and suppresses endoplasmic reticulum stress-induced cell death. J Virol 2009; 83: 3463–3474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Caselli E, Benedetti S, Grigolato J, Caruso A, di Luca D . Activating transcription factor 4 (ATF4) is upregulated by human herpesvirus 8 infection, increases virus replication and promotes proangiogenic properties. Arch Virol 2012; 157: 63–74.

    Article  CAS  PubMed  Google Scholar 

  33. Merquiol E, Uzi D, Mueller T, Goldenberg D, Nahmias Y, Xavier RJ et al. HCV causes chronic endoplasmic reticulum stress leading to adaptation and interference with the unfolded protein response. PLoS One 2011; 6: e24660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cho HK, Cheong KJ, Kim HY, Cheong J . Endoplasmic reticulum stress induced by hepatitis B virus X protein enhances cyclo-oxygenase 2 expression via activating transcription factor 4. Biochem J 2011; 435: 431–439.

    Article  CAS  PubMed  Google Scholar 

  35. Roybal CN, Yang S, Sun CW, Hurtado D, Vander Jagt DL, Townes TM et al. Homocysteine increases the expression of vascular endothelial growth factor by a mechanism involving endoplasmic reticulum stress and transcription factor ATF4. J Biol Chem 2004; 279: 14844–14852.

    Article  CAS  PubMed  Google Scholar 

  36. Fung H, Liu P, Demple B . ATF4-dependent oxidative induction of the DNA repair enzyme Ape1 counteracts arsenite cytotoxicity and suppresses arsenite-mediated mutagenesis. Mol Cell Biol 2007; 27: 8834–8847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yoshizawa T, Hinoi E, Jung DY, Kajimura D, Ferron M, Seo J et al. The transcription factor ATF4 regulates glucose metabolism in mice through its expression in osteoblasts. J Clin Invest 2009; 119: 2807–2817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Elefteriou F, Ahn JD, Takeda S, Starbuck M, Yang X, Liu X et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 2005; 434: 514–520.

    Article  CAS  PubMed  Google Scholar 

  39. Ghosh R, Lipson KL, Sargent KE, Mercurio AM, Hunt JS, Ron D et al. Transcriptional regulation of VEGF-A by the unfolded protein response pathway. PLoS One 2010; 5: e9575.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Karpinski BA, Morle GD, Huggenvik J, Uhler MD, Leiden JM . Molecular cloning of human CREB-2: an ATF/CREB transcription factor that can negatively regulate transcription from the cAMP response element. Proc Natl Acad Sci USA 1992; 89: 4820–4824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Crawford A, Angelosanto JM, Nadwodny KL, Blackburn SD, Wherry EJ . A role for the chemokine RANTES in regulating CD8 T cell responses during chronic viral infection. PLoS Pathog 2011; 7: e1002098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lawson C, Wolf S . ICAM-1 signaling in endothelial cells. Pharmacol Rep 2009; 61: 22–32.

    Article  CAS  PubMed  Google Scholar 

  43. Shin GT, Lee HJ, Kim H . GADD45gamma regulates TNF-alpha and IL-6 synthesis in THP-1 cells. Inflamm Res 2012; 61: 1195–1202.

    Article  CAS  PubMed  Google Scholar 

  44. Freytes DO, Kang JW, Marcos I, Vunjak-Novakovic G . Macrophages modulate the viability and growth of human mesenchymal stem cells. J Cell Biochem 2013; 114: 220–229.

    Article  CAS  PubMed  Google Scholar 

  45. Yanni G, Whelan A, Feighery C, Bresnihan B . Synovial tissue macrophages and joint erosion in rheumatoid arthritis. Ann Rheum Dis 1994; 53: 39–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 2000; 6: 1099–1108.

    Article  CAS  PubMed  Google Scholar 

  47. Lu PD, Harding HP, Ron D . Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response. J Cell Biol 2004; 167: 27–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Frank CL, Ge X, Xie Z, Zhou Y, Tsai LH . Control of activating transcription factor 4 (ATF4) persistence by multisite phosphorylation impacts cell cycle progression and neurogenesis. J Biol Chem 2010; 285: 33324–33337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ameri K, Lewis CE, Raida M, Sowter H, Hai T, Harris AL . Anoxic induction of ATF-4 through HIF-1-independent pathways of protein stabilization in human cancer cells. Blood 2004; 103: 1876–1882.

    Article  CAS  PubMed  Google Scholar 

  50. Endo M, Oyadomari S, Suga M, Mori M, Gotoh T . The ER stress pathway involving CHOP is activated in the lungs of LPS-treated mice. J Biochem 2005; 138: 501–507.

    Article  CAS  PubMed  Google Scholar 

  51. Gotoh T, Oyadomari S, Mori K, Mori M . Nitric oxide-induced apoptosis in RAW 264.7 macrophages is mediated by endoplasmic reticulum stress pathway involving ATF6 and CHOP. J Biol Chem 2002; 277: 12343–12350.

    Article  CAS  PubMed  Google Scholar 

  52. Kilberg MS, Shan J, Su N . ATF4-dependent transcription mediates signaling of amino acid limitation. Trends Endocrinol Metab 2009; 20: 436–443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Steinmuller L, Cibelli G, Moll JR, Vinson C, Thiel G . Regulation and composition of activator protein 1 (AP-1) transcription factors controlling collagenase and c-Jun promoter activities. Biochem J 2001; 360: 599–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kato Y, Koike Y, Tomizawa K, Ogawa S, Hosaka K, Tanaka S et al. Presence of activating transcription factor 4 (ATF4) in the porcine anterior pituitary. Mol Cell Endocrinol 1999; 154: 151–159.

    Article  CAS  PubMed  Google Scholar 

  55. Pocock J, Gomez-Guerrero C, Harendza S, Ayoub M, Hernandez-Vargas P, Zahner G et al. Differential activation of NF-kappa B, AP-1, and C/EBP in endotoxin-tolerant rats: mechanisms for in vivo regulation of glomerular RANTES/CCL5 expression. J Immunol 2003; 170: 6280–6291.

    Article  CAS  PubMed  Google Scholar 

  56. Boylan AM, Hebert CA, Sadick M, Wong WL, Chuntharapai A, Hoeffel JM et al. Interleukin-8 is a major component of pleural liquid chemotactic activity in a rabbit model of endotoxin pleurisy. Am J Physiol 1994; 267: L137–L144.

    CAS  PubMed  Google Scholar 

  57. Hoffmann E, Dittrich-Breiholz O, Holtmann H, Kracht M . Multiple control of interleukin-8 gene expression. J Leukoc Biol 2002; 72: 847–855.

    CAS  PubMed  Google Scholar 

  58. Wang GQ, Yang XY, Jia YT, Xia ZF . Tec kinase mediating IL-8 transcription in monocytes stimulated with LPS. Inflammation 2009; 32: 265–269.

    Article  CAS  PubMed  Google Scholar 

  59. Hadad N, Tuval L, Elgazar-Carmom V, Levy R . Endothelial ICAM-1 protein induction is regulated by cytosolic phospholipase A2alpha via both NF-kappaB and CREB transcription factors. J Immunol 2011; 186: 1816–1827.

    Article  CAS  PubMed  Google Scholar 

  60. Clarke DL, Clifford RL, Jindarat S, Proud D, Pang L, Belvisi MG et al. TNF{alpha} and IFN{gamma} synergistically enhance transcriptional activation of CXCL10 in human airway smooth muscle cells via STAT-1, NF-{kappa}B and the transcriptional coactivator CREB-binding protein. J Biol Chem 2010.

  61. Yeligar SM, Machida K, Tsukamoto H, Kalra VK . Ethanol augments RANTES/CCL5 expression in rat liver sinusoidal endothelial cells and human endothelial cells via activation of NF-kappa B, HIF-1 alpha, and AP-1. J Immunol 2009; 183: 5964–5976.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Feifei Liu and Xiaoyue Tan for kindly reading the manuscript and providing valuable advice. This work was supported by Tianjin Municipal Science and Technology Commission, Grant No. 08ZCGYSH04700.

Author information

Authors and Affiliations

Authors

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, C., Bai, N., Chang, A. et al. ATF4 is directly recruited by TLR4 signaling and positively regulates TLR4-trigged cytokine production in human monocytes. Cell Mol Immunol 10, 84–94 (2013). https://doi.org/10.1038/cmi.2012.57

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2012.57

Keywords

This article is cited by

Search

Quick links